A Comprehensive Review of a Mechanism-Based Ventricular Electrical Storm Management
Abstract
1. Introduction
1.1. Historical and Mechanistic Perspectives of Ventricular Electrical Storm
1.2. Epidemiology
2. Methods
- -
- Peer-reviewed articles, clinical trials, meta-analyses, and authoritative reviews.
- -
- Studies discussing pathophysiological mechanisms, diagnostic considerations, or interventional strategies specifically targeting VES.
- -
- Publications in English.
- -
- Case reports with fewer than three patients.
- -
- Abstracts without full-text availability.
- -
- Non-human studies, with the exception of those directly relevant to mechanisms or interventions later validated in clinical settings.
3. Physiopathogenesis of the Electrical Ventricular Storm
3.1. The Triggers
3.1.1. Electrolyte Imbalance
3.1.2. Inflammation, Infection and Fever
3.1.3. Hypoxia, Hypercapnia and Acidosis
3.1.4. Alteration of SUMOylation
3.1.5. Adrenergic Drive
3.1.6. Drugs as a Trigger
3.2. The Substrate
- ∘
- Fibrosis and scarring regions caused by previous myocardial infarction, chronic ischemia with consequent disruption of the normal electrical conduction pathways.
- ∘
- Dilated or hypertrophic myocardium: structural changes associated with various cardiomyopathy types.
- ∘
- Electrical remodelling: inherited or acquired changes in ion channel function, conduction velocity, or refractoriness [15].
3.2.1. Altered Ventricular Substrate Associated with Heart Failure and Heart Failure Decompensation
- ∘
- Single-point biventricular pacing near a critical, slow-conduction left ventricular site, which can induce intramyocardial re-entry ventricular arrhythmias [58].
- ∘
- The close proximity of the ventricular lead and the scarred myocardium can result in further scarring and local remodelling, which is potentially responsible for generating ventricular arrhythmia later during follow-up, after the device implantation [59].
- ∘
- ∘
- Mechanical, caused by ventricular leads or triggered early after depolarisation-induced premature ventricular contractions [62].
Therapeutic Approach
Sedative Therapy
Antiarrhythmic Therapy
- ∘
- The first category of interventions targets the intrinsic cardiac nervous system or myocytes, involving pharmacological inhibition with betablockers of the sympathetic nervous system, dissection, and glial modulation. Glial modulation has been researched in both the intrinsic cardiac nervous system and the stellate ganglia, linking the two [83].
- ∘
- The second category (which includes cardiac sympathetic denervation, stellate ganglia block, thoracic epidural anaesthesia, and (auricular) vagal nerve stimulation) actively alters cardiac efferent pathways, reducing sympathetic outflow or enhancing parasympathetic tone. Thoracic epidural anaesthesia similarly impacts cardiac efferents and afferents, placing it at the intersection of the second and third categories [31].
- ∘
- The third category (comprising spinal cord stimulation, carotid sinus stimulation, and renal denervation) primarily influences cardiac autonomic balance indirectly by modifying cardiac afferent activity, which in turn affects the efferent outflow mediated by integration centres along the cardiac neuraxis [84,85].
Catheter Ablation
ICD Implantation
ICD Reprogramming
CRTp/CRTd Implantation
Stereotactic Radiation Therapy
ECMO and Ventricular Assist Devices
3.2.2. Genetic Primary Arrhythmic Disorders
- ∘
- Long QT syndrome
- ∘
- Catecholaminergic polymorphic ventricular tachycardia
- -
- Adrenergic stimulation;
- -
- Calcium leak through the ryanodine receptor produces DAD;
- -
- Triggered activity produced by DAD initiates ventricular arrhythmia.
- ∘
- Brugada syndrome
- -
- VES in BrS spontaneously resolves in one-third of cases;
- -
- Recurrence of VES occurs in about 6.1% of the patients;
- -
- Death related to VES is observed in 8.2% during follow-up [161].
- ∘
- Wolff–Parkinson–White syndrome
- ∘
- Effective refractory period of the AP < 250 ms
- ∘
- Shortest pre-excited R-R interval of less than 250 milliseconds during AF
- ∘
- Presence of multiple accessory pathways [174].
- ∘
- Early repolarisation syndrome
- ∘
- Short QT syndrome
- ▪
- SQTS1 is associated with the gain-of-function mutation KCNH2 of the delayed rectifying potassium current rapid component (IKr). The result is that the inactivation of IKr occurs at a much more positive voltage than the normal, typical voltage for the cardiac action potential, between −90 and +30 mV. When the inactivation voltage is shifted by +90 mV, the IKr is not inactivated during normal action potential, interfering with the repolarisation phase and leading to ventricular arrhythmia [198].
- ▪
- SQTS2 is linked to the gain-of-function mutation KCNQ1 of the delayed rectifying potassium current (IKs), which induces an accelerated activation resulting in the opening of the IKs channels at a −20 mV more negative voltage than normal. The earlier activation of the current caused by the opening of the channels at a more negative current induces an earlier repolarisation phase implicated in ventricular arrhythmia generation [199].
- ▪
- SQTS3 is linked to another gain-of-function mutation of another gene, KCNJ2, encoding the Kir2.1 protein, a component of the inward rectifying potassium current channel (IK1). This mutation is associated with extremely short QT intervals of 315–320 ms. IK1 is a key current in maintaining a normal resting membrane potential, and also plays a role in the final phase of repolarisation in the cardiac cells. Typically, at potentials between −75 and −45 mV, an increase in the outward IK1 results in potassium ions leaving the cell, stabilising the membrane’s resting potential and making it more likely to be spontaneously depolarised. In patients with KCNJ2 mutation, the IK1 allows the flow out of a larger number of K ions than normal, accelerating the repolarisation phase of the cardiac action potential, destabilising the membrane’s resting potential and predisposing to ventricular fibrillation [200,201,202].
- ▪
- SQTS4 is linked to the mutation of the CACNA1C gene, which encodes the alpha 1 subunit of IK1, resulting in the gain of function, increasing the outward IK1 and enhancing the repolarisation phase by shortening the action potential duration [203].
- ▪
- SQTS5 is caused by a CACNB2 gene mutation encoding the beta-2b subunit of IK1, shortening the action potential duration and decreasing refractoriness.
- ∘
- Arrhythmogenic right ventricular cardiomyopathy
- ∘
- Idiopathic ventricular fibrillation
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Sagone, A. Electrical Storm: Incidence, Prognosis and Therapy. J. Atr. Fibrillation 2015, 8, 1150. Available online: https://pubmed.ncbi.nlm.nih.gov/27957218/ (accessed on 6 July 2025).
- Al-Khatib, S.M.; Stevenson, W.G.; Ackerman, M.J.; Bryant, W.J.; Callans, D.J.; Curtis, A.B.; Deal, B.J.; Dickfeld, T.; Field, M.E.; Fonarow, G.C.; et al. 2017 AHA/ACC/HRS Guideline for Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 2018, 138, E210–E271. [Google Scholar] [CrossRef] [PubMed]
- Zeppenfeld, K.; Tfelt-Hansen, J.; De Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; De Chillou, C.; et al. 2022 ESC Guidelines for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death. Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [CrossRef] [PubMed]
- Elsokkari, I.; Parkash, R.; Tang, A.; Wells, G.; Doucette, S.; Yetisir, E.; Gardner, M.; Healey, J.S.; Thibault, B.; Sterns, L.; et al. Mortality Risk Increases with Clustered Ventricular Arrhythmias in Patients with Implantable Cardioverter-Defibrillators. JACC Clin. Electrophysiol. 2020, 6, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Guerra, F.; Shkoza, M.; Scappini, L.; Flori, M.; Capucci, A. Role of Electrical Storm as a Mortality and Morbidity Risk Factor and Its Clinical Predictors: A Meta-Analysis. Europace 2014, 16, 347–353. [Google Scholar] [CrossRef]
- Geraghty, L.; Santangeli, P.; Tedrow, U.B.; Shivkumar, K.; Kumar, S. Contemporary Management of Electrical Storm. Heart Lung Circ. 2019, 28, 123–133. [Google Scholar] [CrossRef]
- Gama, F.; Ferreira, J.; Carmo, J.; Costa, F.M.; Carvalho, S.; Carmo, P.; Cavaco, D.; Morgado, F.B.; Adragão, P.; Mendes, M. Implantable Cardioverter–Defibrillators in Trials of Drug Therapy for Heart Failure: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2020, 9, e015177. [Google Scholar] [CrossRef]
- Eifling, M.; Razavi, M.; Massumi, A. The Evaluation and Management of Electrical Storm. Tex. Heart Inst. J. 2011, 38, 111–121. [Google Scholar]
- Tsuji, Y.; Heijman, J.; Nattel, S.; Dobrev, D. Electrical Storm: Recent Pathophysiological Insights and Therapeutic Consequences. Basic Res. Cardiol. 2013, 108, 336. [Google Scholar] [CrossRef]
- O’Shea, C.; Winter, J.; Kabir, S.N.; O’Reilly, M.; Wells, S.P.; Baines, O.; Sommerfeld, L.C.; Correia, J.; Lei, M.; Kirchhof, P.; et al. High Resolution Optical Mapping of Cardiac Electrophysiology in Pre-Clinical Models. Sci. Data 2022, 9, 135. [Google Scholar] [CrossRef]
