High Levels of Galectin-3 and Uric Acid Are Independent Predictors of Renal Impairment in Patients with Stable Coronary Artery Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Ethics Statement
2.3. Study Design
2.4. Biomarker and Analytical Studies
2.5. Statistical Analysis
3. Results
3.1. Patients
3.2. eGFR Percentage Decline During Follow-Up
3.3. Absolute Difference in the Whole Population Between eGFR at Baseline and at the End of Follow-Up
3.4. Individual Falls of 20% or More in the Glomerular Filtration Rate During Follow-Up
3.5. Absolute Differences Between eGFR at Baseline and the End of Follow-Up According to the Presence of Significant CKD
3.6. Influence of Baseline Variables on the Appearance of Cardiovascular Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACEI | Angiotensin-Converting Enzyme Inhibitors |
AUC | Area Under the Curve |
BACS and BAMI | Biomarkers in Acute Coronary Syndrome and Biomarkers in Acute Myocardial Infarction |
BMI | Body Mass Index |
CABG | Coronary Artery Bypass Grafting |
CI | Confidence Interval |
CKD-EPI | Chronic Kidney Disease Epidemiology Collaboration equation |
CKD | Chronic Kidney Disease |
eGFR | Estimated Glomerular Filtration Rate |
FGF-23 | Fibroblast Growth Factor-23 |
HDL | High-Density Lipoprotein |
Hs-CRP | High-Sensitivity C Reactive Protein |
Hs-Tn I | High-Sensitivity Troponin I |
LDL | Low-Density Lipoprotein |
No-HDL | No-High-Density Lipoprotein |
NSTEACS | Non-ST Elevation Acute Coronary Syndrome |
NT-ProBNP | N-Terminal Pro-Brain Natriuretic Peptide |
OR | Odds Ratio |
PTH | Parathyroid Hormone |
R2 | Determination Coefficient |
SCAD | Stable Coronary Artery Disease |
STEMI | ST-Elevation Myocardial Infarction |
References
- Lv, J.-C.; Zhang, L.-X. Prevalence and Disease Burden of Chronic Kidney Disease. In Advances in Experimental Medicine and Biology; Springer: Singapore, 2019; Volume 1165, pp. 3–15. ISBN 9789811388712. [Google Scholar]
- Sarnak, M.J.; Levey, A.S.; Schoolwerth, A.C.; Coresh, J.; Culleton, B.; Hamm, L.L.; McCullough, P.A.; Kasiske, B.L.; Kelepouris, E.; Klag, M.J.; et al. Kidney disease as a risk factor for development of cardiovascular disease: A statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 2003, 108, 2154–2169. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, M.; Wiebe, N.; Culleton, B.; House, A.; Rabbat, C.; Fok, M.; McAlister, F.; Garg, A.X. Chronic kidney disease and mortality risk: A systematic review. J. Am. Soc. Nephrol. 2006, 17, 2034–2047. [Google Scholar] [CrossRef] [PubMed]
- Couser, W.G.; Remuzzi, G.; Mendis, S.; Tonelli, M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011, 80, 1258–1270. [Google Scholar] [CrossRef] [PubMed]
