The Breathomics Profile of Volatile Sulfur Compounds in the Bipolar Spectrum, Does It Represent a Potential Tool for Early Diagnosis?
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cirla, A.; Gilioli, R. Carbon disulfide poisoning: Old and new problems. Med. Lav. 1978, 69, 109–117. [Google Scholar] [PubMed]
- Davidson, M.; Feinleib, M. Carbon Disulfide Poisoning: A Review. Am. Heart J. 1972, 83, 100–114. [Google Scholar] [CrossRef]
- Deguigne, M.B.; Lagarce, L.; Boels, D.; Harry, P. Metam Sodium Intoxication: The Specific Role of Degradation Products—Methyl Isothiocyanate and Carbon Disulphide—As a Function of Exposure. Clin. Toxicol. 2011, 49, 416–422. [Google Scholar] [CrossRef]
- Rizzo, S.; Franco, G.; Malamani, T. Epidemiological survey on symptomatology of subject exposed to carbon disulphide (author’s transl). Lav. Um. 1975, 27, 1–17. [Google Scholar]
- Mancuso, T.F.; Locke, B.Z. Carbon Disulphide as a Cause of Suicide: Epidemiological Study of Viscose Rayon Workers. J. Occup. Med. 1972, 14, 595–606. [Google Scholar] [PubMed]
- Beauchamp, R.O.; Bus, J.S.; Popp, J.A.; Boreiko, C.J.; Goldberg, L.; McKenna, M.J. A Critical Review of the Literature on Carbon Disulfide Toxicity. CRC Crit. Rev. Toxicol. 1983, 11, 169–278. [Google Scholar] [CrossRef] [PubMed]
- Magos, L. Toxicity of Carbon Disulphide. Ann. Occup. Hyg. 1972, 15, 303–311. [Google Scholar] [CrossRef]
- Akiskal, H.S. The Emergence of the Bipolar Spectrum: Validation Along Clinical-Epidemiologic and Familial-Genetic Lines. Psychopharmacol. Bull. 2007, 40, 99–115. [Google Scholar]
- Akiskal, H.S.; Akiskal, K.K. In Search of Aristotle: Temperament, Human Nature, Melancholia, Creativity and Eminence. J. Affect. Disord. 2007, 100, 1–6. [Google Scholar] [CrossRef]
- Ghaemi, S.N.; Dalley, S. The Bipolar Spectrum: Conceptions and Misconceptions. Aust. N. Z. J. Psychiatry 2014, 48, 314–324. [Google Scholar] [CrossRef]
- Kendell, R.E.; Cooper, J.E.; Gourlay, A.J.; Copeland, J.R.M.; Sharpe, L.; Gurland, B.J. Diagnostic Criteria of American and British Psychiatrists. Arch. Gen. Psychiatry 1971, 25, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Sabas, M.; Greenberg, J. Increased Pentane and Carbon Disulfide in the Breath of Patients with Schizophrenia. J. Clin. Pathol. 1993, 46, 861–864. [Google Scholar] [CrossRef]
- Phillips, M.; Erickson, G.A.; Sabas, M.; Smith, J.P.; Greenberg, J. Volatile Organic Compounds in the Breath of Patients with Schizophrenia. J. Clin. Pathol. 1995, 48, 466–469. [Google Scholar] [CrossRef]
- Banerjee, U.; Dasgupta, A.; Rout, J.K.; Singh, O.P. Effects of Lithium Therapy on Na+–K+-ATPase Activity and Lipid Peroxidation in Bipolar Disorder. Prog. Progress. Neuro-Psychopharmacol. Biol. Psychiatry 2012, 37, 56–61. [Google Scholar] [CrossRef]
- Elvsåshagen, T.; Zuzarte, P.; Westlye, L.T.; Bøen, E.; Josefsen, D.; Boye, B.; Hol, P.K.; Malt, U.F.; Young, L.T.; Andreazza, A.C. Dentate Gyrus−Cornu Ammonis (CA) 4 Volume Is Decreased and Associated with Depressive Episodes and Lipid Peroxidation in Bipolar II Disorder: Longitudinal and Cross-Sectional Analyses. Bipolar Disord. 2016, 18, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Rodkin, S.; Nwosu, C.; Sannikov, A.; Tyurin, A.; Chulkov, V.S.; Raevskaya, M.; Ermakov, A.; Kirichenko, E.; Gasanov, M. The Role of Gasotransmitter-Dependent Signaling Mechanisms in Apoptotic Cell Death in Cardiovascular, Rheumatic, Kidney, and Neurodegenerative Diseases and Mental Disorders. Int. J. Mol. Sci. 2023, 24, 6014. [Google Scholar] [CrossRef] [PubMed]