- Sutanto, H.; Heijman, J. Integrative Computational Modeling of Cardiomyocyte Calcium Handling and Cardiac Arrhythmias: Current Status and Future Challenges. Cells 2022, 11, 1090. [Google Scholar] [CrossRef]
- Colman, M.A.; Alvarez-Lacalle, E.; Echebarria, B.; Sato, D.; Sutanto, H.; Heijman, J. Multi-Scale Computational Modeling of Spatial Calcium Handling From Nanodomain to Whole-Heart: Overview and Perspectives. Front. Physiol. 2022, 13, 836622. [Google Scholar] [CrossRef] [PubMed]
- Lenarczyk, R.; Zeppenfeld, K.; Tfelt-Hansen, J.; Heinzel, F.R.; Deneke, T.; Ene, E.; Meyer, C.; Wilde, A.; Arbelo, E.; Jędrzejczyk-Patej, E.; et al. Management of Patients with an Electrical Storm or Clustered Ventricular Arrhythmias: A Clinical Consensus Statement of the European Heart Rhythm Association of the ESC—Endorsed by the Asia-Pacific Heart Rhythm Society, Heart Rhythm Society, and Latin-American Heart Rhythm Society. EP Eur. 2024, 26, euae049. [Google Scholar] [CrossRef]
- Exner, D.V.; Pinski, S.L.; Wyse, D.G.; Renfroe, E.G.; Follmann, D.; Gold, M.; Beckman, K.J.; Coromilas, J.; Lancaster, S.; Hallstrom, A.P.; et al. Electrical Storm Presages Nonsudden Death: The Antiarrhythmics versus Implantable Defibrillators (AVID) Trial. Circulation 2001, 103, 2066–2071. [Google Scholar] [CrossRef] [PubMed]
- Jentzer, J.C.; Noseworthy, P.A.; Kashou, A.H.; May, A.M.; Chrispin, J.; Kabra, R.; Arps, K.; Blumer, V.; Tisdale, J.E.; Solomon, M.A.; et al. Multidisciplinary Critical Care Management of Electrical Storm: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2023, 81, 2189–2206. [Google Scholar] [CrossRef]
- Guerra, F.; Palmisano, P.; Dell’Era, G.; Ziacchi, M.; Ammendola, E.; Bonelli, P.; Patani, F.; Cupido, C.; Devecchi, C.; Accogli, M.; et al. Implantable Cardioverter-Defibrillator Programming and Electrical Storm: Results of the OBSERVational Registry On Long-Term Outcome of ICD Patients (OBSERVO-ICD). Heart Rhythm. 2016, 13, 1987–1992. [Google Scholar] [CrossRef]
- Pedersen, C.T.; Kay, G.N.; Kalman, J.; Borggrefe, M.; Della-Bella, P.; Dickfeld, T.; Dorian, P.; Huikuri, H.; Kim, Y.-H.; Knight, B.; et al. EHRA/HRS/APHRS Expert Consensus on Ventricular Arrhythmias. Europace 2014, 16, 1257–1283. [Google Scholar] [CrossRef]
- Elsokkari, I.; Sapp, J.L. Electrical Storm: Prognosis and Management. Prog. Cardiovasc. Dis. 2021, 66, 70–79. [Google Scholar] [CrossRef]
- Prystowsky, E.N.; Padanilam, B.J.; Joshi, S.; Fogel, R.I. Ventricular Arrhythmias in the Absence of Structural Heart Disease. J. Am. Coll. Cardiol. 2012, 59, 1733–1744. [Google Scholar] [CrossRef]
- Ninni, S.; Layec, J.; Brigadeau, F.; Behal, H.; Labreuche, J.; Klein, C.; Schurtz, G.; Potelle, C.; Coisne, A.; Lemesle, G.; et al. Incidence and Predictors of Mortality after an Electrical Storm in the ICU. Eur. Heart J. Acute Cardiovasc. Care 2022, 11, 431–439. [Google Scholar] [CrossRef]
- Wen, Z.; Tang, W.; Wu, Z.; Shui, X.; Zheng, Z. Renal Outcomes and Associated Contributing Factors in Patients with Acute Myocardial Infarction—A Retrospective Cohort Study. J. Biol. Regul. Homeost. AGENTS 2024, 38, 1569–1586. [Google Scholar] [CrossRef]
- Guerra, F.; Palmisano, P.; Dell’Era, G.; Ziacchi, M.; Ammendola, E.; Pongetti, G.; Bonelli, P.; Patani, F.; Devecchi, C.; Accogli, M.; et al. Cardiac Resynchronization Therapy and Electrical Storm: Results of the OBSERVational Registry on Long-Term Outcome of ICD Patients (OBSERVO-ICD). Europace 2018, 20, 979–985. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Hu, Y.; Li, X.; Zhang, X.; Gu, Z.; Zhao, Z.; Yang, X. Incidence, Predictors and Clinical Impact of Ventricular Electrical Storm in Arrhythmogenic Cardiomyopathy Patients with an Implantable Cardioverter–Defibrillator: A Single-Center Report with Medium-Term Follow-Up. Int. J. Gen. Med. 2021, 14, 10055–10063. [Google Scholar] [CrossRef] [PubMed]
- Farré, J.; Wellens, H.J. Philippe Coumel: A Founding Father of Modern Arrhythmology. Europace 2004, 6, 464–465. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, M. Management of Electrical Storm: The Mechanism Matters. J. Arrhythmia 2014, 30, 242–249. [Google Scholar] [CrossRef]
- Trohman, R.G. Etiologies, Mechanisms, Management, and Outcomes of Electrical Storm. J. Intensive Care Med. 2024, 39, 99–117. [Google Scholar] [CrossRef]
- Gaztañaga, L.; Marchlinski, F.E.; Betensky, B.P. Mechanisms of Cardiac Arrhythmias. Rev. Esp. Cardiol. 2012, 65, 174–185. [Google Scholar] [CrossRef]
- Tomaselli, G.; Roden, D.M. Chapter 1—Molecular and Cellular Basis of Cardiac Electrophysiology. Electrophysiol. Disord. Heart 2005, 1–31. [Google Scholar] [CrossRef]
- Hanna, P.; Ardell, J.L.; ShivkumarKalyanam, K. Cardiac Neuroanatomy for the Cardiac Electrophysiologist. J. Atr. Fibrillation 2020, 13, 2407. [Google Scholar] [CrossRef]
- Ardell, J.L.; Armour, J.A. Neurocardiology: Structure-Based Function. In Comprehensive Physiology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 1635–1653. ISBN 978-0-470-65071-4. [Google Scholar]
- van Weperen, V.Y.H.; Vos, M.A.; Ajijola, O.A. Autonomic Modulation of Ventricular Electrical Activity: Recent Developments and Clinical Implications. Clin. Auton. Res. 2021, 31, 659–676. [Google Scholar] [CrossRef]
- Herren, A.W.; Bers, D.M.; Grandi, E. Post-Translational Modifications of the Cardiac Na Channel: Contribution of CaMKII-Dependent Phosphorylation to Acquired Arrhythmias. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H431–H445. [Google Scholar] [CrossRef]
- Issa, Z.; Miller, J.M.; Zipes, D.P. Clinical Arrhythmology and Electrophysiology: A Companion to Braunwald’s Heart Disease: Expert Consult: Online and Print; Elsevier Health Sciences: Amsterdam, The Netherlands, 2008; ISBN 978-1-4377-1128-8. [Google Scholar]
- Khan, M.; Aqtash, O.; Harris, D.; Costea, A.; Gerson, M. Ventricular Tachycardia or Fibrillation Storm in Coronavirus Disease. Case Rep. Cardiol. 2022, 2022, 1157728. [Google Scholar] [CrossRef]
- Shimoda, L.A.; Polak, J. Hypoxia. 4. Hypoxia and Ion Channel Function. Am. J. Physiol. Cell Physiol. 2011, 300, C951–C967. [Google Scholar] [CrossRef]
- Afterdepolarization—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/afterdepolarization (accessed on 9 August 2024).
- Nichols, C.G.; Singh, G.K.; Grange, D.K. KATP Channels and Cardiovascular Disease. Circ. Res. 2013, 112, 1059–1072. [Google Scholar] [CrossRef] [PubMed]
- Acker, H.; Bölling, B.; Delpiano, M.A.; Dufau, E.; Görlach, A.; Holtermann, G. The Meaning of H2O2 Generation in Carotid Body Cells for PO2 Chemoreception. J. Auton. Nerv. Syst. 1992, 41, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Maejima, Y.; Sadoshima, J. SUMOylation. Circ. Res. 2014, 115, 686–689. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D.; Li, T.; Dai, H.; Arena, A.F.; Plant, L.D.; Goldstein, S.A.N. SUMOylation Determines the Voltage Required to Activate Cardiac IKs Channels. Proc. Natl. Acad. Sci. USA 2017, 114, E6686–E6694. [Google Scholar] [CrossRef]
- Shetty, P.M.V.; Rangrez, A.Y.; Frey, N. SUMO Proteins in the Cardiovascular System: Friend or Foe? J. Biomed. Sci. 2020, 27, 98. [Google Scholar] [CrossRef]
- Benson, M.D.; Li, Q.-J.; Kieckhafer, K.; Dudek, D.; Whorton, M.R.; Sunahara, R.K.; Iñiguez-Lluhí, J.A.; Martens, J.R. SUMO Modification Regulates Inactivation of the Voltage-Gated Potassium Channel Kv1.5. Proc. Natl. Acad. Sci. USA 2007, 104, 1805–1810. [Google Scholar] [CrossRef]
- Rajan, S.; Plant, L.D.; Rabin, M.L.; Butler, M.H.; Goldstein, S.A.N. Sumoylation Silences the Plasma Membrane Leak K+ Channel K2P1. Cell 2010, 141, 368. [Google Scholar] [CrossRef]
- van der Heyden, M.A.; Wijnhoven, T.J.; Opthof, T. Molecular aspects of adrenergic modulation of cardiac L-type Ca2+ channels. Cardiovasc. Res. 2005, 65, 28–39. [Google Scholar] [CrossRef]
- Boularan, C.; Gales, C. Cardiac cAMP: Production, hydrolysis, modulation and detection. Front. Pharmacol. 2015, 6, 203. [Google Scholar] [CrossRef]
- Stadel, J.M.; Lefkowitz, R.J. The Beta-Adrenergic Receptors; Perkins, J.P., Ed.; Beta-Adrenergic Receptors; Humana Press: Totowa, NJ, USA, 1991. [Google Scholar] [CrossRef]
- del Rivero Morfin, P.J.; Marx, S.O.; Ben-Johny, M. Sympathetic Nervous System Regulation of Cardiac Calcium Channels. Voltage-gated Ca2+ Channels: Pharmacology, Modulation and their Role in Human Disease. In Handbook of Experimental Pharmacology; Striessnig, J., Ed.; Springer: Cham, Switzerland, 2023; Volume 279. [Google Scholar] [CrossRef]
- Ozawa, J.; Ohno, S.; Fujii, Y.; Makiyama, T.; Suzuki, H.; Saitoh, A.; Horie, M. Differential Diagnosis Between Catecholaminergic Polymorphic Ventricular Tachycardia and Long QT Syndrome Type 1—Modified Schwartz Score—. Circ. J. 2018, 82, 2269–2276. [Google Scholar] [CrossRef] [PubMed]
