An Exploratory Comparison of Alpha and Beta Network Connectivity Across Four Depression Subtypes
Abstract
1. Introduction
1.1. Major Depressive Disorder
1.2. Neurobiology of MDD Subtypes
1.3. EEG and MDD
1.4. Brain Connectivity and MDD
1.5. Diagnosing MDD
1.6. Aims of the Study
2. Methods
2.1. Participants
2.2. Depression
2.3. EEG Data
2.4. Procedure
2.5. Data Analysis
3. Results
3.1. Age, Sex, SDS Scores
3.2. MDD Subtypes
3.2.1. Number of Connections
3.2.2. Networks Connected
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- APA. Diagnostic and Statistical Manual of Mental Disorders 5th Ed Text Revision; American Psychiatric Association: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Ostergaard, S.; Jensen, S.; Bech, P. The heterogeneity of the depressive syndrome: When numbers get serious. Acta Psychiatr. Scand. 2011, 124, 495–496. [Google Scholar] [CrossRef]
- Luedtke, A.; Kessler, R. New directions in research on heterogeneity of treatment effects for Major Depression. JAMA Psychiatry 2021, 78, 478–480. [Google Scholar] [CrossRef]
- Insel, T. Transforming Diagnosis. National Institute of Mental Health. 2013. Available online: https://psychiatryonline.org/doi/book/10.1176/appi.books.9780890425787 (accessed on 27 May 2025).
- Parker, G. Beyond major depression. Psychol. Med. 2005, 35, 467–474. [Google Scholar] [CrossRef]
- Kessler, R.; van Loo, H.; Wardenaar, K.; Bossarte, R.; Brenner, L.; Ebert, D.; de Jonge, P.; Nierenberg, A.; Rosellini, A.; Sampson, N.; et al. Using patient self-reports to study heterogeneity of treatment effects in major depressive disorder. Epidemiol. Psychiatr. Sci. 2017, 26, 22–36. [Google Scholar] [CrossRef]
- Monroe, S.; Anderson, S. Depression: The Shroud of Heterogeneity. Curr. Dir. Psychol. Sci. 2015, 24, 227–231. [Google Scholar] [CrossRef]
- Harald, B.; Gordon, P. Meta-review of depressive subtyping models. J. Affect. Disord. 2012, 139, 126–140. [Google Scholar] [CrossRef]
- Sharpley, C.F.; Bitsika, V. Differences in neurobiological pathways of four “clinical content” subtypes of depression. Behav. Brain Res. 2013, 256, 368–376. [Google Scholar] [CrossRef]
- Sharpley, C.F.; Bitsika, V. Validity, reliability and prevalence of four ‘Clinical Content’ subtypes of depression. Behav. Brain Res. 2014, 259, 9–15. [Google Scholar]
- Beijers, L.; Wardenaar, K.; van Loo, H.; Schoevers, R. Data-driven biological subtypes of depression: Systematic review of biological approaches to depression subtyping. Mol. Psychiatry 2019, 24, 888–900. [Google Scholar] [CrossRef]
- Buch, A.; Liston, C. Dissecting diagnostic heterogeneity in depression by integrating neuroimaging and genetics. Neuropsychopharmacology 2021, 46, 156–175. [Google Scholar] [CrossRef]
- Milaneschi, Y.; Lamers, F.; Berk, M.; Penninx, B. Depression Heterogeneity and Its Biological Underpinnings: Toward Immunometabolic Depression. Biol. Psychiatry 2020, 88, 369–380. [Google Scholar] [CrossRef]
- Ross, L.N.; Bassett, D.S. Causation in neuroscience: Keeping mechanism meaningful. Nat. Rev. Neurosci. 2024, 25, 81–90. [Google Scholar] [CrossRef]