- Düsing, P.; Zietzer, A.; Goody, P.R.; Hosen, M.R.; Kurts, C.; Nickenig, G.; Jansen, F. Vascular pathologies in chronic kidney disease: Pathophysiological mechanisms and novel therapeutic approaches. J. Mol. Med. 2021, 99, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Desmedt, V.; Desmedt, S.; Delanghe, J.R.; Speeckaert, R.; Speeckaert, M.M. Galectin-3 in Renal Pathology: More Than Just an Innocent Bystander? Am. J. Nephrol. 2016, 43, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Henderson, N.C.; Mackinnon, A.C.; Farnworth, S.L.; Kipari, T.; Haslett, C.; Iredale, J.P.; Liu, F.-T.; Hughes, J.; Sethi, T. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am. J. Pathol. 2008, 172, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.L.; Katz, R.; Bellovich, K.A.; Bhat, Z.Y.; Brosius, F.C.; de Boer, I.H.; Gadegbeku, C.A.; Gipson, D.S.; Hawkins, J.J.; Himmelfarb, J.; et al. Soluble ST2 and Galectin-3 and Progression of CKD. Kidney Int. Rep. 2019, 4, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.C.B.; Cheung, C.-L.; Lee, A.C.H.; Lam, J.K.Y.; Wong, Y.; Shiu, S.W.M. Galectin-3 is independently associated with progression of nephropathy in type 2 diabetes mellitus. Diabetologia 2018, 61, 1212–1219. [Google Scholar] [CrossRef] [PubMed]
- O’Seaghdha, C.M.; Hwang, S.J.; Ho, J.E.; Vasan, R.S.; Levy, D.; Fox, C.S. Elevated galectin-3 precedes the development of CKD. J. Am. Soc. Nephrol. 2013, 24, 1470–1477. [Google Scholar] [CrossRef]
- Rebholz, C.M.; Selvin, E.; Liang, M.; Ballantyne, C.M.; Hoogeveen, R.C.; Aguilar, D.; McEvoy, J.W.; Grams, M.E.; Coresh, J. Plasma galectin-3 levels are associated with the risk of incident chronic kidney disease. Kidney Int. 2018, 93, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Sharaf El Din, U.A.A.; Salem, M.M.; Abdulazim, D.O. Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: A review. J. Adv. Res. 2017, 8, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Borghi, C.; Rosei, E.A.; Bardin, T.; Dawson, J.; Dominiczak, A.; Kielstein, J.T.; Manolis, A.J.; Perez-Ruiz, F.; Mancia, G. Serum uric acid and the risk of cardiovascular and renal disease. J. Hypertens. 2015, 33, 1729–1741. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-E.; Ahn, S.-Y.; Ko, G.-J.; Kwon, Y.-J.; Kim, J.-E. Impact of Uric Acid Levels on Mortality and Cardiovascular Outcomes in Relation to Kidney Function. JCM 2024, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.-H.; Park, S.-K.; Lee, I.-K.; Johnson, R.J. Uric acid-induced C-reactive protein expression: Implication on cell proliferation and nitric oxide production of human vascular cells. J. Am. Soc. Nephrol. 2005, 16, 3553–3562. [Google Scholar] [CrossRef] [PubMed]
- Mazzali, M.; Hughes, J.; Kim, Y.G.; Jefferson, J.A.; Kang, D.H.; Gordon, K.L.; Lan, H.Y.; Kivlighn, S.; Johnson, R.J. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 2001, 38, 1101–1106. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.-A.; Sánchez-Lozada, L.G.; Johnson, R.J.; Kang, D.-H. Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J. Hypertens. 2010, 28, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
- Sturm, G.; Kollerits, B.; Neyer, U.; Ritz, E.; Kronenberg, F. Uric acid as a risk factor for progression of non-diabetic chronic kidney disease? The Mild to Moderate Kidney Disease (MMKD) Study. Exp. Gerontol. 