- Tisdale, J.E.; Chung, M.K.; Campbell, K.B.; Hammadah, M.; Joglar, J.A.; Leclerc, J.; Rajagopalan, B.; Nursing, O.; American Heart Association Clinical Pharmacology Committee of the Council on Clinical Cardiology and Council on Cardiovascular and Stroke Nursing. Drug-Induced Arrhythmias: A Scientific Statement From the American Heart Association. Circulation 2020, 142, E214–E233. [Google Scholar] [CrossRef] [PubMed]
- Ojo, A.; McNitt, S.; Polonsky, B.; Aktas, M.K.; Rosero, S.; Hall, B.; Kutyifa, V.; Rao, N.; Rao, N.; Goldenberg, I. Digoxin and Risk of Ventricular Tachyarrhythmia and Death in ICD Recipients. JACC Clin. Electrophysiol. 2024, 10, 1468–1476. [Google Scholar] [CrossRef] [PubMed]
- Janousek, J.; Paul, T. Safety of Oral Propafenone in the Treatment of Arrhythmias in Infants and Children (European Retrospective Multicenter Study). Working Group on Pediatric Arrhythmias and Electrophysiology of the Association of European Pediatric Cardiologists. Am. J. Cardiol. 1998, 81, 1121–1124. [Google Scholar] [CrossRef]
- Li, D.; Chai, S.; Wang, H.; Dong, J.; Qin, C.; Du, D.; Wang, Y.; Du, Q.; Liu, S. Drug-Induced QT Prolongation and Torsade de Pointes: A Real-World Pharmacovigilance Study Using the FDA Adverse Event Reporting System Database. Front. Pharmacol. 2023, 14, 1259611. [Google Scholar] [CrossRef]
- Haugaa, K.H.; Bos, J.M.; Tarrell, R.F.; Morlan, B.W.; Caraballo, P.J.; Ackerman, M.J. Institution-Wide QT Alert System Identifies Patients with a High Risk of Mortality. Mayo Clin. Proc. 2013, 88, 315–325. [Google Scholar] [CrossRef]
- Badri, M.; Patel, A.; Patel, C.; Liu, G.; Goldstein, M.; Robinson, V.M.; Xue, X.; Yang, L.; Kowey, P.R.; Yan, G.-X. Mexiletine Prevents Recurrent Torsades de Pointes in Acquired Long QT Syndrome Refractory to Conventional Measures. JACC Clin. Electrophysiol. 2015, 1, 315–322. [Google Scholar] [CrossRef]
- Koizumi, T.; Kamada, R.; Watanabe, M.; Yokoshiki, H.; Temma, T.; Hagiwara, H.; Koya, T.; Nakao, M.; Kadosaka, T.; Natsui, H.; et al. Predictors of Cardiovascular Mortality after an Electrical Storm in Patients with Structural Heart Disease. J. Cardiol. 2022, 80, 167–171. [Google Scholar] [CrossRef]
- Morita, H.; Zipes, D.P.; Morita, S.T.; Lopshire, J.C.; Wu, J. Epicardial Ablation Eliminates Ventricular Arrhythmias in an Experimental Model of Brugada Syndrome. Heart Rhythm. 2009, 6, 665–671. [Google Scholar] [CrossRef]
- Sweeney, M.O.; Sherfesee, L.; DeGroot, P.J.; Wathen, M.S.; Wilkoff, B.L. Differences in Effects of Electrical Therapy Type for Ventricular Arrhythmias on Mortality in Implantable Cardioverter-Defibrillator Patients. Heart Rhythm. 2010, 7, 353–360. [Google Scholar] [CrossRef]
- Roque, C.; Trevisi, N.; Silberbauer, J.; Oloriz, T.; Mizuno, H.; Baratto, F.; Bisceglia, C.; Sora, N.; Marzi, A.; Radinovic, A.; et al. Electrical Storm Induced by Cardiac Resynchronization Therapy Is Determined by Pacing on Epicardial Scar and Can Be Successfully Managed by Catheter Ablation. Circ. Arrhythmia Electrophysiol. 2014, 7, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Kutyifa, V.; Zareba, W.; McNitt, S.; Singh, J.; Hall, W.J.; Polonsky, S.; Goldenberg, I.; Huang, D.T.; Merkely, B.; Wang, P.J.; et al. Left Ventricular Lead Location and the Risk of Ventricular Arrhythmias in the MADIT-CRT Trial. Eur. Heart J. 2013, 34, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Özcan, E.E.; Yılancıoğlu, Y.; Hasdemir, C. Multipoint Pacing Controlled the Electrical Storm Induced by Cardiac Resynchronization Therapy. EP Eur. 2018, 20, 1749. [Google Scholar] [CrossRef] [PubMed]
- Gonella, A.; Casile, C.; Menardi, E.; Feola, M. Electrical Storm Induced by Cardiac Resynchronization: Efficacy of the Multipoint Pacing Stimulation. Diseases 2024, 12, 105. [Google Scholar] [CrossRef]
- Fish, J.M.; Brugada, J.; Antzelevitch, C. Potential Proarrhythmic Effects of Biventricular Pacing. J. Am. Coll. Cardiol. 2005, 46, 2340–2347. [Google Scholar] [CrossRef]
- Dusi, V.; Angelini, F.; Gravinese, C.; Frea, S.; De Ferrari, G.M. Electrical Storm Management in Structural Heart Disease. Eur. Heart J. Suppl. 2023, 25, C242–C248. [Google Scholar] [CrossRef]
- Kowlgi, G.N.; Cha, Y.-M. Management of Ventricular Electrical Storm: A Contemporary Appraisal. Europace 2020, 22, 1768–1780. [Google Scholar] [CrossRef]
- Brugada, J.; Aguinaga, L.; Mont, L.; Betriu, A.; Mulet, J.; Sanz, G. Coronary Artery Revascularization in Patients with Sustained Ventricular Arrhythmias in the Chronic Phase of a Myocardial Infarction: Effects on the Electrophysiologic Substrate and Outcome. J. Am. Coll. Cardiol. 2001, 37, 529–533. [Google Scholar] [CrossRef]
- Cervantes, C.E.; Udayappan, K.M.; Geetha, D. The Devil Is in the Details: Approach to Refractory Hypokalemia. Clevel. Clin. J. Med. 2022, 89, 182–188. [Google Scholar] [CrossRef]
- Gorenek, B.; Wijnmaalen, A.P.; Goette, A.; Mert, G.O.; Porter, B.; Gustafsson, F.; Dan, G.-A.; Ector, J.; Stuehlinger, M.; Spartalis, M.; et al. Ventricular Arrhythmias in Acute Heart Failure: A Clinical Consensus Statement of the Association for Acute CardioVascular Care, the European Heart Rhythm Association, and the Heart Failure Association of the European Society of Cardiology. Europace 2024, 26, euae235. [Google Scholar] [CrossRef]
- Tzivoni, D.; Banai, S.; Schuger, C.; Benhorin, J.; Keren, A.; Gottlieb, S.; Stern, S. Treatment of Torsade de Pointes with Magnesium Sulfate. Circulation 1988, 77, 392–397. [Google Scholar] [CrossRef]
- Mandel, J.E.; Hutchinson, M.D.; Marchlinski, F.E. Remifentanil-Midazolam Sedation Provides Hemodynamic Stability and Comfort during Epicardial Ablation of Ventricular Tachycardia. J. Cardiovasc. Electrophysiol. 2011, 22, 464–466. [Google Scholar] [CrossRef]
- Bristow, M.R.; Ginsburg, R.; Umans, V.; Fowler, M.; Minobe, W.; Rasmussen, R.; Zera, P.; Menlove, R.; Shah, P.; Jamieson, S. Beta 1- and Beta 2-Adrenergic-Receptor Subpopulations in Nonfailing and Failing Human Ventricular Myocardium: Coupling of Both Receptor Subtypes to Muscle Contraction and Selective Beta 1-Receptor down-Regulation in Heart Failure. Circ. Res. 1986, 59, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Chatzidou, S.; Kontogiannis, C.; Tsilimigras, D.I.; Georgiopoulos, G.; Kosmopoulos, M.; Papadopoulou, E.; Vasilopoulos, G.; Rokas, S. Propranolol Versus Metoprolol for Treatment of Electrical Storm in Patients with Implantable Cardioverter-Defibrillator. J. Am. Coll. Cardiol. 2018, 71, 1897–1906. [Google Scholar] [CrossRef] [PubMed]
- Tsagalou, E.P.; Kanakakis, J.; Rokas, S.; Anastasiou-Nana, M.I. Suppression by Propranolol and Amiodarone of an Electrical Storm Refractory to Metoprolol and Amiodarone. Int. J. Cardiol. 2005, 99, 341–342. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-S.; Doytchinova, A. Why Is Propranolol Better Than Metoprolol in Acute Treatment of Electrical Storm? J. Am. Coll. Cardiol. 2018, 71, 1907–1909. [Google Scholar] [CrossRef]
- Muser, D.; Santangeli, P.; Liang, J.J. Management of Ventricular Tachycardia Storm in Patients with Structural Heart Disease. World J. Cardiol. 2017, 9, 521–530. [Google Scholar] [CrossRef]
- Miwa, Y.; Ikeda, T.; Mera, H.; Miyakoshi, M.; Hoshida, K.; Yanagisawa, R.; Ishiguro, H.; Tsukada, T.; Abe, A.; Yusu, S.; et al. Effects of Landiolol, an Ultra-Short-Acting Beta1-Selective Blocker, on Electrical Storm Refractory to Class III Antiarrhythmic Drugs. Circ. J. 2010, 74, 856–863. [Google Scholar] [CrossRef]
- Dusi, V.; Angelini, F.; Gravinese, C.; Frea, S.; De Ferrari, G.M. The Role of Antiarrhythmic Drugs and Stellate Ganglion Block in the Acute Management of Electrical Storm. Eur. Heart J. Suppl. 2025, 27, i154–i161. [Google Scholar] [CrossRef]
- Markman, T.M.; McBride, D.A.; Liang, J.J. Catheter Ablation for Ventricular Tachycardia in Patients with Structural Heart Disease. US Cardiol. Rev. 2018, 12, 51–56. [Google Scholar] [CrossRef]
- Sapp, J.L.; Wells, G.A.; Parkash, R.; Stevenson, W.G.; Blier, L.; Sarrazin, J.F.; Thibault, B.; Rivard, L.; Gula, L.; Leong-Sit, P.; et al. Ventricular Tachycardia Ablation versus Escalation of Antiarrhythmic Drugs. N. Engl. J. Med. 2016, 375, 111–121. [Google Scholar] [CrossRef]
- Sorajja, D.; Munger, T.M.; Shen, W.-K. Optimal Antiarrhythmic Drug Therapy for Electrical Storm. J. Biomed. Res. 2015, 29, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.S.; Zecchin, R.P.; Richards, D.A.; Uther, J.B.; Ross, D.L. Double-Blind Trial of Lignocaine versus Sotalol for Acute Termination of Spontaneous Sustained Ventricular Tachycardia. Lancet 1994, 344, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Yap, Y.G.; Camm, A.J. Drug Induced QT Prolongation and Torsades de Pointes. Heart 2003, 89, 1363–1372. [Google Scholar] [CrossRef] [PubMed]
- Charton, J.; Bouteiller, X.; Gandjbakhch, E.; Waintraub, X.; Klein, C.; Maury, P.; Baudinaud, P.; Marijon, E.; Tixier, R.; Baudinet, T.; et al. Overdrive Pacing for Ventricular Fibrillation Storm after Myocardial Infarction. Eur. Heart J. 2024, 45, 4968–4970. [Google Scholar] [CrossRef]