- Lynch, C.J.; Gunning, F.M.; Liston, C. Causes and consequences of diagnostic heterogeneity in depression: Paths to discovering novel biological depression subtypes. Biol. Psychiatry 2020, 88, 83–94. [Google Scholar] [CrossRef]
- Wang, X.; He, K.; Chen, T.; Shi, B.; Yang, J.; Geng, W.; Zhang, L.; Zhu, C.; Ji, G.; Tian, Y.; et al. Therapeutic efficacy of connectivity-directed transcranial magnetic stimulation on anticipatory anhedonia. Depress. Anxiety 2021, 38, 972–984. [Google Scholar] [CrossRef]
- Toenders, Y.J.; Schmaal, L.; Harrison, B.J.; Dinga, R.; Berk, M.; Davey, C.G. Neurovegetative symptom subtypes in young people with major depressive disorder and their structural brain correlates. Transl. Psychiatry 2020, 10, 108. [Google Scholar] [CrossRef]
- Miranda, L.; Paul, R.; Puetz, B.; Koutsouleris, N.; Mueller-Myhsok, B. Systematic review of functional MRI applications for psychiatric disease subtyping. Front. Psychiatry 2021, 12, 665536. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Hua, H.; Jin, J.; Zhu, L.; Shu, L.; Xu, X.; Kuang, F.; Liu, Y. Relaxation Degree Analysis Using Frontal Electroencephalogram Under Virtual Reality Relaxation Scenes. Front. Neurosci. 2021, 15, 719869. [Google Scholar] [CrossRef]
- Cook, I.; O’Hara, R.; Uijtdehaage, S.; Mandelkern, M.; Leuchter, A. Assessing the accuracy of topographic EEG mapping for determining local brain function. Electroencephalogr. Clin. Neurophysiol. 1998, 107, 408–414. [Google Scholar] [CrossRef]
- Laufs, H.; Krakow, K.; Sterzer, P.; Eger, E.; Beyerle, A.; Salek-Haddadi, A.; Kleinschmidt, A. Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc. Natl. Acad. Sci. USA 2003, 100, 11053–11058. [Google Scholar] [CrossRef]
- Fox, M.D. Mapping symptoms to brain networks with the human connectome. N. Engl. J. Med. 2018, 379, 2237–2245. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, S.; Zhang, L.; Bu, X.; Lu, L.; Li, H.; Gao, Y.; Hu, X.; Kuang, W.; Jia, Z.; et al. Data-driven clustering differentiates subtypes of major depressive disorder with distinct brain connectivity and symptom features. Br. J. Psychiatry 2021, 219, 606–613. [Google Scholar] [CrossRef]
- Miljevic, A.; Bailey, N.W.; Murphy, O.W.; Perera, M.P.N.; Fitzgerald, P.B. Alterations in EEG functional connectivity in individuals with depression: A systematic review. J. Affect. Disord. 2023, 328, 287–302. [Google Scholar] [CrossRef]
- Anderson, R.J.; Hoy, K.E.; Daskalakis, Z.J.; Fitzgerald, P.B. Repetitive transcranial magnetic stimulation for treatment resistant depression: Re-establishing connections. Clin. Neurophysiol. 2016, 127, 3394–3405. [Google Scholar] [CrossRef]
- Argyelan, M.; Deng, Z.-D.; Ousdal, O.T.; Oltedal, L.; Angulo, B.; Baradits, M.; Spitzberg, A.J.; Kessler, U.; Sartorius, A.; Dols, A.; et al. Electroconvulsive therapy-induced volumetric brain changes converge on a common causal circuit in depression. Mol. Psychiatry 2023, 29, 229–237. [Google Scholar] [CrossRef]
- Siddiqi, S.H.; Schaper, F.; Horn, A.; Hsu, J.; Padmanabhan, J.L.; Brodtmann, A.; Cash, R.F.H.; Corbetta, M.; Choi, K.S.; Dougherty, D.D.; et al. Brain stimulation and brain lesions converge on common causal circuits in neuropsychiatric disease. Nat. Hum. Behav. 2021, 5, 1707–1716. [Google Scholar] [CrossRef]