- Berk, M.; Kapczinski, F.; Andreazza, A.C.; Dean, O.M.; Giorlando, F.; Maes, M.; Yücel, M.; Gama, C.S.; Dodd, S.; Dean, B.; et al. Pathways Underlying Neuroprogression in Bipolar Disorder: Focus on Inflammation, Oxidative Stress and Neurotrophic Factors. Neurosci. Biobehav. Rev. 2011, 35, 804–817. [Google Scholar] [CrossRef]
- Madireddy, S.; Madireddy, S. Therapeutic Interventions to Mitigate Mitochondrial Dysfunction and Oxidative Stress–Induced Damage in Patients with Bipolar Disorder. Int. J. Mol. Sci. 2022, 23, 1844. [Google Scholar] [CrossRef]
- Liu, X.; Lin, J.; Zhang, H.; Khan, N.U.; Zhang, J.; Tang, X.; Cao, X.; Shen, L. Oxidative Stress in Autism Spectrum Disorder—Current Progress of Mechanisms and Biomarkers. Front. Psychiatry 2022, 13, 813304. [Google Scholar] [CrossRef]
- Giménez-Palomo, A.; Andreu, H.; de Juan, O.; Olivier, L.; Ochandiano, I.; Ilzarbe, L.; Valentí, M.; Stoppa, A.; Llach, C.-D.; Pacenza, G.; et al. Mitochondrial Dysfunction as a Biomarker of Illness State in Bipolar Disorder: A Critical Review. Brain Sci. 2024, 14, 1199. [Google Scholar] [CrossRef]
- Rawani, N.S.; Chan, A.W.; Dursun, S.M.; Baker, G.B. The Underlying Neurobiological Mechanisms of Psychosis: Focus on Neurotransmission Dysregulation, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction. Antioxidants 2024, 13, 709. [Google Scholar] [CrossRef]
- Cyrino, L.A.R.; Delwing-de Lima, D.; Ullmann, O.M.; Maia, T.P. Concepts of Neuroinflammation and Their Relationship with Impaired Mitochondrial Functions in Bipolar Disorder. Front. Behav. Neurosci. 2021, 15, 609487. [Google Scholar] [CrossRef]
- Ermakov, E.A.; Dmitrieva, E.M.; Parshukova, D.A.; Kazantseva, D.V.; Vasilieva, A.R.; Smirnova, L.P. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. Oxidative Med. Cell. Longev. 2021, 2021, 8881770. [Google Scholar] [CrossRef] [PubMed]
- Wollenhaupt-Aguiar, B.; Kapczinski, F.; Pfaffenseller, B. Biological Pathways Associated with Neuroprogression in Bipolar Disorder. Brain Sci. 2021, 11, 228. [Google Scholar] [CrossRef]
- Lima, D.D.; Cyrino, L.A.R.; Ferreira, G.K.; Magro, D.D.D.; Calegari, C.R.; Cabral, H.; Cavichioli, N.; Ramos, S.A.; Ullmann, O.M.; Mayer, Y.; et al. Neuroinflammation and Neuroprogression Produced by Oxidative Stress in Euthymic Bipolar Patients with Different Onset Disease Times. Sci. Rep. 2022, 12, 16742. [Google Scholar] [CrossRef]
- Shao, L.; Young, L.T.; Wang, J.-F. Chronic Treatment with Mood Stabilizers Lithium and Valproate Prevents Excitotoxicity by Inhibiting Oxidative Stress in Rat Cerebral Cortical Cells. Biol. Psychiatry 2005, 58, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Boll, M.-C.; Bayliss, L.; Vargas-Cañas, S.; Burgos, J.; Montes, S.; Peñaloza-Solano, G.; Rios, C.; Alcaraz-Zubeldia, M. Clinical and Biological Changes Under Treatment with Lithium Carbonate and Valproic Acid in Sporadic Amyotrophic Lateral Sclerosis. J. Neurol. Sci. 2014, 340, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Marazziti, D.; Diep, P.-T.; Carter, S.; Carbone, M.G. Oxytocin: An Old Hormone, a Novel Psychotropic Drug and its Possible Use in Treating Psychiatric Disorders. Curr. Med. Chem. 2022, 29, 5615–5687. [Google Scholar] [CrossRef]