- Giannino, G.; Braia, V.; Griffith Brookles, C.; Giacobbe, F.; D’Ascenzo, F.; Angelini, F.; Saglietto, A.; De Ferrari, G.M.; Dusi, V. The Intrinsic Cardiac Nervous System: From Pathophysiology to Therapeutic Implications. Biology 2024, 13, 105. [Google Scholar] [CrossRef]
- Kingma, J.G.; Simard, D.; Rouleau, J.R. Influence of Cardiac Nerve Status on Cardiovascular Regulation and Cardioprotection. World J. Cardiol. 2017, 9, 508–520. [Google Scholar] [CrossRef]
- Fukuda, K.; Kanazawa, H.; Aizawa, Y.; Ardell, J.L.; Shivkumar, K. Cardiac Innervation and Sudden Cardiac Death. Circ. Res. 2015, 116, 2005–2019. [Google Scholar] [CrossRef]
- Do, D.H.; Bradfield, J.; Ajijola, O.A.; Vaseghi, M.; Le, J.; Rahman, S.; Mahajan, A.; Nogami, A.; Boyle, N.G.; Shivkumar, K. Thoracic Epidural Anesthesia Can Be Effective for the Short-Term Management of Ventricular Tachycardia Storm. J. Am. Heart Assoc. 2017, 6, e007080. [Google Scholar] [CrossRef] [PubMed]
- Basantwani, S.; Shinde, S.R.; Tendolkar, B. Management of Ventricular Storm with Thoracic Epidural Anesthesia. Ann. Card. Anaesth. 2019, 22, 439–441. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Wittwer, E.D.; Kapa, S.; McLeod, C.J.; Xiao, P.; Noseworthy, P.A.; Mulpuru, S.K.; Deshmukh, A.J.; Lee, H.-C.; Ackerman, M.J.; et al. Effective Use of Percutaneous Stellate Ganglion Blockade in Patients with Electrical Storm. Circ. Arrhythmia Electrophysiol. 2019, 12, e007118. [Google Scholar] [CrossRef] [PubMed]
- Sanghai, S.; Abbott, N.J.; Dewland, T.A.; Henrikson, C.A.; Elman, M.R.; Wollenberg, M.; Ivie, R.; Gonzalez-Sotomayor, J.; Nazer, B. Stellate Ganglion Blockade with Continuous Infusion Versus Single Injection for Treatment of Ventricular Arrhythmia Storm. JACC Clin. Electrophysiol. 2021, 7, 452–460. [Google Scholar] [CrossRef]
- Benali, K.; Ninni, S.; Guenancia, C.; Mohammed, R.; Decaudin, D.; Bourdrel, O.; Salaun, A.; Yvorel, C.; Groussin, P.; Pavin, D.; et al. Impact of Catheter Ablation of Electrical Storm on Survival: A Propensity Score-Matched Analysis. Clin. Electrophysiol. 2024, 10, 2117–2128. [Google Scholar] [CrossRef]
- Khan, U.; Khlidj, Y.; Ibrahim, A.A.; Amin, A.M.; Rakab, M.S.; AlBarakat, M.M.; Khan, M.H.; Majeed, Z.; Imran, M.; Ali, J.; et al. Catheter Ablation versus Medical Therapy for Ventricular Tachycardia in Patients with Ischemic Heart Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Indian Pacing Electrophysiol. J. 2025, 25, 91–103. [Google Scholar] [CrossRef]
- Deyell, M.W.; Doucette, S.; Parkash, R.; Nault, I.; Gula, L.; Gray, C.; Gardner, M.; Sterns, L.D.; Healey, J.S.; Essebag, V.; et al. Ventricular Tachycardia Characteristics and Outcomes with Catheter Ablation vs. Antiarrhythmic Therapy: Insights from the VANISH Trial. Europace 2022, 24, 1112–1118. [Google Scholar] [CrossRef]
- Sapp, J.L.; Tang, A.S.L.; Parkash, R.; Stevenson, W.G.; Healey, J.S.; Wells, G. A Randomized Clinical Trial of Catheter Ablation and Antiarrhythmic Drug Therapy for Suppression of Ventricular Tachycardia in Ischemic Cardiomyopathy: The VANISH2 Trial. Am. Heart J. 2024, 274, 1–10. [Google Scholar] [CrossRef]
- Tilz, R.R.; Kuck, K.H.; Kääb, S.; Wegscheider, K.; Thiem, A.; Wenzel, B.; Willems, S.; Steven, D. Rationale and Design of BERLIN VT Study: A Multicenter Randomised Trial Comparing Preventive versus Deferred Ablation of Ventricular Tachycardia. BMJ Open 2019, 9, e022910. [Google Scholar] [CrossRef]
- Kumar, R.; Amadio, J.M.; Luk, A.C.; Bhaskaran, A.; Ha, A.C.T. Extracorporeal Membrane Oxygenation for Patients with Electrical Storm or Refractory Ventricular Arrhythmias: Management and Outcomes. Can. J. Cardiol. 2025, 41, 645–655. [Google Scholar] [CrossRef]
- Mariani, M.V.; Pierucci, N.; Cipollone, P.; Vignaroli, W.; Piro, A.; Compagnucci, P.; Matteucci, A.; Chimenti, C.; Pandozi, C.; Dello Russo, A.; et al. Mechanical Circulatory Support Systems in the Management of Ventricular Arrhythmias: A Contemporary Overview. J. Clin. Med. 2024, 13, 1746. [Google Scholar] [CrossRef]
- Dyer, S.; Mogni, B.; Gottlieb, M. Electrical Storm: A Focused Review for the Emergency Physician. Am. J. Emerg. Med. 2020, 38, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Streitner, F.; Kuschyk, J.; Veltmann, C.; Mahl, E.; Dietrich, C.; Schimpf, R.; Doesch, C.; Streitner, I.; Wolpert, C.; Borggrefe, M. Predictors of Electrical Storm Recurrences in Patients with Implantable Cardioverter-Defibrillators. Europace 2011, 13, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Arya, A.; Haghjoo, M.; Dehghani, M.R.; Fazelifar, A.F.; Nikoo, M.-H.; Bagherzadeh, A.; Sadr-Ameli, M.A. Prevalence and Predictors of Electrical Storm in Patients with Implantable Cardioverter-Defibrillator. Am. J. Cardiol. 2006, 97, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Zaugg, C.E.; Wu, S.T.; Barbosa, V.; Buser, P.T.; Wikman-Coffelt, J.; Parmley, W.W.; Lee, R.J. Ventricular Fibrillation-Induced Intracellular Ca2+ Overload Causes Failed Electrical Defibrillation and Post-Shock Reinitiation of Fibrillation. J. Mol. Cell Cardiol. 1998, 30, 2183–2192. [Google Scholar] [CrossRef]
- Jung, W.; Manz, M.; Pizzulli, L.; Pfeiffer, D.; Lüderitz, B. Effects of Chronic Amiodarone Therapy on Defibrillation Threshold. Am. J. Cardiol. 1992, 70, 1023–1027. [Google Scholar] [CrossRef]
- Mehta, V.S.; Elliott, M.K.; Sidhu, B.S.; Gould, J.; Porter, B.; Niederer, S.; Rinaldi, C.A. Multipoint Pacing for Cardiac Resynchronisation Therapy in Patients with Heart Failure: A Systematic Review and Meta-Analysis. J. Cardiovasc. Electrophysiol. 2021, 32, 2577–2589. [Google Scholar] [CrossRef]
- Rinaldi, C.A.; Burri, H.; Thibault, B.; Curnis, A.; Rao, A.; Gras, D.; Sperzel, J.; Singh, J.P.; Biffi, M.; Bordachar, P.; et al. A Review of Multisite Pacing to Achieve Cardiac Resynchronization Therapy. Europace 2015, 17, 7–17. [Google Scholar] [CrossRef]
- Pujol-Lopez, M.; Jiménez-Arjona, R.; Garre, P.; Guasch, E.; Borràs, R.; Doltra, A.; Ferró, E.; García-Ribas, C.; Niebla, M.; Carro, E.; et al. Conduction System Pacing vs Biventricular Pacing in Heart Failure and Wide QRS Patients: LEVEL-AT Trial. JACC Clin. Electrophysiol. 2022, 8, 1431–1445. [Google Scholar] [CrossRef]
- Kim, J.A.; Kim, S.E.; Ellenbogen, K.A.; Vijayaraman, P.; Chelu, M.G. Clinical Outcomes of Conduction System Pacing versus Biventricular Pacing for Cardiac Resynchronization Therapy: A Systematic Review and Meta-Analysis. J. Cardiovasc. Electrophysiol. 2023, 34, 1718–1729. [Google Scholar] [CrossRef]
- Cleland, J.G.F.; Daubert, J.-C.; Erdmann, E.; Freemantle, N.; Gras, D.; Kappenberger, L.; Tavazzi, L. Cardiac Resynchronization-Heart Failure (CARE-HF) Study Investigators The Effect of Cardiac Resynchronization on Morbidity and Mortality in Heart Failure. N. Engl. J. Med. 2005, 352, 1539–1549. [Google Scholar] [CrossRef] [PubMed]
- Abraham, W.T.; Fisher, W.G.; Smith, A.L.; Delurgio, D.B.; Leon, A.R.; Loh, E.; Kocovic, D.Z.; Packer, M.; Clavell, A.L.; Hayes, D.L.; et al. Cardiac Resynchronization in Chronic Heart Failure. N. Engl. J. Med. 2002, 346, 1845–1853. [Google Scholar] [CrossRef] [PubMed]
- Ploux, S.; Strik, M.; van Hunnik, A.; van Middendorp, L.; Kuiper, M.; Prinzen, F.W. Acute Electrical and Hemodynamic Effects of Multisite Left Ventricular Pacing for Cardiac Resynchronization Therapy in the Dyssynchronous Canine Heart. Heart Rhythm. 2014, 11, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Herweg, B.; Sharma, P.S.; Cano, Ó.; Ponnusamy, S.S.; Zanon, F.; Jastrzebski, M.; Zou, J.; Chelu, M.G.; Vernooy, K.; Whinnett, Z.I.; et al. Arrhythmic Risk in Biventricular Pacing Compared with Left Bundle Branch Area Pacing: Results From the I-CLAS Study. Circulation 2024, 149, 379–390. [Google Scholar] [CrossRef]
- Ninni, S.; Gallot-Lavallée, T.; Klein, C.; Longère, B.; Brigadeau, F.; Potelle, C.; Crop, F.; Rault, E.; Decoene, C.; Lacornerie, T.; et al. Stereotactic Radioablation for Ventricular Tachycardia in the Setting of Electrical Storm. Circ. Arrhythmia Electrophysiol. 2022, 15, 559–571. [Google Scholar] [CrossRef]
- Najjar, E.; Dalén, M.; Schwieler, J.; Lund, L.H. A Case Report about Successful Treatment of Refractory Ventricular Tachycardia with Ablation under Prolonged Haemodynamic Support with Extracorporeal Membrane Oxygenation. Eur. Heart J. Case Rep. 2021, 5, ytab084. [Google Scholar] [CrossRef]
- Sertic, F.; Bermudez, C.; Rame, J.E. Venoarterial Extracorporeal Membrane Oxygenation as a Bridge to Recovery or Bridge to Heart Replacement Therapy in Refractory Cardiogenic Shock. Curr. Heart Fail. Rep. 2020, 17, 341–349. [Google Scholar] [CrossRef]
- Khiabani, A.J.; Pawale, A. Extracorporeal Membrane Oxygenation in Cardiogenic Shock: Execution Is Something; Timing Is Everything? J. Am. Heart Assoc. 2024, 13, e033348. [Google Scholar] [CrossRef]
- Eckman, P.M.; Katz, J.N.; El Banayosy, A.; Bohula, E.A.; Sun, B.; van Diepen, S. Veno-Arterial Extracorporeal Membrane Oxygenation for Cardiogenic Shock. Circulation 2019, 140, 2019–2037. [Google Scholar] [CrossRef]