- Spellman, T.; Liston, C. Toward circuit mechanisms of pathophysiology in depression. Am. J. Psychiatry 2020, 177, 381–390. [Google Scholar] [CrossRef]
- Wüthrich, F.; Lefebvre, S.; Mittal, V.A.; Shankman, S.A.; Alexander, N.; Brosch, K.; Flinkenflügel, K.; Goltermann, J.; Grotegerd, D.; Hahn, T.; et al. The neural signature of psychomotor disturbance in depression. Mol. Psychiatry 2024, 29, 317–326. [Google Scholar] [CrossRef]
- Pfarr, J.K.; Brosch, K.; Meller, T.; Ringwald, K.G.; Schmitt, S.; Stein, F.; Meinert, S.; Grotegerd, D.; Thiel, K.; Lemke, H.; et al. Brain structural connectivity, anhedonia, and phenotypes of major depressive disorder: A structural equation model approach. Hum. Brain Mapp. 2021, 42, 5063–5074. [Google Scholar] [CrossRef]
- Arias, J.A.; Williams, C.; Raghvani, R.; Aghajani, M.; Baez, S.; Belzung, C.; Booij, L.; Busatto, G.; Chiarella, J.; Fu, C.H.; et al. The neuroscience of sadness: A multidisciplinary synthesis and collaborative review. Neurosci. Biobehav. Rev. 2020, 111, 199–228. [Google Scholar] [CrossRef]
- Hack, L.M.; Tozzi, L.; Zenteno, S.; Olmsted, A.M.; Hilton, R.; Jubeir, J.; Korgaonkar, M.S.; Schatzberg, A.F.; Yesavage, J.A.; O’Hara, R.; et al. A cognitive biotype of depression and symptoms, behavior measures, neural circuits, and differential treatment outcomes: A Prespecified secondary analysis of a randomized clinical trial. JAMA Netw. Open 2023, 6, e2318411. [Google Scholar] [CrossRef]
- Yang, Z.; Jian, L.; Qiu, H.; Zhang, C.; Cheng, S.; Ji, J.; Li, T.; Wang, Y.; Li, J.; Li, K. Understanding complex functional wiring patterns in major depressive disorder through brain functional connectome. Transl. Psychiatry 2021, 11, 526. [Google Scholar] [CrossRef]
- Nakajima, R.; Kinoshita, M.; Okita, H.; Nakada, M. Posterior-prefrontal and medial orbitofrontal regions play crucial roles in happiness and sadness recognition. NeuroImage Clin. 2022, 35, 103072. [Google Scholar] [CrossRef]
- Zhang, T.; He, K.; Bai, T.; Lv, H.; Xie, X.; Nie, J.; Xie, W.; Zhu, C.; Wang, K.; Tian, Y. Altered neural activity in the reward-related circuit and executive control network associated with amelioration of anhedonia in major depressive disorder by electroconvulsive therapy. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 109, 110193. [Google Scholar] [CrossRef]
- Sakkalis, V. Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput. Biol. Med. 2011, 41, 1110–1117. [Google Scholar] [CrossRef]
- Bracht, T.; Linden, D.; Keedwell, P. A review of white matter microstructure alterations of pathways of the reward circuit in depression. J. Affect. Disord. 2015, 187, 45–53. [Google Scholar] [CrossRef]
- Kanaan, R.A.; Picchioni, M.M.; McDonald, C.; Shergill, S.S.; McGuire, P.K. White matter deficits in schizophrenia are global and don’t progress with age. Aust. N. Z. J. Psychiatry 2017, 51, 1020–1031. [Google Scholar] [CrossRef]
- WHO. International Classification of Diseases for Mortality and Morbidity Statistics (11th Revision); World Health Organization: Geneva, Switzerland, 2018; Available online: https://icd.who.int/browse11 (accessed on 13 September 2019).