- Jacob, M.; Lopata, A.L.; Dasouki, M.; Abdel Rahman, A.M. Metabolomics Toward Personalized Medicine. Mass. Spectrom. Rev. 2019, 38, 221–238. [Google Scholar] [CrossRef]
- Gbaoui, L.; Fachet, M.; Lüno, M.; Meyer-Lotz, G.; Frodl, T.; Hoeschen, C. Breathomics Profiling of Metabolic Pathways Affected by Major Depression: Possibilities and Limitations. Front. Psychiatry 2022, 13, 1061326. [Google Scholar] [CrossRef]
- Arya, S.S.; Dias, S.B.; Jelinek, H.F.; Hadjileontiadis, L.J.; Pappa, A.-M. The Convergence of Traditional and Digital Biomarkers Through AI-Assisted Biosensing: A New Era in Translational Diagnostics? Biosens. Bioelectron. 2023, 235, 115387. [Google Scholar] [CrossRef] [PubMed]
- Scaini, G.; Valvassori, S.S.; Diaz, A.P.; Lima, C.N.; Benevenuto, D.; Fries, G.R.; Quevedo, J. Neurobiology of Bipolar Disorders: A Review of Genetic Components, Signaling Pathways, Biochemical Changes, and Neuroimaging Findings. Braz. J. Psychiatry 2020, 42, 536–551. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Guo, X.; Shen, Y.; Xu, L.; Huang, H.; Lu, J.; Hu, S. Pushing the Frontiers: Optogenetics for Illuminating the Neural Pathophysiology of Bipolar Disorder. Int. J. Biol. Sci. 2023, 19, 4539–4551. [Google Scholar] [CrossRef]
- Hampelska, K.; Jaworska, M.M.; Babalska, Z.Ł.; Karpiński, T.M. The Role of Oral Microbiota in Intra-Oral Halitosis. J. Clin. Med. 2020, 9, 2484. [Google Scholar] [CrossRef] [PubMed]
- Oho, T.; Yoshida, Y.; Shimazaki, Y.; Yamashita, Y.; Koga, T. Psychological Condition of Patients Complaining of Halitosis. J. Dent. 2001, 29, 31–33. [Google Scholar] [CrossRef]
- Suzuki, N.; Yoneda, M.; Naito, T.; Iwamoto, T.; Hirofuji, T. Relationship Between Halitosis and Psychologic Status. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2008, 106, 542–547. [Google Scholar] [CrossRef]
- Braithwaite, I.; Zhang, S.; Kirkbride, J.B.; Osborn, D.P.J.; Hayes, J.F. Air Pollution (Particulate Matter) Exposure and Associations with Depression, Anxiety, Bipolar, Psychosis and Suicide Risk: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2019, 127, 126002. [Google Scholar] [CrossRef]
- Torres, G.; Subbaiah, R.T.; Sood, R.A.; Leheste, J.R. From Air to Mind: Unraveling the Impact of Indoor Pollutants on Psychiatric Disorders. Front. Psychiatry 2025, 15, 1511475. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, R.; Varadwaj, P. Smelling the Disease: Diagnostic Potential of Breath Analysis. Mol. Diagn. Ther. 2023, 27, 321–347. [Google Scholar] [CrossRef]
- Bajo-Fernández, M.; Souza-Silva, É.A.; Barbas, C.; Rey-Stolle, M.F.; García, A. GC-MS-Based Metabolomics of Volatile Organic Compounds in Exhaled Breath: Applications in Health and Disease. A review. Front. Mol. Biosci. 2024, 10, 1295955. [Google Scholar] [CrossRef]