- Choi, K.H.; Yang, J.H.; Hong, D.; Park, T.K.; Lee, J.M.; Song, Y.B.; Hahn, J.-Y.; Choi, S.-H.; Choi, J.-H.; Chung, S.R.; et al. Optimal Timing of Venoarterial-Extracorporeal Membrane Oxygenation in Acute Myocardial Infarction Patients Suffering From Refractory Cardiogenic Shock. Circ. J. 2020, 84, 1502–1510. [Google Scholar] [CrossRef]
- Rajakumar, H.K. Enhancing the Clinical Application of VA-ECMO Timing in Cardiac Surgery for Improved Patient Outcomes. Cardiothorac. Surg. 2024, 32, 23. [Google Scholar] [CrossRef]
- Schwartz, P.J.; Stramba-Badiale, M.; Crotti, L.; Pedrazzini, M.; Besana, A.; Bosi, G.; Gabbarini, F.; Goulene, K.; Insolia, R.; Mannarino, S.; et al. Prevalence of the Congenital Long-QT Syndrome. Circulation 2009, 120, 1761–1767. [Google Scholar] [CrossRef] [PubMed]
- Nakano, Y.; Shimizu, W. Genetics of Long-QT Syndrome. J. Hum. Genet. 2016, 61, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Postema, P.G.; van Eck, H.J.R.; Opthof, T.; van Herpen, G.; van Dessel, P.F.H.M.; Priori, S.G.; Wolpert, C.; Borggrefe, M.; Kors, J.A.; Wilde, A.A.M. IK1 Modulates the U-Wave: Insights in a 100-Year-Old Enigma. Heart Rhythm. 2009, 6, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, P.J.; Crotti, L. QTc Behavior During Exercise and Genetic Testing for the Long-QT Syndrome. Circulation 2011, 124, 2181–2184. [Google Scholar] [CrossRef]
- Porta-Sánchez, A.; Spillane, D.R.; Harris, L.; Xue, J.; Dorsey, P.; Care, M.; Chauhan, V.; Gollob, M.H.; Spears, D.A. T-Wave Morphology Analysis in Congenital Long QT Syndrome Discriminates Patients From Healthy Individuals. JACC Clin. Electrophysiol. 2017, 3, 374–381. [Google Scholar] [CrossRef]
- Han, W.; Wang, Z.; Nattel, S. Slow Delayed Rectifier Current and Repolarization in Canine Cardiac Purkinje Cells. Am. J. Physiol. Heart Circ. Physiol. 2001, 280, H1075–H1080. [Google Scholar] [CrossRef]
- MacIntyre, C.J.; Ackerman, M.J. Personalized Care in Long QT Syndrome: Better Management, More Sports, and Fewer Devices. Card. Electrophysiol. Clin. 2023, 15, 285–291. [Google Scholar] [CrossRef]
- Heidbuchel, H.; Arbelo, E.; D’Ascenzi, F.; Borjesson, M.; Boveda, S.; Castelletti, S.; Miljoen, H.; Mont, L.; Niebauer, J.; Papadakis, M.; et al. Recommendations for Participation in Leisure-Time Physical Activity and Competitive Sports of Patients with Arrhythmias and Potentially Arrhythmogenic Conditions. Part 2: Ventricular Arrhythmias, Channelopathies, and Implantable Defibrillators. Europace 2021, 23, 147–148. [Google Scholar] [CrossRef]
- Lampert, R.; Day, S.; Ainsworth, B.; Burg, M.; Marino, B.S.; Salberg, L.; Esteban, M.T.T.; Abrams, D.J.; Aziz, P.F.; Barth, C.; et al. Vigorous Exercise in Patients with Congenital Long QT Syndrome: Results of the Prospective, Observational, Multinational LIVE-LQTS Study. Circulation 2024, 150, 516–530. [Google Scholar] [CrossRef]
- Wilde, A.A.M.; Amin, A.S.; Postema, P.G. Diagnosis, Management and Therapeutic Strategies for Congenital Long QT Syndrome. Heart 2022, 108, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Riera, A.R.; Barbosa-Barros, R.; Daminello Raimundo, R.; da Costa de Rezende Barbosa, M.P.; Esposito Sorpreso, I.C.; de Abreu, L.C. The Congenital Long QT Syndrome Type 3: An Update. Indian Pacing Electrophysiol. J. 2017, 18, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Clancy, C.E.; Tateyama, M.; Kass, R.S. Insights into the Molecular Mechanisms of Bradycardia-Triggered Arrhythmias in Long QT-3 Syndrome. J. Clin. Investig. 2002, 110, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Ma, S.; Liu, J.; Liu, X.; Wei, J.; Lu, W.-J.; Zhang, S.; Chang, Y.; Zhang, Y.; Zhong, K.; et al. In Vivo Base Editing of Scn5a Rescues Type 3 Long QT Syndrome in Mice. Circulation 2024, 149, 317–329. [Google Scholar] [CrossRef]
- Mazzanti, A.; Maragna, R.; Vacanti, G.; Monteforte, N.; Bloise, R.; Marino, M.; Braghieri, L.; Gambelli, P.; Memmi, M.; Pagan, E.; et al. Interplay Between Genetic Substrate, QTc Duration, and Arrhythmia Risk in Patients with Long QT Syndrome. J. Am. Coll. Cardiol. 2018, 71, 1663–1671. [Google Scholar] [CrossRef]
- Mazzanti, A.; Trancuccio, A.; Kukavica, D.; Pagan, E.; Wang, M.; Mohsin, M.; Peterson, D.; Bagnardi, V.; Zareba, W.; Priori, S.G. Independent Validation and Clinical Implications of the Risk Prediction Model for Long QT Syndrome (1-2-3-LQTS-Risk). Europace 2022, 24, 614–619. [Google Scholar] [CrossRef]
- Priori, S.G.; Napolitano, C.; Schwartz, P.J.; Grillo, M.; Bloise, R.; Ronchetti, E.; Moncalvo, C.; Tulipani, C.; Veia, A.; Bottelli, G.; et al. Association of Long QT Syndrome Loci and Cardiac Events Among Patients Treated with β-Blockers. JAMA 2004, 292, 1341–1344. [Google Scholar] [CrossRef]
- Alhourani, N.; Wolfes, J.; Könemann, H.; Ellermann, C.; Frommeyer, G.; Güner, F.; Lange, P.S.; Reinke, F.; Köbe, J.; Eckardt, L. Relevance of Mexiletine in the Era of Evolving Antiarrhythmic Therapy of Ventricular Arrhythmias. Clin. Res. Cardiol. 2024, 113, 791–800. [Google Scholar] [CrossRef]
- Crotti, L.; Neves, R.; Dagradi, F.; Musu, G.; Giannetti, F.; Bos, J.M.; Barbieri, M.; Cerea, P.; Giovenzana, F.L.F.; Torchio, M.; et al. Therapeutic Efficacy of Mexiletine for Long QT Syndrome Type 2: Evidence From Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes, Transgenic Rabbits, and Patients. Circulation 2024, 150, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Antzelevitch, C.; Burashnikov, A.; Sicouri, S.; Belardinelli, L. Electrophysiological Basis for the Antiarrhythmic Actions of Ranolazine. Heart Rhythm. 2011, 8, 1281–1290. [Google Scholar] [CrossRef]
- Davies, R.A.; Ladouceur, V.B.; Green, M.S.; Joza, J.; Juurlink, D.N.; Krahn, A.D.; McMurtry, M.S.; Roberts, J.D.; Roston, T.M.; Sanatani, S.; et al. The 2023 Canadian Cardiovascular Society Clinical Practice Update on Management of the Patient with a Prolonged QT Interval. Can. J. Cardiol. 2023, 39, 1285–1301. [Google Scholar] [CrossRef] [PubMed]
- Horner, J.M.; Kinoshita, M.; Webster, T.L.; Haglund, C.M.; Friedman, P.A.; Ackerman, M.J. Implantable Cardioverter Defibrillator Therapy for Congenital Long QT Syndrome: A Single-Center Experience. Heart Rhythm. 2010, 7, 1616–1622. [Google Scholar] [CrossRef] [PubMed]
- Olde Nordkamp, L.R.A.; Postema, P.G.; Knops, R.E.; van Dijk, N.; Limpens, J.; Wilde, A.A.M.; de Groot, J.R. Implantable Cardioverter-Defibrillator Harm in Young Patients with Inherited Arrhythmia Syndromes: A Systematic Review and Meta-Analysis of Inappropriate Shocks and Complications. Heart Rhythm. 2016, 13, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.; Begovic, M.; Zhou, X.; Hamdani, N.; Akin, I.; El-Battrawy, I. Catecholaminergic Polymorphic Ventricular Tachycardia: Advancing From Molecular Insights to Preclinical Models. J. Am. Heart Assoc. 2025, 14, e038308. [Google Scholar] [CrossRef]
- Priori, S.G.; Napolitano, C.; Tiso, N.; Memmi, M.; Vignati, G.; Bloise, R.; Sorrentino, V.; Danieli, G.A.A. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 2001, 103, 196–200. [Google Scholar] [CrossRef]
- Novak, A.; Barad, L.; Zeevi-Levin, N.; Shick, R.; Shtrichman, R.; Lorber, A.; Itskovitz-Eldor, J.; Binah, O. Cardiomyocytes Generated from CPVTD307H Patients Are Arrhythmogenic in Response to β-Adrenergic Stimulation. J. Cell Mol. Med. 2012, 16, 468–482. [Google Scholar] [CrossRef]
- Zhao, Y.-T.; Valdivia, C.R.; Gurrola, G.B.; Powers, P.P.; Willis, B.C.; Moss, R.L.; Jalife, J.; Valdivia, H.H. Arrhythmogenesis in a Catecholaminergic Polymorphic Ventricular Tachycardia Mutation That Depresses Ryanodine Receptor Function. Proc. Natl. Acad. Sci. USA 2015, 112, E1669–E1677. [Google Scholar] [CrossRef]
- Priori, S.G.; Chen, S.W. Inherited Dysfunction of Sarcoplasmic Reticulum Ca2+ Handling and Arrhythmogenesis. Circ. Res. 2011, 108, 871–883. [Google Scholar] [CrossRef]
- Leenhardt, A.; Denjoy, I.; Guicheney, P. Catecholaminergic Polymorphic Ventricular Tachycardia. Circ. Arrhythmia Electrophysiol. 2012, 5, 1044–1052. [Google Scholar] [CrossRef]
- Viatchenko-Karpinski, S.; Terentyev, D.; Györke, I.; Terentyeva, R.; Volpe, P.; Priori, S.G.; Napolitano, C.; Nori, A.; Williams, S.C.; Györke, S. Abnormal Calcium Signaling and Sudden Cardiac Death Associated with Mutation of Calsequestrin. Circ. Res. 2004, 94, 471–477. [Google Scholar] [CrossRef]
- Sun, B.; Yao, J.; Ni, M.; Wei, J.; Zhong, X.; Guo, W.; Zhang, L.; Wang, R.; Belke, D.; Chen, Y.-X.; et al. Cardiac Ryanodine Receptor Calcium Release Deficiency Syndrome. Sci. Transl. Med. 2021, 13, eaba7287. [Google Scholar] [CrossRef]
- Li, Y.; Wei, J.; Guo, W.; Sun, B.; Estillore, J.P.; Wang, R.; Yoruk, A.; Roston, T.M.; Sanatani, S.; Wilde, A.A.M.; et al. Human RyR2 (Ryanodine Receptor 2) Loss-of-Function Mutations. Circ. Arrhythmia Electrophysiol. 2021, 14, e010013. [Google Scholar] [CrossRef]
- DIAGNOSE CRDS—Research Studies—PHRI—Population Health Research Institute of Canada. Available online: https://www.phri.ca/research/diagnose-crds/ (accessed on 25 August 2024).