- Beccia, F.; Causio, F.A.; Hoxhaj, I.; Huang, H.-Y.; Wang, L.; Wang, W.; Farina, S.; Osti, T.; Savoia, C.; Cadeddu, C.; et al. Integrating China in the international consortium for personalised medicine. A position paper on healthcare professionals’ education and citizens’ empowerment in personalised medicine. BMC Med. Educ. 2023, 23, 438. [Google Scholar] [CrossRef]
- Ferrer, M.; Suarez, J.; Guedea, F.; Fernandez, P.; Macias, V.; Marino, A.; Hervas, A.; Herruzo, I.; Ortiz, M.; Villavicencio, H.; et al. Health-related Quality of Life 2 years after treatment with radical prostatectomy, prostate brachytherapy, or external beam radiotherapy in patients with clinically localised prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2008, 72, 421–432. [Google Scholar] [CrossRef]
- Fried, E.; Epskamp, S.; Nesse, R.; Tuerlinckx, F.; Borsboom, D. What are ‘good’ depression symptoms? Comparing the centrality of DSM and non-DSM symptoms of depression in a network analysis. J. Affect. Disord. 2016, 189, 314–320. [Google Scholar] [CrossRef]
- Fried, E.; von Stockert, S.; Haslbeck, J.; Lamers, F.; Schoevers, R.; Penninx, B. Using network analysis to examine links between individual depressive symptoms, inflammatory markers, and covariates. Psychol. Med. 2020, 50, 2682–2690. [Google Scholar] [CrossRef]
- Lord, C.; Rutter, M.; DiLavore, P.; Risi, S.; Gotham, K.; Bishop, S. Autism Diagnostic Observation Schedule, Second Edition (ADOS-2); Western Psychological Services: Torrance, CA, USA, 2012. [Google Scholar]
- Lorenzo-Luaces, L.; Buss, J.F.; Fried, E.I. Heterogeneity in major depression and its melancholic and atypical specifiers: A secondary analysis of STAR* D. BMC Psychiatry 2021, 21, 454. [Google Scholar] [CrossRef]
- Sharpley, C.F.; Agnew, L.L. The New England Mental Health Study Version 1; University of New England: Armidale, Australia, 2016. [Google Scholar]
- Clarke, C.; Howard, R.; Rossor, M.; Shorvon, S. Neurological Diseases. In Clinical Medicine, 7th ed.; Kumar, P., Clark, M., Eds.; Saunders, Elsevier: Philadelphia, PA, USA, 2009; pp. 1095–1183. [Google Scholar]
- Segalowitz, S.J.; Bryden, M.P. Individual differences in hemispheric representation of language. In Language Functions and Brain Organization; Academic Press: Cambridge, MA, USA, 1983. [Google Scholar]
- Zung, W. A self-rating depression scale. Arch. Gen. Psychiatry 1965, 12, 63–70. [Google Scholar] [CrossRef]
- Zung, W. From art to science: The diagnosis and treatment of depression. Arch. Gen. Psychiatry 1973, 29, 328–337. [Google Scholar] [CrossRef]
- DeJonge, J.; Baneke, J. The Zung Self-rating Depression Scale: A replication study on reliability, validity and prediction. Psychol. Rep. 1989, 64, 833–834. [Google Scholar] [CrossRef]
- Gabrys, J.; Peters, K. Reliability, discriminant and predictive validity of the Zung Self-Rating Depression Scale. Psychol. Rep. 1985, 57, 1091–1096. [Google Scholar] [CrossRef]
- Schaefer, A.; Brown, J.; Watson, C.; Plenel, D.; DeMotts, J.; Howard, M.; Petrik, N.; Ballweg, B. Comparison of the validities of the Beck, Zung and MMPI depression scales. J. Consult. Clin. Psychol. 1985, 53, 415–418. [Google Scholar] [CrossRef]
- Borserio, B.J.; Sharpley, C.F.; Bitsika, V.; Sarmukadam, K.; Fourie, P.J.; Agnew, L.L. Default mode network activity in depression subtypes. Rev. Neurosci. 2021, 32, 597–613. [Google Scholar] [CrossRef]