- Carta, M.; Preti, A.; Akiskal, H. Coping with the New Era: Noise and Light Pollution, Hperactivity and Steroid Hormones. Towards an Evolutionary View of Bipolar Disorders. Clin. Pr. Pract. Epidemiol. Ment. Health 2018, 14, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Kalcev, G.; Scano, A.; Orrù, G.; Primavera, D.; Cossu, G.; Nardi, A.E.; Carta, M.G. Is a Genetic Variant Associated with Bipolar Disorder Frequent in People Without Bipolar Disorder but with Characteristics of Hyperactivity and Novelty Seeking? Clin. Pr. Pract. Epidemiol. Ment. Health 2023, 19, e174501792303280. [Google Scholar] [CrossRef]
- Kalcev, G.; Cossu, G.; Preti, A.; Littera, M.T.; Frau, S.; Primavera, D.; Zaccheddu, R.; Matza, V.; Ermellino, M.; Pintus, E.; et al. Development and Validation of the Questionnaire for Adaptive Hyperactivity and Goal Achievement (AHGA). Clin. Pr. Pract. Epidemiol. Ment. Health 2023, 19, e174501792303281. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders DSM-5, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013; ISBN 0-89042-554-X. [Google Scholar]
- Hirschfeld, R.M.A.; Williams, J.B.W.; Spitzer, R.L.; Calabrese, J.R.; Flynn, L.; Keck, P.E.; Lewis, L.; McElroy, S.L.; Post, R.M.; Rapport, D.J.; et al. Development and Validation of a Screening Instrument for Bipolar Spectrum Disorder: The Mood Disorder Questionnaire. AJP 2000, 157, 1873–1875. [Google Scholar] [CrossRef]
- Carta, M.G.; Angst, J. Screening for Bipolar Disorders: A Public Health Issue. J. Affect. Disord. 2016, 205, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Carta, M.G.; Fornaro, M.; Primavera, D.; Nardi, A.E.; Karam, E. Dysregulation of Mood, Energy, and Social Rhythms Syndrome (DYMERS): A Working Hypothesis. J. Public Health Res. 2024, 13, 22799036241248022. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Xu, D.-D.; Liu, R.; Yang, Y.; Grover, S.; Ungvari, G.S.; Hall, B.J.; Wang, G.; Xiang, Y.-T. Comparison of the Screening Ability Between the 32-Item Hypomania Checklist (HCL-32) and the Mood Disorder Questionnaire (MDQ) for Bipolar Disorder: A Meta-Analysis and Systematic Review. Psychiatry Res. 2019, 273, 461–466. [Google Scholar] [CrossRef]
- Sinjari, B.; Murmura, G.; Caputi, S.; Ricci, L.; Varvara, G.; Scarano, A. Use of Oral ChromaTM in the Assessment of Volatile Sulfur Compounds in Patients with Fixed Prostheses. Int. J. Immunopathol. Pharmacol. 2013, 26, 691–697. [Google Scholar] [CrossRef]
- Salako, N.O.; Philip, L. Comparison of the Use of the Halimeter and the Oral ChromaTM in the Assessment of the Ability of Common Cultivable Oral Anaerobic Bacteria to Produce Malodorous Volatile Sulfur Compounds from Cysteine and Methionine. Med. Princ. Pract. 2010, 20, 75–79. [Google Scholar] [CrossRef]
- Tangerman, A.; Winkel, E.G. The Portable Gas Chromatograph OralChromaTM: A Method of Choice to Detect Oral and Extra-Oral Halitosis. J. Breath Res. 2008, 2, 017010. [Google Scholar] [CrossRef]
- StataCorp. Stata Statistical Software 18; StataCorp: College Station, TX, USA, 2023. [Google Scholar]