- Ni, M.; Dadon, Z.; Ormerod, J.O.M.; Saenen, J.; Hoeksema, W.F.; Antiperovitch, P.; Tadros, R.; Christiansen, M.K.; Steinberg, C.; Arnaud, M.; et al. A Clinical Diagnostic Test for Calcium Release Deficiency Syndrome. JAMA 2024, 332, 204–213. [Google Scholar] [CrossRef]
- Kallas, D.; Roberts, J.D.; Sanatani, S.; Roston, T.M. Calcium Release Deficiency Syndrome: A New Inherited Arrhythmia Syndrome. Card. Electrophysiol. Clin. 2023, 15, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Bellamy, D.; Nuthall, G.; Dalziel, S.; Skinner, J.R. Catecholaminergic Polymorphic Ventricular Tachycardia: The Cardiac Arrest Where Epinephrine Is Contraindicated. Pediatr. Crit. Care Med. 2019, 20, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Marjamaa, A.; Hiippala, A.; Arrhenius, B.; Lahtinen, A.M.; Kontula, K.; Toivonen, L.; Happonen, J.-M.; Swan, H. Intravenous Epinephrine Infusion Test in Diagnosis of Catecholaminergic Polymorphic Ventricular Tachycardia. J. Cardiovasc. Electrophysiol. 2012, 23, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, A.; DE Magalhaes, L.P.; Russo, M.; Xavier, E. Pharmacological Treatment of Electrical Storm in Cathecolaminergic Polymorphic Ventricular Tachycardia. Pacing Clin. Electrophysiol. 2010, 33, e27–e31. [Google Scholar] [CrossRef]
- Aggarwal, A.; Stolear, A.; Alam, M.M.; Vardhan, S.; Dulgher, M.; Jang, S.-J.; Zarich, S.W. Catecholaminergic Polymorphic Ventricular Tachycardia: Clinical Characteristics, Diagnostic Evaluation and Therapeutic Strategies. J. Clin. Med. 2024, 13, 1781. [Google Scholar] [CrossRef]
- Kaneshiro, T.; Naruse, Y.; Nogami, A.; Tada, H.; Yoshida, K.; Sekiguchi, Y.; Murakoshi, N.; Kato, Y.; Horigome, H.; Kawamura, M.; et al. Successful Catheter Ablation of Bidirectional Ventricular Premature Contractions Triggering Ventricular Fibrillation in Catecholaminergic Polymorphic Ventricular Tachycardia with RyR2 Mutation. Circ. Arrhythmia Electrophysiol. 2012, 5, e14–e17. [Google Scholar] [CrossRef]
- Shen, L.; Liu, S.; Hu, F.; Zhang, Z.; Li, J.; Lai, Z.; Zheng, L.; Yao, Y. Electrophysiological Characteristics and Ablation Outcomes in Patients with Catecholaminergic Polymorphic Ventricular Tachycardia. J. Am. Heart Assoc. 2023, 12, e031768. [Google Scholar] [CrossRef]
- Brugada, R.; Campuzano, O.; Sarquella-Brugada, G.; Brugada, J.; Brugada, P. Brugada Syndrome. Methodist. Debakey Cardiovasc. J. 2014, 10, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Bayés de Luna, A.; Brugada, J.; Baranchuk, A.; Borggrefe, M.; Breithardt, G.; Goldwasser, D.; Lambiase, P.; Riera, A.P.; Garcia-Niebla, J.; Pastore, C.; et al. Current Electrocardiographic Criteria for Diagnosis of Brugada Pattern: A Consensus Report. J. Electrocardiol. 2012, 45, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Antzelevitch, C.; Brugada, P.; Borggrefe, M.; Brugada, J.; Brugada, R.; Corrado, D.; Gussak, I.; LeMarec, H.; Nademanee, K.; Perez Riera, A.R.; et al. Brugada Syndrome: Report of the Second Consensus Conference. Circulation 2005, 111, 659–670. [Google Scholar] [CrossRef] [PubMed]
- Shelke, A.; Tachil, A.; Saggu, D.; Jesuraj, M.L.; Yalagudri, S.; Narasimhan, C. Catheter Ablation for Electrical Storm in Brugada Syndrome: Results of Substrate Based Ablation. Indian Heart J. 2018, 70, 296–302. [Google Scholar] [CrossRef]
- El-Battrawy, I.; Roterberg, G.; Kowitz, J.; Aweimer, A.; Lang, S.; Mügge, A.; Zhou, X.; Akin, I. Incidence, Recurrence and Management of Electrical Storm in Brugada Syndrome. Front. Cardiovasc. Med. 2022, 9, 981715. [Google Scholar] [CrossRef]
- Chakraborty, P.; Rahimi, M.; Suszko, A.M.; Massin, S.; Laksman, Z.; Spears, D.; Gollob, M.H.; Chauhan, V.S. Exercise-Induced QRS Prolongation in Brugada Syndrome. JACC Clin. Electrophysiol. 2024, 10, 1813–1824. [Google Scholar] [CrossRef]
- Postema, P.G.; Wolpert, C.; Amin, A.S.; Probst, V.; Borggrefe, M.; Roden, D.M.; Priori, S.G.; Tan, H.L.; Hiraoka, M.; Brugada, J.; et al. Drugs and Brugada Syndrome Patients: Review of the Literature, Recommendations, and an up-to-Date Website (Www.Brugadadrugs.Org). Heart Rhythm. 2009, 6, 1335–1341. [Google Scholar] [CrossRef]
- Postema, P.G.; Neville, J.; de Jong, J.S.S.G.; Romero, K.; Wilde, A.A.M.; Woosley, R.L. Safe Drug Use in Long QT Syndrome and Brugada Syndrome: Comparison of Website Statistics. Europace 2013, 15, 1042–1049. [Google Scholar] [CrossRef]
- Chockalingam, P.; Clur, S.-A.B.; Breur, J.M.P.J.; Kriebel, T.; Paul, T.; Rammeloo, L.A.; Wilde, A.A.M.; Blom, N.A. The Diagnostic and Therapeutic Aspects of Loss-of-Function Cardiac Sodium Channelopathies in Children. Heart Rhythm. 2012, 9, 1986–1992. [Google Scholar] [CrossRef]
- Verberne, H.J.; Blom, M.T.; Bardai, A.; Karemaker, J.M.; Tan, H.L. An Inherited Sudden Cardiac Arrest Syndrome May Be Based on Primary Myocardial and Autonomic Nervous System Abnormalities. Heart Rhythm. 2022, 19, 244–251. [Google Scholar] [CrossRef]
- Rivera-Juárez, A.; Hernández-Romero, I.; Puertas, C.; Zhang-Wang, S.; Sánchez-Álamo, B.; Martins, R.; Figuera, C.; Guillem, M.S.; Climent, A.M.; Fernández-Avilés, F.; et al. Clinical Characteristics and Electrophysiological Mechanisms Underlying Brugada ECG in Patients with Severe Hyperkalemia. J. Am. Heart Assoc. 2019, 8, e010115. [Google Scholar] [CrossRef] [PubMed]
- Teraoka, J.T.; Tang, J.J.; Noubiap, J.J.; Dewland, T.A.; Marcus, G.M. Abstract 17249: Epidemiology of Wolff-Parkinson-White Syndrome Among Acute Care Recipients in California. Circulation 2023, 148, A17249. [Google Scholar] [CrossRef]
- Page, R.L.; Joglar, J.A.; Caldwell, M.A.; Calkins, H.; Conti, J.B.; Deal, B.J.; Estes, N.A.M.; Field, M.E.; Goldberger, Z.D.; Hammill, S.C.; et al. 2015 ACC/AHA/HRS Guideline for the Management of Adult Patients with Supraventricular Tachycardia: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2016, 67, e27–e115. [Google Scholar] [CrossRef] [PubMed]
- Vătășescu, R.G.; Paja, C.S.; Șuș, I.; Cainap, S.; Moisa, Ș.M.; Cinteză, E.E. Wolf–Parkinson–White Syndrome: Diagnosis, Risk Assessment, and Therapy—An Update. Diagnostics 2024, 14, 296. [Google Scholar] [CrossRef]
- Waller, B.F.; Gering, L.E.; Branyas, N.A.; Slack, J.D. Anatomy, Histology, and Pathology of the Cardiac Conduction System—Part IV. Clin. Cardiol. 1993, 16, 507–511. [Google Scholar] [CrossRef]
- Chrispin, J.; Calkins, H. Accessory Pathways-Related Tachycardias: Wolff–Parkinson–White Syndrome and Atrioventricular Reentrant Tachycardias. In The ESC Textbook of Cardiovascular Medicine; Camm, A.J., Lüscher, T.F., Maurer, G., Serruys, P.W., Eds.; Oxford University Press: Oxford, UK, 2018; pp. 2086–2091. ISBN 978-0-19-878490-6. [Google Scholar]
- Milstein, S.; Sharma, A.D.; Klein, G.J. Electrophysiologic Profile of Asymptomatic Wolff-Parkinson-White Pattern. Am. J. Cardiol. 1986, 57, 1097–1100. [Google Scholar] [CrossRef]
- Obeyesekere, M.; Gula, L.J.; Skanes, A.C.; Leong-Sit, P.; Klein, G.J. Risk of Sudden Death in Wolff-Parkinson-White Syndrome. Circulation 2012, 125, 659–660. [Google Scholar] [CrossRef]
- Centurion, O.A. Atrial Fibrillation in the Wolff-Parkinson-White Syndrome. J. Atr. Fibrillation 2011, 4, 287. Available online: https://pubmed.ncbi.nlm.nih.gov/28496688/ (accessed on 6 July 2025).
- Haissaguerre, M.; Fischer, B.; Labbé, T.; Lemétayer, P.; Montserrat, P.; d’Ivernois, C.; Dartigues, J.F.; Warin, J.F. Frequency of Recurrent Atrial Fibrillation after Catheter Ablation of Overt Accessory Pathways. Am. J. Cardiol. 1992, 69, 493–497. [Google Scholar] [CrossRef]
- 2012 HRS EHRA ECAS AF Ablation—Full Length Version|Heart Rhythm Society. Available online: https://www.hrsonline.org/resource/2012-hrsehraecas-expert-consensus-statement-catheter-and-surgical-ablation-atrial-fibrillation/ (accessed on 29 August 2024).