- Scalabrini, A.; Vai, B.; Poletti, S.; Damiani, S.; Mucci, C.; Colombo, C.; Zanardi, R.; Benedetti, F.; Northoff, G. All roads lead to the default-mode network—Global source of DMN abnormalities in major depressive disorder. Neuropsychopharmacology 2020, 45, 2058–2069. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Liang, X.; Li, D.; Zheng, Y.; Zhang, H.; Cui, Y.; Chen, J.; Liu, J.; Qiu, S. Altered resting-state functional connectivity of multiple networks and disrupted correlation with executive function in major depressive disorder. Front. Neurol. 2020, 11, 272. [Google Scholar] [CrossRef]
- Nuño, L.; Gómez-Benito, J.; Carmona, V.R.; Pino, O. A systematic review of executive function and information processing speed in major depression disorder. Brain Sci. 2021, 11, 147. [Google Scholar] [CrossRef]
- Han, S.; Cui, Q.; Wang, X.; Li, L.; Li, D.; He, Z.; Guo, X.; Fan, Y.S.; Guo, J.; Sheng, W.; et al. Resting state functional network switching rate is differently altered in bipolar disorder and major depressive disorder. Hum. Brain Mapp. 2020, 41, 3295–3304. [Google Scholar] [CrossRef]
- Huang, H.; Chen, C.; Rong, B.; Wan, Q.; Chen, J.; Liu, Z.; Zhou, Y.; Wang, G.; Wang, H. Resting-state functional connectivity of salience network in schizophrenia and depression. Sci. Rep. 2022, 12, 11204. [Google Scholar] [CrossRef]
- Pascual-Marqui, R.D.; Lehmann, D.; Koukkou, M.; Kochi, K.; Anderer, P.; Saletu, B.; Tanaka, H.; Hirata, K.; John, E.R.; Prichep, L.; et al. Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 3768–3784. [Google Scholar] [CrossRef]
- Raichle, M.E. The restless brain. Brain Connect. 2011, 1, 3–12. [Google Scholar] [CrossRef]
- Marco-Pallarés, J.; Grau, C.; Ruffini, G. Combined ICA-LORETA analysis of mismatch negativity. NeuroImage 2005, 25, 471–477. [Google Scholar] [CrossRef]
- Pascual-Marqui, R.D.; Esslen, M.; Kochi, K.; Lehmann, D. Functional imaging with low-resolution brain electromagnetic tomography (LORETA): A review. Methods Find. Exp. Clin. Pharmacol. 2002, 24 (Suppl. C), 91–95. [Google Scholar]
- Fuchs, M.; Kastner, J.; Wagner, M.; Hawes, S.; Ebersole, J.S. A standardized boundary element method volume conductor model. Clin. Neurophysiol. 2002, 113, 702–712. [Google Scholar] [CrossRef]
- Mazziotta, J.; Toga, A.; Evans, A.; Fox, P.; Lancaster, J.; Zilles, K.; Woods, R.; Paus, T.; Simpson, G.; Pike, B.; et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2001, 356, 1293–1322. [Google Scholar] [CrossRef]
- Pascual-Marqui, R.D. Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: Exact, zero error localization. arXiv 2007, arXiv:0710.3341. [Google Scholar] [CrossRef]
- Sharpley, C.F.; Arnold, W.; Evans, I.; Bitsika, V.; Jesulola, E.; Agnew, L. Studies of EEG Asymmetry and Depression: To Normalise or Not? Symmetry 2023, 15, 1689. [Google Scholar] [CrossRef]
- Tumati, S.; Martens, S.; de Jong, B.; Aleman, A. Lateral parietal cortex in the generation of behavior: Implications for apathy. Prog. Neurobiol. 2019, 175, 20–34. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Nichols, T.E.; Hayasaka, S. Controlling the familywise error rate in functional neuroimaging: A comparative review. Stat. Methods Med. Res. 2003, 12, 419–446. [Google Scholar] [CrossRef]
- Nichols, T.E.; Holmes, A.P. Nonparametric permutation tests for functional neuroimaging: A primer with examples. Hum. Brain Mapp. 2002, 15, 1–25. [Google Scholar] [CrossRef]