2008, 43, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Madero, M.; Sarnak, M.J.; Wang, X.; Greene, T.; Beck, G.J.; Kusek, J.W.; Collins, A.J.; Levey, A.S.; Menon, V. Uric Acid and Long-term Outcomes in CKD. Am. J. Kidney Dis. 2009, 53, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Nacak, H.; van Diepen, M.; Qureshi, A.R.; Carrero, J.J.; Stijnen, T.; Dekker, F.W.; Evans, M. Uric acid is not associated with decline in renal function or time to renal replacement therapy initiation in a referred cohort of patients with Stage III, IV and V chronic kidney disease. Nephrol. Dial. Transplant. 2015, 30, 2039–2045. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-C.; Hung, C.-C.; Chen, S.-C.; Yeh, S.-M.; Lin, M.-Y.; Chiu, Y.-W.; Kuo, M.-C.; Chang, J.-M.; Hwang, S.-J.; Chen, H.-C. Association of hyperuricemia with renal outcomes, cardiovascular disease, and mortality. Clin. J. Am. Soc. Nephrol. 2012, 7, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Nacak, H.; van Diepen, M.; de Goeij, M.C.M.; Rotmans, J.I.; Dekker, F.W.; PREPARE-2 study group. Uric acid: Association with rate of renal function decline and time until start of dialysis in incident pre-dialysis patients. BMC Nephrol. 2014, 15, 91. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.X.; Asakawa, S.; Toyoki, D.; Nemoto, Y.; Morimoto, C.; Tamura, Y.; Ota, T.; Shibata, S.; Fujigaki, Y.; Shen, Z.Y.; et al. Predictors and the Subsequent Risk of End-Stage Renal Disease—Usefulness of 30% Decline in Estimated GFR over 2 Years. PLoS ONE 2015, 10, e0132927. [Google Scholar] [CrossRef] [PubMed]
- Uchida, S.; Chang, W.X.; Ota, T.; Tamura, Y.; Shiraishi, T.; Kumagai, T.; Shibata, S.; Fujigaki, Y.; Hosoyamada, M.; Kaneko, K.; et al. Targeting Uric Acid and the Inhibition of Progression to End-Stage Renal Disease—A Propensity Score Analysis. PLoS ONE 2015, 10, e0145506. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, T.; Ota, T.; Tamura, Y.; Chang, W.X.; Shibata, S.; Uchida, S. Time to target uric acid to retard CKD progression. Clin. Exp. Nephrol. 2017, 21, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-F.; Luo, S.-F.; See, L.-C.; Ko, Y.-S.; Chen, Y.-M.; Hwang, J.-S.; Chou, I.-J.; Chang, H.-C.; Chen, H.-W.; Yu, K.-H. Hyperuricaemia and accelerated reduction in renal function. Scand. J. Rheumatol. 2011, 40, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, G.; Venanzi, S.; Verdura, C.; Saronio, P.; Esposito, A.; Timio, M. Association of uric acid with change in kidney function in healthy normotensive individuals. Am. J. Kidney Dis. 2010, 56, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.-J.; Chiang, C.-K.; Ho, L.-C.; Hsu, S.H.-J.; Hung, K.-Y.; Wu, K.-D.; Tsai, T.-J. Hyperuricemia associated with rapid renal function decline in elderly Taiwanese subjects. J. Formos. Med. Assoc. 2009, 108, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Chonchol, M.; Shlipak, M.G.; Katz, R.; Sarnak, M.J.; Newman, A.B.; Siscovick, D.S.; Kestenbaum, B.; Carney, J.K.; Fried, L.F. Relationship of uric acid with progression of kidney disease. Am. J. Kidney Dis. 2007, 50, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Dawson, J.; Jeemon, P.; Hetherington, L.; Judd, C.; Hastie, C.; Schulz, C.; Sloan, W.; Muir, S.; Jardine, A.; McInnes, G.; et al. Serum uric acid level, longitudinal blood pressure, renal function, and long-term mortality in treated hypertensive patients. Hypertension 2013, 62, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Iseki, K.; Oshiro, S.; Tozawa, M.; Iseki, C.; Ikemiya, Y.; Takishita, S. Significance of hyperuricemia on the early detection of renal failure in a cohort of screened subjects. Hypertens. Res. 2001, 24, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Ficociello, L.H.; Rosolowsky, E.T.; Niewczas, M.A.; Maselli, N.J.; Weinberg, J.M.; Aschengrau, A.; Eckfeldt, J.H.; Stanton, R.C.; Galecki, A.T.; Doria, A.; et al. High-normal serum uric acid increases risk of early progressive renal function loss in type 1 diabetes: Results of a 6-year follow-up. Diabetes Care 2010, 33, 1337–1343. [Google Scholar] [CrossRef]
- Altemtam, N.; Russell, J.; El Nahas, M. A study of the natural history of diabetic kidney disease (DKD). Nephrol. Dial. Transplant. 2012, 27, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Kendrick, J.; Cheung, A.K.; Kaufman, J.S.; Greene, T.; Roberts, W.L.; Smits, G.; Chonchol, M. Associations of plasma 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D concentrations with death and progression to maintenance dialysis in patients with advanced kidney disease. Am. J. Kidney Dis. 2012, 60, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Balaguer, J.; García-Foncillas, J.; Tuñón, J. Natriuretic peptides: Another tool for the management of cancer? Crit. Rev. Oncol. Hematol. 2024, 193, 104219. [Google Scholar] [CrossRef] [PubMed]
- Tuñón, J.; Blanco-Colio, L.; Cristóbal, C.; Tarín, N.; Higueras, J.; Huelmos, A.; Alonso, J.; Egido, J.; Asensio, D.; Lorenzo, Ó.; et al. Usefulness of a combination of monocyte chemoattractant protein-1, galectin-3, and N-terminal probrain natriuretic peptide to predict cardiovascular events in patients with coronary artery disease. Am. J. Cardiol. 2014, 113, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Multiple regression and correlation analysis. In Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Cohen, J., Ed.; Routledge: London, UK, 1988; pp. 410–413. [Google Scholar]
- Kim, A.J.; Ro, H.; Kim, H.; Chang, J.H.; Lee, H.H.; Chung, W.; Jung, J.Y. Soluble ST2 and Galectin-3 as Predictors of Chronic Kidney Disease Progression and Outcomes. Am. J. Nephrol. 2021, 52, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.; Kuo, P.L. The role of galectin-3 in the kidneys. Int. J. Mol. Sci. 2016, 17, 565. [Google Scholar] [CrossRef] [PubMed]
- Chade, A.R.; Lerman, A.; Lerman, L.O. Kidney in early atherosclerosis. Hypertension 2005, 45, 1042–1049. [Google Scholar] [CrossRef] [PubMed]
- Lau, E.S.; Liu, E.; Paniagua, S.M.; Sarma, A.A.; Zampierollo, G.; López, B.; Díez, J.; Wang, T.J.; Ho, J.E. Galectin-3 Inhibition with Modified Citrus Pectin in Hypertension. JACC Basic Transl. Sci. 2021, 6, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Ohno, I.; Hosoya, T.; Gomi, H.; Ichida, K.; Okabe, H.; Hikita, M. Serum uric acid and renal prognosis in patients with IgA nephropathy. Nephron 2001, 87, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.W.; Lin, S.Y.; Kuo, C.C.; Huang, C.C. Serum Uric Acid and Progression of Kidney Disease: A Longitudinal Analysis and Mini-Review. PLoS ONE 2017, 12, e0170393. [Google Scholar] [CrossRef] [PubMed]