- Fujimura, O.; Klein, G.J.; Yee, R.; Sharma, A.D. Mode of Onset of Atrial Fibrillation in the Wolff-Parkinson-White Syndrome: How Important Is the Accessory Pathway? J. Am. Coll. Cardiol. 1990, 15, 1082–1086. [Google Scholar] [CrossRef]
- Santinelli, V.; Radinovic, A.; Manguso, F.; Vicedomini, G.; Gulletta, S.; Paglino, G.; Mazzone, P.; Ciconte, G.; Sacchi, S.; Sala, S.; et al. The Natural History of Asymptomatic Ventricular Pre-Excitation: A Long-Term Prospective Follow-Up Study of 184 Asymptomatic Children. J. Am. Coll. Cardiol. 2009, 53, 275–280. [Google Scholar] [CrossRef]
- Di Mambro, C.; Russo, M.S.; Righi, D.; Placidi, S.; Palmieri, R.; Silvetti, M.S.; Gimigliano, F.; Prosperi, M.; Drago, F. Ventricular Pre-Excitation: Symptomatic and Asymptomatic Children Have the Same Potential Risk of Sudden Cardiac Death. Europace 2015, 17, 617–621. [Google Scholar] [CrossRef]
- Jemtrén, A.; Saygi, S.; Åkerström, F.; Asaad, F.; Bourke, T.; Braunschweig, F.; Carnlöf, C.; Drca, N.; Insulander, P.; Kennebäck, G.; et al. Risk Assessment in Patients with Symptomatic and Asymptomatic Pre-Excitation. EP Eur. 2024, 26, euae036. [Google Scholar] [CrossRef] [PubMed]
- Ponti, R.D.; Marazzato, J.; Marazzi, R.; Doni, L.A.; Salerno-Uriarte, J.A. Pre-eccitazione ventricolare in assenza di sintomi: Che strada percorrere. G. Ital. Di Cardiol. 2018, 19, 161. [Google Scholar]
- Escudero, C.A.; Ceresnak, S.R.; Collins, K.K.; Pass, R.H.; Aziz, P.F.; Blaufox, A.D.; Ortega, M.C.; Cannon, B.C.; Cohen, M.I.; Dechert, B.E.; et al. Loss of Ventricular Preexcitation during Noninvasive Testing Does Not Exclude High-Risk Accessory Pathways: A Multicenter Study of WPW in Children. Heart Rhythm. 2020, 17, 1729–1737. [Google Scholar] [CrossRef] [PubMed]
- Turley, A.J.; Murray, S.; Thambyrajah, J. Pre-Excited Atrial Fibrillation Triggered by Intravenous Adenosine: A Commonly Used Drug with Potentially Life-Threatening Adverse Effects. Emerg. Med. J. 2008, 25, 46–48. [Google Scholar] [CrossRef]
- Kaakeh, Y.; Overholser, B.R.; Lopshire, J.C.; Tisdale, J.E. Drug-Induced Atrial Fibrillation. Drugs 2012, 72, 1617–1630. [Google Scholar] [CrossRef]
- Ibrahim Ali Sherdia, A.F.; Abdelaal, S.A.; Hasan, M.T.; Elsayed, E.; Mare’y, M.; Nawar, A.A.; Abdelsalam, A.; Abdelgader, M.Z.; Adam, A.; Abozaid, M. The Success Rate of Radiofrequency Catheter Ablation in Wolff-Parkinson-White-Syndrome Patients: A Systematic Review and Meta-Analysis. Indian Heart J. 2023, 75, 98–107. [Google Scholar] [CrossRef]
- Burke, B.J.; Assaad, I.E.; Liu, W.; Kanj, M.; Wazni, O.M.; Callahan, T.D.; Baranowski, B.; Saarel, E.V.; Heilbronner, A.; Aziz, P.F. Underestimated Recurrence Rates after Ablation for Wolff-Parkinson-White Syndrome and Impact on Follow-up Practices. Heart Rhythm. 2024, 21, 2053–2054. [Google Scholar] [CrossRef]
- Antzelevitch, C.; Yan, G.-X. J-Wave Syndromes. from Cell to Bedside. J. Electrocardiol. 2011, 44, 656–661. [Google Scholar] [CrossRef]
- Kaneko, Y.; Horie, M.; Niwano, S.; Kusano, K.F.; Takatsuki, S.; Kurita, T.; Mitsuhashi, T.; Nakajima, T.; Irie, T.; Hasegawa, K.; et al. Electrical Storm in Patients with Brugada Syndrome Is Associated with Early Repolarization. Circ. Arrhythmia Electrophysiol. 2014, 7, 1122–1128. [Google Scholar] [CrossRef]
- Rosso, R.; Kogan, E.; Belhassen, B.; Rozovski, U.; Scheinman, M.M.; Zeltser, D.; Halkin, A.; Steinvil, A.; Heller, K.; Glikson, M.; et al. J-Point Elevation in Survivors of Primary Ventricular Fibrillation and Matched Control Subjects: Incidence and Clinical Significance. J. Am. Coll. Cardiol. 2008, 52, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Antzelevitch, C.; Yan, G.-X.; Ackerman, M.J.; Borggrefe, M.; Corrado, D.; Guo, J.; Gussak, I.; Hasdemir, C.; Horie, M.; Huikuri, H.; et al. J-Wave Syndromes Expert Consensus Conference Report: Emerging Concepts and Gaps in Knowledge. Heart Rhythm. 2016, 13, e295–e324. [Google Scholar] [CrossRef] [PubMed]
- Early Repolarization Syndrome—Cardiovascular Disorders. Available online: https://www.msdmanuals.com/professional/cardiovascular-disorders/arrhythmogenic-cardiac-disorders/early-repolarization-syndrome (accessed on 8 June 2025).
- Haïssaguerre, M.; Derval, N.; Sacher, F.; Jesel, L.; Deisenhofer, I.; de Roy, L.; Pasquié, J.-L.; Nogami, A.; Babuty, D.; Yli-Mayry, S.; et al. Sudden Cardiac Arrest Associated with Early Repolarization. N. Engl. J. Med. 2008, 358, 2016–2023. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Barajas-Martínez, H.; Xia, H.; Zhang, Z.; Chen, G.; Yang, B.; Jiang, H.; Antzelevitch, C.; Hu, D. Clinical and Functional Genetic Characterization of the Role of Cardiac Calcium Channel Variants in the Early Repolarization Syndrome. Front. Cardiovasc. Med. 2021, 8, 680819. [Google Scholar] [CrossRef]
- Nademanee, K.; Haissaguerre, M.; Hocini, M.; Nogami, A.; Cheniti, G.; Duchateau, J.; Behr, E.R.; Saba, M.; Bokan, R.; Lou, Q.; et al. Mapping and Ablation of Ventricular Fibrillation Associated with Early Repolarization Syndrome. Circulation 2019, 140, 1477–1490. [Google Scholar] [CrossRef]
- Cheniti, G.; Vlachos, K.; Meo, M.; Puyo, S.; Thompson, N.; Denis, A.; Duchateau, J.; Takigawa, M.; Martin, C.; Frontera, A.; et al. Mapping and Ablation of Idiopathic Ventricular Fibrillation. Front. Cardiovasc. Med. 2018, 5, 123. [Google Scholar] [CrossRef]
- Gussak, I.; Brugada, P.; Brugada, J.; Wright, R.S.; Kopecky, S.L.; Chaitman, B.R.; Bjerregaard, P. Idiopathic Short QT Interval: A New Clinical Syndrome? Cardiology 2000, 94, 99–102. [Google Scholar] [CrossRef]
- Cordeiro, J.M.; Brugada, R.; Wu, Y.S.; Hong, K.; Dumaine, R. Modulation of I(Kr) Inactivation by Mutation N588K in KCNH2: A Link to Arrhythmogenesis in Short QT Syndrome. Cardiovasc. Res. 2005, 67, 498–509. [Google Scholar] [CrossRef]
- Wu, X.; Larsson, H.P. Insights into Cardiac IKs (KCNQ1/KCNE1) Channels Regulation. Int. J. Mol. Sci. 2020, 21, 9440. [Google Scholar] [CrossRef]
- Priori, S.G.; Pandit, S.V.; Rivolta, I.; Berenfeld, O.; Ronchetti, E.; Dhamoon, A.; Napolitano, C.; Anumonwo, J.; di Barletta, M.R.; Gudapakkam, S.; et al. A Novel Form of Short QT Syndrome (SQT3) Is Caused by a Mutation in the KCNJ2 Gene. Circ. Res. 2005, 96, 800–807. [Google Scholar] [CrossRef]
- Li, Y.; Wang, K.; Li, Q.; Hancox, J.C.; Zhang, H.; Saucerman, J.J. Reciprocal Interaction between IK1 and If in Biological Pacemakers: A Simulation Study. PLOS Comput. Biol. 2021, 17, e1008177. [Google Scholar] [CrossRef]
- The Short QT Syndrome | SpringerLink. Available online: https://link.springer.com/chapter/10.1007/978-3-031-33588-4_26 (accessed on 27 October 2024).
- Sun, Y.; Timofeyev, V.; Dennis, A.; Bektik, E.; Wan, X.; Laurita, K.R.; Deschênes, I.; Li, R.A.; Fu, J.-D. A Singular Role of IK1 Promoting the Development of Cardiac Automaticity during Cardiomyocyte Differentiation by IK1 -Induced Activation of Pacemaker Current. Stem Cell Rev. Rep. 2017, 13, 631–643. [Google Scholar] [CrossRef]
- Gaita, F.; Giustetto, C.; Bianchi, F.; Wolpert, C.; Schimpf, R.; Riccardi, R.; Grossi, S.; Richiardi, E.; Borggrefe, M. Short QT syndrome: A familial cause of sudden death. Circulation 2003, 108, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Brugada, J.; Katritsis, D.G.; Arbelo, E.; Arribas, F.; Bax, J.J.; Blomström-Lundqvist, C.; Calkins, H.; Corrado, D.; Deftereos, S.G.; Diller, G.-P.; et al. 2019 ESC Guidelines for the Management of Patients with Supraventricular tachycardiaThe Task Force for the Management of Patients with Supraventricular Tachycardia of the European Society of Cardiology (ESC). Eur. Heart J. 2020, 41, 655–720. [Google Scholar] [CrossRef] [PubMed]
- Al-Khatib, S.M.; Stevenson, W.G.; Ackerman, M.J.; Bryant, W.J.; Callans, D.J.; Curtis, A.B.; Deal, B.J.; Dickfeld, T.; Field, M.E.; Fonarow, G.C.; et al. 2017 AHA/ACC/HRS Guideline for Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death. Circulation 2018, 72, e91–e220. [Google Scholar] [CrossRef]
- Gaita, F.; Giustetto, C.; Bianchi, F.; Schimpf, R.; Haissaguerre, M.; Calò, L.; Brugada, R.; Antzelevitch, C.; Borggrefe, M.; Wolpert, C. Short QT Syndrome: Pharmacological Treatment. J. Am. Coll. Cardiol. 2004, 43, 1494–1499. [Google Scholar] [CrossRef]
- Bun, S.-S.; Maury, P.; Giustetto, C.; Deharo, J.-C. Electrical Storm in Short-QT Syndrome Successfully Treated with Isoproterenol. J. Cardiovasc. Electrophysiol. 2012, 23, 1028–1030. [Google Scholar] [CrossRef]
- Towbin, J.A.; McKenna, W.J.; Abrams, D.J.; Ackerman, M.J.; Calkins, H.; Darrieux, F.C.C.; Daubert, J.P.; de Chillou, C.; DePasquale, E.C.; Desai, M.Y.; et al. 2019 HRS Expert Consensus Statement on Evaluation, Risk Stratification, and Management of Arrhythmogenic Cardiomyopathy. Heart Rhythm. 2019, 16, e301–e372. [Google Scholar] [CrossRef]
- Stanciulescu, L.A.; Dorobantu, M.; Vatasescu, R. Targeting Ventricular Arrhythmias in Non-Ischemic Patients: Advances in Diagnosis and Treatment. Diagnostics 2025, 15, 420. [Google Scholar] [CrossRef]
- Corrado, D.; Basso, C.; Thiene, G.; McKenna, W.J.; Davies, M.J.; Fontaliran, F.; Nava, A.; Silvestri, F.; Blomstrom-Lundqvist, C.; Wlodarska, E.K.; et al. Spectrum of Clinicopathologic Manifestations of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia: A Multicenter Study. J. Am. Coll. Cardiol. 1997, 30, 1512–1520. [Google Scholar] [CrossRef]
- Corrado, D.; Wichter, T.; Link, M.S.; Hauer, R.N.W.; Marchlinski, F.E.; Anastasakis, A.; Bauce, B.; Basso, C.; Brunckhorst, C.; Tsatsopoulou, A.; et al. Treatment of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia. Circulation 2015, 132, 441–453. [Google Scholar] [CrossRef]
- Calkins, H.; Corrado, D.; Marcus, F. Risk Stratification in Arrhythmogenic Right Ventricular Cardiomyopathy. Circulation 2017, 136, 2068–2082. [Google Scholar] [CrossRef]
- Wichter, T.; Borggrefe, M.; Haverkamp, W.; Chen, X.; Breithardt, G. Efficacy of Antiarrhythmic Drugs in Patients with Arrhythmogenic Right Ventricular Disease. Results in Patients with Inducible and Noninducible Ventricular Tachycardia. Circulation 1992, 86, 29–37. [Google Scholar] [CrossRef]