- Negoias, S.; Chen, B.; Iannilli, E.; Ning, Y.; Kitzler, H.H.; Hummel, T.; Krüger, S. Odor-Related Brain Hyper-Reactivity in Euthymic Bipolar Disorder: An fMRI and ERP Study. Psychiatry Res. 2019, 278, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Bratu, A.-M.; Popa (Achim), C.; Petrus, M.; Dumitras, D.C. Ethylene and Ammonia in Neurobehavioral Disorders. In Neurological Disorders and Imaging Physics, Volume 3: Application to Autism Spectrum Disorders and Alzheimer’s; IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- Sanches, M.; Keshavan, M.S.; Brambilla, P.; Soares, J.C. Neurodevelopmental Basis of Bipolar Disorder: A Critical Appraisal. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2008, 32, 1617–1627. [Google Scholar] [CrossRef]
- MacQueen, G.M.; Hajek, T.; Alda, M. The Phenotypes of Bipolar Disorder: Relevance for Genetic Investigations. Mol. Psychiatry 2005, 10, 811–826. [Google Scholar] [CrossRef]
- Passos, I.C.; Mwangi, B.; Vieta, E.; Berk, M.; Kapczinski, F. Areas of Controversy in Neuroprogression in Bipolar Disorder. Acta Psychiatr. Scand. 2016, 134, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Bellato, A.; Arora, I.; Hollis, C.; Groom, M.J. Is Autonomic Nervous System Function Atypical in Attention Deficit Hyperactivity Disorder (ADHD)? A Systematic Review of the Evidence. Neurosci. Biobehav. Rev. 2020, 108, 182–206. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, C.; MacLullich, A.M.J. At the Extreme End of the Psychoneuroimmunological Spectrum: Delirium as a Maladaptive Sickness Behaviour Response. Brain Behav. Immun. 2013, 28, 1–13. [Google Scholar] [CrossRef]
- Knezevic, E.; Nenic, K.; Milanovic, V.; Knezevic, N.N. The Role of Cortisol in Chronic Stress, Neurodegenerative Diseases, and Psychological Disorders. Cells 2023, 12, 2726. [Google Scholar] [CrossRef]
- Sarris, J.; Ravindran, A.; Yatham, L.N.; Marx, W.; Rucklidge, J.J.; McIntyre, R.S.; Akhondzadeh, S.; Benedetti, F.; Caneo, C.; Cramer, H.; et al. Clinician Guidelines for the Treatment of Psychiatric Disorders with Nutraceuticals and Phytoceuticals: The World Federation of Societies of Biological Psychiatry (WFSBP) and Canadian Network for Mood and Anxiety Treatments (CANMAT) Taskforce. World J. Biol. Psychiatry 2022, 23, 424–455. [Google Scholar] [CrossRef]
- Alamgir, A.N.M. (Ed.) Biotechnology, In Vitro Production of Natural Bioactive Compounds, Herbal Preparation, and Disease Management (Treatment and Prevention). In Therapeutic Use of Medicinal Plants and Their Extracts: Volume 2: Phytochemistry and Bioactive Compounds; Springer International Publishing: Cham, Switzerland, 2018; pp. 585–664. ISBN 978-3-319-92387-1. [Google Scholar]
- Manchia, M.; Fanos, V. Targeting Aggression in Severe Mental Illness: The Predictive Role of Genetic, Epigenetic, and Metabolomic Markers. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2017, 77, 32–41. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, A.B.; Arora, T.; Singh, S.; Singh, R. Critical Review on Emerging Health Effects Associated with the Indoor Air Quality and Its Sustainable Management. Sci. Total Environ. 2023, 872, 162163. [Google Scholar] [CrossRef]
- Silwood, C.J.L.; Grootveld, M.C.; Lynch, E. A Multifactorial Investigation of the Ability of Oral Health Care Products (OHCPs) to Alleviate Oral Malodour. J. Clin. Periodontol. 2001, 28, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Harvey-Woodworth, C.N. Dimethylsulphidemia: The Significance of Dimethyl Sulphide in Extra-Oral, Blood Borne Halitosis. Br. Dent. J. 2013, 214, E20. [Google Scholar] [CrossRef] [PubMed]