- Waas, T.; Schulz, A.; Lotz, J.; Rossmann, H.; Pfeiffer, N.; Beutel, M.E.; Schmidtmann, I.; Münzel, T.; Wild, P.S.; Lackner, K.J. Distribution of estimated glomerular filtration rate and determinants of its age dependent loss in a German population-based study. Sci. Rep. 2021, 11, 10165. [Google Scholar] [CrossRef] [PubMed]
- Kuźma, Ł.; Kulikowska, A.; Kurasz, A.; Niwińska, M.M.; Zalewska-Adamiec, M.; Dobrzycki, S.; Bachórzewska-Gajewska, H. The effect of serum uric acid levels on the long-term prognosis of patients with non-ST-elevation myocardial infarction. Adv. Clin. Exp. Med. 2020, 29, 1255–1263. [Google Scholar] [CrossRef] [PubMed]
- Neri, L.; Rocca Rey, L.A.; Lentine, K.L.; Hinyard, L.J.; Pinsky, B.; Xiao, H.; Dukes, J.; Schnitzler, M.A. Joint association of hyperuricemia and reduced GFR on cardiovascular morbidity: A historical cohort study based on laboratory and claims data from a national insurance provider. Am. J. Kidney Dis. 2011, 58, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Niskanen, L.K.; Laaksonen, D.E.; Nyyssönen, K.; Alfthan, G.; Lakka, H.-M.; Lakka, T.A.; Salonen, J.T. Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men: A prospective cohort study. Arch. Intern. Med. 2004, 164, 1546–1551. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Song, Y.; Yan, Y.; Ding, Z. Elevated serum uric acid and risk of cardiovascular or all-cause mortality in people with suspected or definite coronary artery disease: A meta-analysis. Atherosclerosis 2016, 254, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Jansen, H.; Koenig, W.; Jaensch, A.; Mons, U.; Breitling, L.P.; Scharnagl, H.; Stojakovic, T.; Schunkert, H.; Brenner, H.; Rothenbacher, D. Prognostic Utility of Galectin-3 for Recurrent Cardiovascular Events During Long-term Follow-up in Patients with Stable Coronary Heart Disease: Results of the KAROLA Study. Clin. Chem. 2016, 62, 1372–1379. [Google Scholar] [CrossRef] [PubMed]
- Daniels, L.B.; Maisel, A.S. Natriuretic peptides. J. Am. Coll. Cardiol. 2007, 50, 2357–2368. [Google Scholar] [CrossRef] [PubMed]
- Bansal, N.; Zelnick, L.; Robinson-Cohen, C.; Hoofnagle, A.N.; Ix, J.H.; Lima, J.A.; Shoben, A.B.; Peralta, C.A.; Siscovick, D.S.; Kestenbaum, B.; et al. Serum Parathyroid Hormone and 25-Hydroxyvitamin D Concentrations and Risk of Incident Heart Failure: The Multi-Ethnic Study of Atherosclerosis. J. Am. Heart Assoc. 2014, 3, 6. [Google Scholar] [CrossRef] [PubMed]
- Wannamethee, S.G.; Welsh, P.; Papacosta, O.; Lennon, L.; Whincup, P.H.; Sattar, N. Elevated Parathyroid Hormone, But Not Vitamin D Deficiency, Is Associated with Increased Risk of Heart Failure in Older Men with and Without Cardiovascular Disease. Circ. Heart Fail. 2014, 7, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Schlüter, K.D.; Piper, H.M. Trophic effects of catecholamines and parathyroid hormone on adult ventricular cardiomyocytes. Am. J. Physiol. 1992, 263, H1739–H1746. [Google Scholar] [CrossRef] [PubMed]