- Marcus, G.M.; Glidden, D.V.; Polonsky, B.; Zareba, W.; Smith, L.M.; Cannom, D.S.; Estes, N.A.M.; Marcus, F.; Scheinman, M.M. Multidisciplinary Study of Right Ventricular Dysplasia Investigators Efficacy of Antiarrhythmic Drugs in Arrhythmogenic Right Ventricular Cardiomyopathy: A Report from the North American ARVC Registry. J. Am. Coll. Cardiol. 2009, 54, 609–615. [Google Scholar] [CrossRef]
- Shaikh, T.; Nguyen, D.; Dugal, J.K.; DiCaro, M.V.; Yee, B.; Houshmand, N.; Lei, K.; Namazi, A. Arrhythmogenic Right Ventricular Cardiomyopathy: A Comprehensive Review. J. Cardiovasc. Dev. Dis. 2025, 12, 71. [Google Scholar] [CrossRef]
- Daimee, U.A.; Assis, F.R.; Murray, B.; Tichnell, C.; James, C.A.; Calkins, H.; Tandri, H. Clinical Outcomes of Catheter Ablation of Ventricular Tachycardia in Patients with Arrhythmogenic Right Ventricular Cardiomyopathy: Insights from the Johns Hopkins ARVC Program. Heart Rhythm. 2021, 18, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A.; et al. 2023 ESC Guidelines for the Management of Cardiomyopathies. Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Liu, S.; Zhang, Z.; Xiong, Y.; Lai, Z.; Hu, F.; Zheng, L.; Yao, Y. Catheter Ablation of Ventricular Tachycardia in Patients with Arrhythmogenic Right Ventricular Cardiomyopathy and Biventricular Involvement. EP Eur. 2024, 26, euae059. [Google Scholar] [CrossRef] [PubMed]
- Corrado, D.; Leoni, L.; Link, M.S.; Della Bella, P.; Gaita, F.; Curnis, A.; Salerno, J.U.; Igidbashian, D.; Raviele, A.; Disertori, M.; et al. Implantable Cardioverter-Defibrillator Therapy for Prevention of Sudden Death in Patients with Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia. Circulation 2003, 108, 3084–3091. [Google Scholar] [CrossRef]
- Visser, M.; van der Heijden, J.F.; Doevendans, P.A.; Loh, P.; Wilde, A.A.; Hassink, R.J. Idiopathic Ventricular Fibrillation. Circ. Arrhythmia Electrophysiol. 2016, 9, e003817. [Google Scholar] [CrossRef]
- Haïssaguerre, M.; Duchateau, J.; Dubois, R.; Hocini, M.; Cheniti, G.; Sacher, F.; Lavergne, T.; Probst, V.; Surget, E.; Vigmond, E.; et al. Idiopathic Ventricular Fibrillation. JACC Clin. Electrophysiol. 2020, 6, 591–608. [Google Scholar] [CrossRef]
- Wilde, A.A.M.; Garan, H.; Boyden, P.A. Role of the Purkinje System in Heritable Arrhythmias. Heart Rhythm. 2019, 16, 1121–1126. [Google Scholar] [CrossRef]
- Haïssaguerre, M.; Shoda, M.; Jaïs, P.; Nogami, A.; Shah, D.C.; Kautzner, J.; Arentz, T.; Kalushe, D.; Lamaison, D.; Griffith, M.; et al. Mapping and Ablation of Idiopathic Ventricular Fibrillation. Circulation 2002, 106, 962–967. [Google Scholar] [CrossRef]
- Malhi, N.; Cheung, C.C.; Deif, B.; Roberts, J.D.; Gula, L.J.; Green, M.S.; Pang, B.; Sultan, O.; Konieczny, K.M.; Angaran, P.; et al. Challenge and Impact of Quinidine Access in Sudden Death Syndromes: A National Experience. JACC Clin. Electrophysiol. 2019, 5, 376–382. [Google Scholar] [CrossRef]
Authors | Risk Factors | Study | VES Incidence | Mortality |
---|---|---|---|---|
Guerra et al. [22] | Lower LVEF Prolonged QRS duration Previous VA episodes The use of antiarrhythmic class I | Multicenter registry (5 Italian arrhythmia centres), 2010–2012, >1000 patients ≥18 years with ICD/CRT-D implantation; propensity score matching for ICD vs. CRT-D groups (Guerra et al.). | 10–28% in patients with secondary prevention ICDs | Increased risk of death and combined risk of death, heart transplantation and hospitalisation for HF |
Ninni et al. [20] | Age Lower LVEF RV dysfunction Haemoglobin level Use of catecholamines at admission | Single-centre retrospective study, 2015–2020, 253 patients hospitalised for electrical storm in the ICU; median age 66 years, 64% with ischemic cardiomyopathy, 37% required catecholamines at admission. | 10–58% for secondary prevention, 4–7% for primary prevention | One-year mortality of 34%, mostly driven by HF |
Zhai et al. [23] | High BMI Extensive T-wave inversion | Single-centre study, Fuwai Hospital, Beijing, 2005–2020, 88 ACM patients with ICDs; median follow-up 4.0 years | 21.6% in ACM patients with ICDs | No independent increase in cardiac mortality |
Phase 0 (depolarisation) | Rapid influx of Na+ ions over the voltage-activated channels |
Phase 1 (initial repolarisation) | Short repolarisation caused by transient K+ efflux |
Phase 2 (plateau) | Continuous depolarisation due to a balanced K+ efflux and Ca influx |
Phase 3 (repolarisation) | Closure of Ca2+ channels and persistence of K+ efflux leads to repolarisation |
Phase 4 (resting potential) | The influx of K+ mediated by the inward rectifier K+ channel results in a stable resting potential of the membrane |
Strategy | Mechanism of Action | Evidence Level/Guideline Class | Clinical Considerations |
---|---|---|---|
Acute trigger control | Resolves underlying ischemia, HF decompensation | ESC: Class I | First step in all VES cases: urgent revascularization and volume optimisation as needed |
Electrolyte correction | Stabilises cardiac membrane potentials | ESC: Class I | Maintain K+ at 4.0–5.0 mmol/L; MgSO4 bolus for QT prolongation; avoid rapid infusion |
Sedation (e.g., midazolam, remifentanil) | Reduces sympathetic drive and arrhythmogenic triggers | ESC: Class I | Effective for autonomic suppression; propofol use cautioned due to negative inotropic effects |
Beta-blockers | Adrenergic suppression via β1/β2 blockade | ESC: Class I–IIb (esmolol, landiolol) | Propranolol preferred in CNS-penetrating cases; esmolol for low EF and shock; consider lipophilicity |
Amiodarone | Blocks Na+, K+, Ca2+ channels; prolongs APD | ESC: Class I | Preferred in structural heart disease; monitor cumulative dose and defibrillation threshold |
Lidocaine | Inhibits inactivated Na+ channels in ischemic myocardium | ESC: Class IIb | Second-line in ischemic VT; short half-life; dose titration essential |
Procainamide | Na+ channel blocker; NAPA prolongs QT | ESC: Class IIa (VT termination) | Avoid in renal dysfunction; highest VT termination rate; toxicity limits long-term use |
Mexiletine | Oral Na+ channel blocker; suppresses ectopy | ESC: Class IIb | Used adjunctively with amiodarone in HFrEF; long-term suppression of arrhythmias |
Sotalol | Beta-blocking + APD prolongation | ESC: Class IIb | Intermediate efficacy; watch for QT prolongation |
Quinidine | Class Ia antiarrhythmic; prolongs QT | ESC and ACC: Class IIb | For polymorphic VT unresponsive to other agents; limited use due to side effect profile |
Temporary pacing | Overdrive suppression of ventricular ectopy | ESC: Class IIb | Useful for arrhythmias triggered by bradycardia or PVCs |
Thoracic Epidural Anaesthesia | Sympathetic blockade via neuraxial anaesthesia | ESC: Class IIb | Short-term control; requires skilled placement and monitoring; bridge to ablation |
Stellate Ganglion Block (SGB) | Suppresses sympathetic cardiac input | ESC: Class IIb | Bedside-accessible; ultrasound guided; 60–92% success in VT suppression |
Cardiac Sympathetic Denervation | Reduces afferent sympathetic tone | ESC: Class IIa–IIb | Surgical or thoracoscopic; effective in inherited arrhythmia syndromes and structural disease |
Catheter ablation | Substrate modification and re-entry circuit elimination | ESC: Class I (structural VT), VANISH trial | Definitive for recurrent VT; improves survival and quality of life; guided by electroanatomic mapping |
ICD reprogramming | Minimises shock burden; favours ATP | ESC: Expert consensus | Lengthen detection time; raise VF thresholds; deactivate shock delivery during VES episode |
ICD implantation | Detects and terminates malignant arrhythmias | ESC: Class I (post-VES recovery) | Avoid implantation during VES; reassess after stabilisation |
CRT implantation | Cardiac resynchronization; reverses remodelling | ESC: Class I | Recommended in VES with HF (EF < 35%, QRS > 130 ms); response improved by LBB/HB pacing |
Stereotactic radiotherapy | Targeted ablation of arrhythmic focus | Investigational/Emerging | Non-invasive option under evaluation; precise, tissue-sparing technique |
ECMO (VA-ECMO) | Mechanical support for cardiac and pulmonary function | ESC: Expert Consensus/Emerging | Life-saving bridge in cardiogenic shock; facilitates ablation or transplant evaluation; survival benefit if early |
Schwartz Diagnostic Score for Long QT Syndrome (LQTS) | ||
---|---|---|
Category | Criteria | Points |
ECG Findings | QTc ≥ 480 ms | 3 |
QTc 460–479 ms | 2 | |
QTc 450–459 ms | 1 | |
QTc ≥ 480 ms (4th min of recovery post-exercise) | 1 | |
Torsade de pointes | 2 | |
T-wave alternans | 1 | |
Notched T-waves in ≥3 leads | 1 | |
Low heart rate for age | 0.5 | |
Clinical History | Syncope (stress-induced) | 2 |
Syncope (non-stress-induced) | 1 | |
Congenital deafness | 0.5 | |
Family History | Definitive LQTS in the family | 1 |
Sudden death (age < 30 years) in the family | 0.5 | |
Genetic Findings | Pathogenic mutation | 3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negru, A.G.; Iovanovici, D.C.; Lascu, A.; Pescariu, A.S.; Cismaru, G.; Crișan, S.; Ailoaei, Ș.; Bebec, D.L.; Streian, C.G.; Bîrza, M.R.; et al. A Comprehensive Review of a Mechanism-Based Ventricular Electrical Storm Management. J. Clin. Med. 2025, 14, 5351. https://doi.org/10.3390/jcm14155351
Negru AG, Iovanovici DC, Lascu A, Pescariu AS, Cismaru G, Crișan S, Ailoaei Ș, Bebec DL, Streian CG, Bîrza MR, et al. A Comprehensive Review of a Mechanism-Based Ventricular Electrical Storm Management. Journal of Clinical Medicine. 2025; 14(15):5351. https://doi.org/10.3390/jcm14155351
Chicago/Turabian StyleNegru, Alina Gabriela, Diana Carina Iovanovici, Ana Lascu, Alexandru Silviu Pescariu, Gabriel Cismaru, Simina Crișan, Ștefan Ailoaei, Diana Luiza Bebec, Caius Glad Streian, Mariela Romina Bîrza, and et al. 2025. "A Comprehensive Review of a Mechanism-Based Ventricular Electrical Storm Management" Journal of Clinical Medicine 14, no. 15: 5351. https://doi.org/10.3390/jcm14155351
APA StyleNegru, A. G., Iovanovici, D. C., Lascu, A., Pescariu, A. S., Cismaru, G., Crișan, S., Ailoaei, Ș., Bebec, D. L., Streian, C. G., Bîrza, M. R., Manzur, A. R., Luca, S. A., David, D., Moșteoru, S., Gaiță, D., & Luca, C. T. (2025). A Comprehensive Review of a Mechanism-Based Ventricular Electrical Storm Management. Journal of Clinical Medicine, 14(15), 5351. https://doi.org/10.3390/jcm14155351