- Kandilarova, S.; Stoyanov, D.S.; Paunova, R.; Todeva-Radneva, A.; Aryutova, K.; Maes, M. Effective connectivity between major nodes of the limbic system, salience and frontoparietal networks differentiates schizophrenia and mood disorders from healthy controls. J. Pers. Med. 2021, 11, 1110. [Google Scholar] [CrossRef]
- Kouneiher, F.; Charron, S.; Koechlin, E. Motivation and cognitive control in the human prefrontal cortex. Nat. Neurosci. 2009, 12, 939–945. [Google Scholar] [CrossRef]
- Nee, D.E.; D’Esposito, M. Causal evidence for lateral prefrontal cortex dynamics supporting cognitive control. eLife 2017, 6, e28040. [Google Scholar] [CrossRef]
- Rushworth, M.F. Intention, choice, and the medial frontal cortex. Ann. N. Y. Acad. Sci. 2008, 1124, 181–207. [Google Scholar] [CrossRef]
- Kos, C.; van Tol, M.-J.; Marsman, J.-B.C.; Knegtering, H.; Aleman, A. Neural correlates of apathy in patients with neurodegenerative disorders, acquired brain injury, and psychiatric disorders. Neurosci. Biobehav. Rev. 2016, 69, 381–401. [Google Scholar] [CrossRef]
- Streiner, D.; Norman, G. Correction for multiple testing. Chest 2011, 140, 16–18. [Google Scholar] [CrossRef]
- Bruder, G.E.; Tenke, C.E.; Towey, J.P.; Leite, P.; Fong, R.; Stewart, J.E.; McGrath, P.J.; Quitkin, F.M. Brain ERPs of depressed patients to complex tones in an oddball task: Relation of reduced P3 asymmetry to physical anhedonia. Psychophysiology 1998, 35, 54–63. [Google Scholar] [CrossRef]
- Shaw, S.R.; El-Omar, H.; Ramanan, S.; Piguet, O.; Ahmed, R.M.; Whitton, A.E.; Irish, M. Anhedonia in semantic dementia—Exploring right hemispheric contributions to the loss of pleasure. Brain Sci. 2021, 11, 998. [Google Scholar] [CrossRef]
- Bledowski, C.; Prvulovic, D.; Hoechstetter, K.; Scherg, M.; Wibral, M.; Goebel, R.; Linden, D.E. Localizing P300 generators in visual target and distractor processing: A combined event-related potential and functional magnetic resonance imaging study. J. Neurosci. 2004, 24, 9353–9360. [Google Scholar] [CrossRef]
- Kaldewaij, R.; Koch, S.B.; Hashemi, M.M.; Zhang, W.; Klumpers, F.; Roelofs, K. Anterior prefrontal brain activity during emotion control predicts resilience to post-traumatic stress symptoms. Nat. Hum. Behav. 2021, 5, 1055–1064. [Google Scholar] [CrossRef]
- Gu, X.; Hof, P.R.; Friston, K.J.; Fan, J. Anterior insular cortex and emotional awareness. J. Comp. Neurol. 2013, 521, 3371–3388. [Google Scholar] [CrossRef]
- Pavuluri, M.; May, A. I feel, therefore, I am: The insula and its role in human emotion, cognition and the sensory-motor system. Aims Neurosci. 2015, 2, 18–27. [Google Scholar] [CrossRef]
- Heilbronner, S.R.; Hayden, B.Y. Dorsal anterior cingulate cortex: A bottom-up view. Annu. Rev. Neurosci. 2016, 39, 149–170. [Google Scholar] [CrossRef]
- Paus, T. Primate anterior cingulate cortex: Where motor control, drive and cognition interface. Nat. Rev. Neurosci. 2001, 2, 417–424. [Google Scholar] [CrossRef]
- Cui, L.; Li, S.; Wang, S.; Wu, X.; Liu, Y.; Yu, W.; Wang, Y.; Tang, Y.; Xia, M.; Li, B. Major depressive disorder: Hypothesis, mechanism, prevention and treatment. Signal Transduct. Target. Ther. 2024, 9, 30. [Google Scholar] [CrossRef]
- Parker, G.; Roy, K.; Mitchell, P.; Wilhelm, K.; Malhi, G.; Hadzi-Pavlovic, D. Atypical depression: A reappraisal. Am. J. Psychiatry 2002, 159, 1470–1479. [Google Scholar] [CrossRef]
- Rice, F.; Riglin, L.; Lomax, T.; Souter, E.; Potter, R.; Smith, D.; Thapar, A.; Thapar, A. Adolescent and adult differences in major depression symptom profiles. J. Affect. Disord. 2019, 243, 175–181. [Google Scholar] [CrossRef]