- Aceña, A.; Pello, A.M.; Carda, R.; Lorenzo, O.; Gonzalez-Casaus, M.L.; Blanco-Colio, L.M.; Martín-Ventura, J.L.; Palfy, J.; Orejas, M.; Rábago, R.; et al. Parathormone levels are independently associated with the presence of left ventricular hypertrophy in patients with coronary artery disease. J. Nutr. Health Aging 2015, 20, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Meems, L.M.G.; Brouwers, F.P.; Joosten, M.M.; Lambers Heerspink, H.J.; de Zeeuw, D.; Bakker, S.J.L.; Gansevoort, R.T.; van Gilst, W.H.; van der Harst, P.; de Boer, R.A. Plasma calcidiol, calcitriol, and parathyroid hormone and risk of new onset heart failure in a population-based cohort study. ESC Heart Fail. 2016, 3, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Folsom, A.R.; Alonso, A.; Misialek, J.R.; Michos, E.D.; Selvin, E.; Eckfeldt, J.H.; Coresh, J.; Pankow, J.S.; Lutsey, P.L. Parathyroid hormone concentration and risk of cardiovascular diseases: The Atherosclerosis Risk in Communities (ARIC) Study. Am. Heart. J. 2014, 16, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Kamycheva, E.; Sundsfjord, J.; Jorde, R. Serum parathyroid hormone levels predict coronary heart disease: The Tromsø Study. Eur. J. Cardiovasc. Prev. Rehabil. 2004, 11, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Malluche, H.H.; Blomquist, G.; Monier-Faugere, M.-C.; Cantor, T.L.; Davenport, D.L. High Parathyroid Hormone Level and Osteoporosis Predict Progression of Coronary Artery Calcification in Patients on Dialysis. J. Am. Soc. Nephrol. 2015, 26, 2534–2544. [Google Scholar] [CrossRef] [PubMed]
- Pilz, S.; Tomaschitz, A.; Drechsler, C.; Ritz, E.; Boehm, B.O.; Grammer, T.B.; März, W. Parathyroid hormone level is associated with mortality and cardiovascular events in patients undergoing coronary angiography. Eur. Heart J. 2010, 31, 1591–1598. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Lu, C.; Wu, Q.; Zhang, J.; Zhao, H.; Cao, Y. Parathyroid hormone, cardiovascular and all-cause mortality: A meta-analysis. Clin. Chim. Acta 2016, 455, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.C.; Hayen, A.; Macaskill, P.; Pellegrini, F.; Craig, J.C.; Elder, G.J.; Strippoli, G.F.M. Serum Levels of Phosphorus, Parathyroid Hormone, and Calcium and Risks of Death and Cardiovascular Disease in Individuals with Chronic Kidney Disease. JAMA 2011, 305, 1119. [Google Scholar] [CrossRef] [PubMed]
Variable | Description |
---|---|
Age (y) | 63.1 ± 12.2 |
Gender (Male) | 411 (73.9%) |
Caucasian | 529 (95.1%) |
Body Mass Index (kg/m2) | 27.7 (25.4, 30.5) |
Smoker | 82 (14.7%) |
Hypertension | 362 (65.1%) |
Diabetes Mellitus | 126 (22.7%) |
Dyslipidemia | 315 (56.7%) |
Previous Stroke | 21 (3.8%) |
Peripheral Artery Disease | 15 (2.7%) |
Heart Failure | 60 (10.8%) |
Atrial Fibrillation | 35 (6.3%) |
Left Ventricular Ejection Fraction < 40% | 42 (7.6%) |
PREVIOUS ACUTE CORONARY SYNDROME STEMI/NSTEACS | 326 (58.6%)/230 (41.4%) |
Complete Revascularization: | 417 (75.0%) |
Number of vessels diseased | |
0 | 27 (4.9%) |
1 | 327 (59.3%) |
2 | 142 (25.8%) |
3 | 55 (10.0%) |
Revascularization method (%) | |
0 No Revascularization | 52 (9.4%) |
1 Coated Stent | 311 (55.9%) |
2 Conventional Stent | 153 (27.5%) |
3 Simple angioplasty | 21 (3.8%) |
4 CABG | 19 (3.4%) |
TREATMENT | |
Aspirin | 525 (94.4%) |
P2Y12 Antagonist | 468 (84.2%) |