- Hiroshi, K.; Masaya, H.; Nariyoshi, S.; Makoto, M. Evaluation of Volatile Sulfur Compounds in the Expired Alveolar Gas in Patients with Liver Cirrhosis. Clin. Chim. Acta 1978, 85, 279–284. [Google Scholar] [CrossRef]
- Kaji, H.; Hisamura, M.; Saito, N.; Murao, M. Biochemical Aspect of Dimethyl Sulfide Breath Test in the Studies on Methionine Metabolism. Res. Commun. Chem. Pathol. Pharmacol. 1981, 32, 515–523. [Google Scholar]
- Lei, B.; Feng, H.; Yang, L.; Wang, J.; Chen, J.; Song, W.; Jiang, C.; Zhang, K.; Wang, Q.; Tsang, J.C.C.; et al. Circadian Rhythm Dysfunction and Psychopathology in the Offspring of Parents with Bipolar Disorder: A High-Risk Study in the Chinese Population. Gen. Psych. 2024, 37, e101239. [Google Scholar] [CrossRef]
- Carta, M.G.; Ouali, U.; Perra, A.; Ben Cheikh Ahmed, A.; Boe, L.; Aissa, A.; Lorrai, S.; Cossu, G.; Aresti, A.; Preti, A.; et al. Living With Bipolar Disorder in the Time of COVID-19: Biorhythms During the Severe Lockdown in Cagliari, Italy, and the Moderate Lockdown in Tunis, Tunisia. Front. Psychiatry 2021, 12, 634765. [Google Scholar] [CrossRef] [PubMed]
- Alloy, L.B.; LaBelle, D.; Boland, E.; Goldstein, K.; Jenkins, A.; Shapero, B.; Black, S.K.; Obraztsova, O. Depressive and Bipolar Disorders. In Psychopathology; Routledge: London, UK, 2015; ISBN 978-1-315-77894-5. [Google Scholar]
- Hlastala, S.A.; Frank, E. Adapting Interpersonal and Social Rhythm Therapy to the Developmental Needs of Adolescents with Bipolar Disorder. Dev. Psychopathol. 2006, 18, 1267–1288. [Google Scholar] [CrossRef]
- Rowland, T.A.; Marwaha, S. Epidemiology and Risk Factors for Bipolar Disorder. Ther. Adv. Psychopharmacol. 2018, 8, 251–269. [Google Scholar] [CrossRef]
- Perra, A.; Galetti, A.; Zaccheddu, R.; Locci, A.; Piludu, F.; Preti, A.; Primavera, D.; Di Natale, L.; Nardi, A.E.; Kurotshka, P.K.; et al. A Recovery-Oriented Program for People with Bipolar Disorder Through Virtual Reality-Based Cognitive Remediation: Results of a Feasibility Randomized Clinical Trial. J. Clin. Med. 2023, 12, 2142. [Google Scholar] [CrossRef]
- Primavera, D.; Aviles Gonzalez, C.I.; Romano, F.; Kalcev, G.; Pinna, S.; Minerba, L.; Scano, A.; Orrù, G.; Cossu, G. Does the Response to a Stressful Condition in Older Adults with Life Rhythm Dysregulations Provide Evidence of the Existence of the “Dysregulation of Mood, Energy, and Social Rhythms Syndrome”? Healthcare 2024, 12, 87. [Google Scholar] [CrossRef]
- Primavera, D.; Cossu, G.; Marchegiani, S.; Preti, A.; Nardi, A.E. Does the Dysregulation of Social Rhythms Syndrome (DYMERS) be Considered an Essential Component of Panic Disorders? Clin. Pract. Epidemiol. Ment. Health 2024, 20, e17450179293272. [Google Scholar] [CrossRef] [PubMed]
- Carta, M.; Mura, G.; Sorbello, O.; Farina, G.; Demelia, L. Quality of Life and Psychiatric Symptoms in Wilson’s Disease: The Relevance of Bipolar Disorders. Clin. Pract. Epidemiol. Ment. Health 2012, 8, 102–109. [Google Scholar] [CrossRef]
- Sperry, S.H.; Stromberg, A.R.; Murphy, V.A.; Lasagna, C.A.; McInnis, M.G.; Menkes, M.W.; Yocum, A.K.; Tso, I.F. Longitudinal Interplay Between Alcohol Use, Mood, and Functioning in Bipolar Spectrum Disorders. JAMA Netw. Open 2024, 7, e2415295. [Google Scholar] [CrossRef] [PubMed]