Subtype | Depressed Mood | Anhedonia | Cognitive Depression | Somatic Depression | ||
---|---|---|---|---|---|---|
SDS items | 1. I feel downhearted and blue 3. I have crying spells or feel like it 14. I feel hopeful about the future 15. I am more irritable than usual 17. I feel that I am useful and needed 19. I feel that others would be better off if I were dead | 5. I eat as much as I used to 6. I still enjoy sex 18. My life is pretty full 20. I still enjoy doing the things I used to | 11. My mind is as clear as it used to be 12. I find it easy to do the things I used to do 16. I find it easy to make decisions | 4. I have trouble sleeping at night 7. I notice that I am losing weight 8. I have trouble with constipation 9. My heart beats faster than usual 10. I get tired for no reason 13. I am restless and can’t keep still | ||
Subtype | Inter-subtype correlation coefficients | |||||
Anhedonia | Cognitive depression | Somatic depression | ||||
Depressed mood | 0.678 * | 0.831 * | 0.748 * | |||
Anhedonia | 0.789 * | 0.626 * | ||||
Cognitive depression | 0.736 * |
Network | Location | MNI X | MNI Y | MNI Z |
---|---|---|---|---|
DMN1 2 | Posterior cingulate | 0 | −52 | 27 |
DMN2 | Medial PFC | −1 | 54 | 27 |
DMN3 | L lateral parietal | −46 | −66 | 30 |
DMN4 | R lateral parietal | 49 | −63 | 33 |
DMN5 | L inferior temporal | −61 | −24 | −9 |
DMN6 | R inferior temporal | 58 | −24 | −9 |
ECN1 3 | Dorsal medial PFC | 0 | 24 | 46 |
ECN2 | L anterior PFC | −44 | 45 | 0 |
ECN3 | R anterior PFC | 44 | 45 | 0 |
ECN4 | L superior parietal | −50 | −51 | 45 |
ECN5 | R superior parietal | 50 | −51 | 45 |
SAL1 4 | Dorsal ACC | 0 | −21 | 36 |
SAL2 | L anterior PFC | −35 | 45 | 30 |
SAL3 | R anterior PFC | 32 | 45 | 30 |
SAL4 | L insula | −41 | 3 | 6 |
SAL5 | R insula | 41 | 3 | 6 |
SAL6 | L lateral parietal | −62 | −45 | 30 |
SAL7 | R lateral parietal | 62 | −45 | 30 |
SDS Subtype | Dm 1 | Dm | Da | Da | Dc | Dc | Ds | Ds |
---|---|---|---|---|---|---|---|---|
Band | α | β | α | β | α | β | α | β |
D > ND 2 | 0 | 0 | 0 | 2 | 2 | 1 | 2 | 0 |
D < ND | 20 | 4 | 14 | 6 | 0 | 0 | 6 | 2 |
Best p from eLORETA | 0.048 | 0.186 | 0.369 | 0.130 | 0.245 | 0.228 | 0.059 | 0.222 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharpley, C.F.; Evans, I.D.; Bitsika, V.; Vessey, K.A.; Odierna, G.L.; Jesulola, E.; Agnew, L.L. An Exploratory Comparison of Alpha and Beta Network Connectivity Across Four Depression Subtypes. J. Clin. Med. 2025, 14, 5295. https://doi.org/10.3390/jcm14155295
Sharpley CF, Evans ID, Bitsika V, Vessey KA, Odierna GL, Jesulola E, Agnew LL. An Exploratory Comparison of Alpha and Beta Network Connectivity Across Four Depression Subtypes. Journal of Clinical Medicine. 2025; 14(15):5295. https://doi.org/10.3390/jcm14155295
Chicago/Turabian StyleSharpley, Christopher F., Ian D. Evans, Vicki Bitsika, Kirstan A. Vessey, G. Lorenzo Odierna, Emmanuel Jesulola, and Linda L. Agnew. 2025. "An Exploratory Comparison of Alpha and Beta Network Connectivity Across Four Depression Subtypes" Journal of Clinical Medicine 14, no. 15: 5295. https://doi.org/10.3390/jcm14155295
APA StyleSharpley, C. F., Evans, I. D., Bitsika, V., Vessey, K. A., Odierna, G. L., Jesulola, E., & Agnew, L. L. (2025). An Exploratory Comparison of Alpha and Beta Network Connectivity Across Four Depression Subtypes. Journal of Clinical Medicine, 14(15), 5295. https://doi.org/10.3390/jcm14155295