Anticoagulant | 29 (5.2%) |
Statin | 535 (96.2%) |
Ezetimibe | 24 (4.3%) |
Fibrates | 21 (3.8%) |
Insulin | 33 (5.9%) |
Oral Antidiabetics | 88 (15.8%) |
ACEI | 416 (74.8%) |
Angiotensin Receptor Blockers | 93 (16.7%) |
Aldosterone Antagonist | 52 (9.4%) |
Betablocker | 433 (77.9%) |
Nitrates | 45 (8.1%) |
Diltiazem | 11 (2.0%) |
Verapamil | 0 (0.0%) |
Dihydropyridines | 65 (11.7%) |
Diuretic | 130 (23.4%) |
Proton Pump Inhibitors | 436 (78.4%) |
Digoxin | 1 (0.2%) |
Amiodarone | 6 (1.1%) |
ANALYTICS | |
Glucose (mmol/L) | 5.91 ± 1.69 |
Total Cholesterol (mmol/L) | 3.61 ± 0.87 |
LDL Cholesterol (mmol/L) | 1.99 ± 0.64 |
HDL Cholesterol (mmol/L) | 1.07 ± 0.30 |
Non-HDL Cholesterol (mmol/L) | 2.54 ± 0.75 |
Triglycerides (mmol/L) | 1.20 ± 0.63 |
eGFR (mL/min/1.73 m2) | 86.77 (72.27, 97.85) |
Uric Acid (µmol/L) | 341.0 ± 91.0 |
Hs-Tn I (ng/L) | 4.0 (0.0, 11.0) |
Hs-CRP (mg/L) | 0.620 (0.080, 2.277) |
NT-ProBNP (pmol/L) | 23.6 (11.8, 49.3) |
Galectin-3 (pmol/L) | 337.6 ± 129.3 |
Phosphorus (mmol/L) | 1.03 ± 0.18 |
Calcidiol (nmol/L) | 51.1 ± 22.1 |
FGF23 (ng/L) | 78.70 (60.50, 99.22) |
Klotho (µg/L) | 561.6 (465.8, 681.8) |
PTH (pmol/L) | 6.31 (4.88–8.05) |
Variable | Coef. | (95% CI) | p | R2 |
---|---|---|---|---|
Age (y) | 0.181 | (0.041, 0.321) | 0.011 | 0.126 |
BMI (kg/m2) | 0.000 | (−0.000, 0.000) | 0.621 | |
Caucasian | −3.135 | (−8.763, 2.492) | 0.274 | |
Gender (Male) | −3.072 | (−5.951, −0.193) | 0.037 | |
Hypertension | 4.023 | (1.335, 6.711) | 0.003 | |
Diabetes Mellitus | 0.426 | (−2.797, 3.649) | 0.795 | |
Calcidiol (nmol/L) | −0.005 | (−0.009, −0.002) | 0.005 | |
Uric Acid (µmol/L) | 0.0117 | (0.0031, 0.0200) | 0.008 | |
eGFR (mL/min/1.73) | 0.118 | (0.030, 0.206) | 0.009 | |
NT-ProBNP (pmol/L) | 0.017 | (0.000, 0.025) | 0.027 | |
Anticoagulant | −6.350 | (−11.69, −1.005) | 0.020 | |
Insulin | 5.967 | (0.396, 11.54) | 0.036 | |
Galectin-3 (nmol/L) | 0.0153 | (0.00088, 0.0298) | 0.037 |
Variable | Coefficient | (95% CI) | p | R2 |
---|---|---|---|---|
Age (y) | 0.162 | (0.056, 0.268) | 0.003 | 0.115 |
BMI (kg/m2) | 0.000 | (−0.000, 0.000) | 0.552 | |
Caucasian | −3.437 | (−7.701, 0.828) | 0.114 | |
Gender (Male) | −2.072 | (−4.253, 0.109) | 0.063 | |
Hypertension | 3.420 | (1.389, 5.451) | 0.001 | |
Diabetes Mellitus | 0.532 | (−1.908, 2.973) | 0.668 | |
eGFR (mL/min/1.73) | 0.161 | (0.095, 0.227) | <0.001 | |
Uric Acid (µmol/L) | 0.009 | (0.003, 0.017) | 0.004 | |
Calcidiol (nmol/L) | −0.003 | (−0.005, −0.001) | 0.020 | |
Insulin | 4.598 | (0.388, 8.809) | 0.032 | |
Galectin-3 (nmol/L) | 0.0121 | (0.0011, 0.0230) | 0.031 | |
Anticoagulant | −4.182 | (−8.217, −0.147) | 0.042 |
Variable | OR | (95% CI) | p | AUC |
---|---|---|---|---|
Age (y) | 1.021 | (0.996, 1.047) | 0.099 | 0.71 |
BMI (kg/m2) | 1.000 | (0.999, 1.001) | 0.949 | |
Caucasian | 0.477 | (0.144, 1.575) | 0.224 | |
Gender (Male) | 0.699 | (0.393, 1.243) | 0.222 | |
Hypertension | 2.889 | (1.387, 6.017) | 0.005 | |
Diabetes Mellitus | 1.685 | (0.967, 2.937) | 0.065 | |
Uric Acid (µmol/L) | 1.237 | (1.046–1.463) | 0.013 | |
Nitrates | 2.964 | (1.362, 6.452) | 0.006 | |
Anticoagulant | 0.058 | (0.006, 0.553) | 0.013 | |