- Ratnaike, T.E.; Elkhateeb, N.; Lochmüller, A.; Gilmartin, C.; Schon, K.; Horváth, R.; Chinnery, P.F. Evidence for Sodium Valproate Toxicity in Mitochondrial Diseases: A Systematic Analysis. BMJ Neurol. Open 2024, 6, e000650. [Google Scholar] [CrossRef] [PubMed]
- Dybowska, D.; Zarębska-Michaluk, D.; Rzymski, P.; Berak, H.; Lorenc, B.; Sitko, M.; Dybowski, M.; Mazur, W.; Tudrujek-Zdunek, M.; Janocha-Litwin, J.; et al. Real-World Effectiveness and Safety of Direct-Acting Antivirals in Hepatitis C Virus Patients with Mental Disorders. World J. Gastroenterol. 2023, 29, 4085–4098. [Google Scholar] [CrossRef]
Cases (N = 24) | Overall Controls (N = 95) | Statistics | |
---|---|---|---|
Age | 54.68 ± 15.79 | 67.75 ± 15.31 | Wilcoxon signed-rank test W(23) = 1.00 p = 0.0001 |
Sex (female) | 15 (62.5%) | 35 (36.8%) | Df1, McNemar’s test χ2 = 5.145 p = 0.022 |
Cases (N = 24) | Matched Controls (N = 48) | Statistics | |
---|---|---|---|
Age (Mean ± SD) | 56.08 ± 13.06 | 69.56 ± 11.05 | Wilcoxon signed-rank test W(23) = 1.00 p = 0.0001 |
Sex (female) (Matching) | 15 (62.5%) | 30 (62.5%) | McNemar’s test Matching |
CH3SH in breath air (Mean ± SD) | 18.62 ± 5.04 ppb | 9.45 ± 18.64 ppb | Wilcoxon signed-rank test W(23) = 2.00 p = 0.022 |
MDQ+ (N = 16) | MDQ− (N = 79) | Total Mean (N = 95) | |
---|---|---|---|
Age | 68.22 ± 17.80 | 57.92 ± 14.64 | Paired t-test t = 0,078 p = 0.638 |
CH3SH in breath air | 9.17 ± 5.42 ppb | 15.05 ± 18.03 ppb | Wilcoxon signed-rank test W(15) = 0.05 p = 0.254 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sancassiani, F.; Carta, M.G.; Primavera, D.; Tusconi, M.; Urban, A.; Atzori, L.; Ferreli, C.; Cantone, E.; Cuccu, G.V.; Kalcev, G.; et al. The Breathomics Profile of Volatile Sulfur Compounds in the Bipolar Spectrum, Does It Represent a Potential Tool for Early Diagnosis? J. Clin. Med. 2025, 14, 2025. https://doi.org/10.3390/jcm14062025
Sancassiani F, Carta MG, Primavera D, Tusconi M, Urban A, Atzori L, Ferreli C, Cantone E, Cuccu GV, Kalcev G, et al. The Breathomics Profile of Volatile Sulfur Compounds in the Bipolar Spectrum, Does It Represent a Potential Tool for Early Diagnosis? Journal of Clinical Medicine. 2025; 14(6):2025. https://doi.org/10.3390/jcm14062025
Chicago/Turabian StyleSancassiani, Federica, Mauro Giovanni Carta, Diego Primavera, Massimo Tusconi, Antonio Urban, Laura Atzori, Caterina Ferreli, Elisa Cantone, Gloria Virginia Cuccu, Goce Kalcev, and et al. 2025. "The Breathomics Profile of Volatile Sulfur Compounds in the Bipolar Spectrum, Does It Represent a Potential Tool for Early Diagnosis?" Journal of Clinical Medicine 14, no. 6: 2025. https://doi.org/10.3390/jcm14062025
APA StyleSancassiani, F., Carta, M. G., Primavera, D., Tusconi, M., Urban, A., Atzori, L., Ferreli, C., Cantone, E., Cuccu, G. V., Kalcev, G., Orrù, G., Cabitza, F., Dursun, S. M., Aviles Gonzalez, C. I., Fragoso Castilla, P. J., Giraldo Jaramillo, S., Cossu, G., & Scano, A. (2025). The Breathomics Profile of Volatile Sulfur Compounds in the Bipolar Spectrum, Does It Represent a Potential Tool for Early Diagnosis? Journal of Clinical Medicine, 14(6), 2025. https://doi.org/10.3390/jcm14062025