NT-ProBNP (pmol/L) | 1.000 | (1.000, 1.001) | 0.049 |
Group | Variable | Coef. | (95% CI) | p | R2 |
---|---|---|---|---|---|
eGFR ≥ 60 | Age (y) | 0.182 | (0.068, 0.296) | 0.002 | 0.100 |
BMI (kg/m2) | 0.000 | (−0.000, 0.000) | 0.538 | ||
Caucasian | −4.986 | (−9.408, −0.565) | 0.027 | ||
Gender (Male) | −3.444 | (−5.887, −1.001) | 0.006 | ||
Hypertension | 3.573 | (1.402, 5.744) | 0.001 | ||
Diabetes Mellitus | 1.152 | (−1.550, 3.853) | 0.403 | ||
eGFR (mL/min/1.73 m2) | 0.176 | (0.083, 0.269) | <0.001 | ||
Uric Acid (µmol/L) | 0.010 | (0.004, 0.017) | 0.001 | ||
Insulin | 5.283 | (0.018, 10.55) | 0.049 | ||
eGFR < 60 | Age (y) | 0.084 | (−0.260, 0.427) | 0.628 | 0.155 |
BMI (kg/m2) | −0.009 | (−0.524, 0.507) | 0.973 | ||
Caucasian | 8.625 | (−11.42, 28.67) | 0.393 | ||
Gender (Male) | 1.208 | (−3.577, 5.993) | 0.615 | ||
Hypertension | 4.601 | (−1.936, 11.14) | 0.164 | ||
Diabetes Mellitus | 1.465 | (−3.325, 6.254) | 0.543 | ||
Calcidiol (nmol/L) | −0.008 | (−0.015, −0.002) | 0.014 |
Predictor | HR (IC95%) | p | C-Stat |
---|---|---|---|
NT-ProBNP (pmol/L) | 1.173 (1.034, 1.338) | 0.014 | 0.77 |
Nitrates | 2.986 (1.774, 5.024) | 0.000 | |
Heart failure | 2.668 (1.559, 4.566) | 0.000 | |
ACEI | 0.589 (0.381, 0.909) | 0.017 | |
Proton Pump Inhibitors | 3.049 (1.602, 5.802) | 0.001 | |
BMI (kg/m2) | 1.083 (1.033, 1.135) | 0.001 | |
Age (y) | 1.030 (1.010, 1.051) | 0.004 | |
Statins | 0.370 (0.179, 0.763) | 0.007 | |
Dyslipidemia | 1.713 (1.067, 2.752) | 0.026 | |
PTH (pmol/L) | 1.944 (1.019, 3.707) | 0.043 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leal-Pérez, N.; Blanco-Colio, L.M.; Martín-Ventura, J.L.; Gutiérrez-Landaluce, C.; Mahíllo-Fernández, I.; González-Casaus, M.L.; Lorenzo, Ó.; Egido, J.; Tuñón, J. High Levels of Galectin-3 and Uric Acid Are Independent Predictors of Renal Impairment in Patients with Stable Coronary Artery Disease. J. Clin. Med. 2025, 14, 5264. https://doi.org/10.3390/jcm14155264
Leal-Pérez N, Blanco-Colio LM, Martín-Ventura JL, Gutiérrez-Landaluce C, Mahíllo-Fernández I, González-Casaus ML, Lorenzo Ó, Egido J, Tuñón J. High Levels of Galectin-3 and Uric Acid Are Independent Predictors of Renal Impairment in Patients with Stable Coronary Artery Disease. Journal of Clinical Medicine. 2025; 14(15):5264. https://doi.org/10.3390/jcm14155264
Chicago/Turabian StyleLeal-Pérez, Nayleth, Luis M. Blanco-Colio, José Luis Martín-Ventura, Carlos Gutiérrez-Landaluce, Ignacio Mahíllo-Fernández, María Luisa González-Casaus, Óscar Lorenzo, Jesús Egido, and José Tuñón. 2025. "High Levels of Galectin-3 and Uric Acid Are Independent Predictors of Renal Impairment in Patients with Stable Coronary Artery Disease" Journal of Clinical Medicine 14, no. 15: 5264. https://doi.org/10.3390/jcm14155264
APA StyleLeal-Pérez, N., Blanco-Colio, L. M., Martín-Ventura, J. L., Gutiérrez-Landaluce, C., Mahíllo-Fernández, I., González-Casaus, M. L., Lorenzo, Ó., Egido, J., & Tuñón, J. (2025). High Levels of Galectin-3 and Uric Acid Are Independent Predictors of Renal Impairment in Patients with Stable Coronary Artery Disease. Journal of Clinical Medicine, 14(15), 5264. https://doi.org/10.3390/jcm14155264