RDW-CV and Male Sex as Possible Response Factors to 9-Month Colorectal Cancer Palliative Chemotherapy
Abstract
1. Introduction
2. Materials and Methods
2.1. Bioethics Committee
2.2. Statistical Analysis
3. Results
3.1. Systemic Therapy
- FOLFOX4—oxaliplatin 85 mg/m2 on day 1.
- leucovorin 100 mg/m2/day on days 1 and 2.
- 5-FU bolus 400 mg/m2/day followed by continuous infusion, repeated every fourth night with dose of 600 mg/m2/day on days 1 and 2, respectively.
- Folfiri—Irinotecan 180 mg/m2 on day 1, leucovorin 100 mg/m 2/day on days 1 and 2, and 5-FU bolus 400 mg/m2/day followed by continuous infusion 600 mg/m2/day on days 1 and 2, repeated every 2 weeks.
- Capecitabine 850–1250 mg/m2 orally twice daily for 14 days repeat every 3 weeks; monotherapy of irinotecan 180 mg/m2 was repeated every 2 weeks.
- EGFR-CTH therapy was based on CTH (Folfox4 or Folfiri) and anti-EGFR (cetuksymab or panitumumab).
- The anti-EGFR standard dose was: panitumumab 6 mg/kg given parenteraly on day 1 and repeated every 2 weeks.
- Cetuximab 500 mg/m2 perenterally on day 1, and every fourth nights.
- VEGF-CTH therapy was based on CTH (Folfox4 or Folfir) and anti-angiogenic drug bevacizumab—the standard dose of bevacizumab was 5–10 mg/kg on day 1, and repeated every 2 weeks.
- Fluorouracil as monotherapy combined with folinic acid.
3.2. Survival Group
3.3. Nine-Month Response Analysis
3.4. Uni- and Multivariable Analysis for Systemic Therapy Response
3.5. Receiver Operator Curve (ROC) for 9-Month Chemotherapy Response Predictors
4. Discussion
Study Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC | Area Under the Curve |
BMI | Body Mass Index |
CRC | Colorectal cancer |
CRP | C-reactive Protein |
CI | Confidence interval |
COPD | Chronic Obstructive Pulmonary Disease |
CT | Computed tomography |
EGFR-CTH | Epidermal growth factor receptor-cystathionine gamma-lyase |
Hb | Hemoglobin |
Hct | Hematocrit |
MLR | Monocyte-to-lymphocyte ratio |
NLR | Neutrophil-to-lymphocyte ratio |
Plt | Platelets |
Q | Quartile |
RDW | Red cell distribution width |
ROC | Receiver Operator Curve |
VEGF | Vascular Endothelial Growth Factor |
WBC | White blood cell count |
References
- Baidoun, F.; Elshiwy, K.; Elkeraie, Y.; Merjaneh, Z.; Khoudari, G.; Sarmini, M.T.; Gad, M.; Al-Husseini, M.; Saad, A. Colorectal cancer epidemiology: Recent trends and impact on outcomes. Curr. Drug Targets 2021, 22, 998–1009. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.A.; Fedewa, S.; Siegel, R. Early colorectal cancer detection-Current and evolving challenges in evidence, guidelines, policy, and practices. Adv. Cancer Res. 2021, 151, 69–107. [Google Scholar] [CrossRef] [PubMed]
- Carbone, F.; Spinelli, A.; Ciardiello, D.; Realis Luc, M.; de Pascale, S.; Bertani, E.; Fazio, N.; Fumagalli Romario, U. Prognosis of early-onset versus late-onset sporadic colorectal cancer: Systematic review and meta-analysis. Eur. J. Cancer 2025, 215, 115172. [Google Scholar] [CrossRef] [PubMed]
- Sninsky, J.A.; Shore, B.M.; Lupu, G.V.; Crockett, S.D. Risk factors for colorectal polyps and cancer. Gastrointest. Endosc. Clin. N. Am. 2022, 32, 195–213. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz. Gastroenterol. 2019, 14, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Santucci, C.; Mignozzi, S.; Malvezzi, M.; Boffetta, P.; Collatuzzo, G.; Levi, F.; La Vecchia, C.; Negri, E. European cancer mortality predictions for the year 2024 with focus on colorectal cancer. Ann. Oncol. 2024, 35, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Santiago, Y.; Garay-Canales, C.A.; Nava-Castro, K.E.; Morales-Montor, J. Sexual dimorphism in colorectal cancer: Molecular mechanisms and treatment strategies. Biol. Sex Differ. 2024, 15, 48. [Google Scholar] [CrossRef] [PubMed]
- Parikh, P.M.; Bahl, A.; Sharma, G.; Pramanik, R.; Wadhwa, J.; Bajpai, P.; Jandyal, S.; Dubey, A.P.; Sarin, A.; Dadhich, S.C.; et al. Management of metastatic colorectal cancer (mCRC): Real-world recommendations. South Asian J. Cancer 2024, 13, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Iaciu, C.I.; Emilescu, R.A.; Cotan, H.T.; Nitipir, C. Systemic neutrophil-to-lymphocyte ratio as a prognostic biomarker for colon cancer. Chirurgia 2023, 118, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Clarke, S.J.; Burge, M.; Feeney, K.; Gibbs, P.; Jones, K.; Marx, G.; Molloy, M.P.; Price, T.; Reece, W.H.H.; Segelov, E.; et al. The prognostic role of inflammatory markers in patients with metastatic colorectal cancer treated with bevacizumab: A translational study [ASCENT]. PLoS ONE 2020, 15, e0229900. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, M.; Nozawa, H.; Sasaki, K.; Hongo, K.; Hiyoshi, M.; Tada, N.; Murono, K.; Nirei, T.; Kawai, K.; Sunami, E.; et al. Elevated neutrophil to lymphocyte ratio predicts poor prognosis in advanced colorectal cancer patients receiving oxaliplatin-based chemotherapy. Oncology 2012, 82, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Karin, M.; Sun, B. Targeting cancer-promoting inflammation-have anti-inflammatory therapies come of age? Nat. Rev. Clin. Oncol. 2021, 18, 261–279. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Li, T.; Niu, M.; Mei, Q.; Zhao, B.; Chu, Q.; Dai, Z.; Wu, K. Exploiting innate immunity for cancer immunotherapy. Mol. Cancer 2023, 22, 187. [Google Scholar] [CrossRef] [PubMed]
- Pavese, I.; Satta, F.; Todi, F.; Di Palma, M.; Piergrossi, P.; Migliore, A.; Piselli, P.; Borghesi, R.; Mancino, G.; Brunetti, E.; et al. High serum levels of TNF-α and IL-6 predict the clinical outcome of treatment with human recombinant erythropoietin in anaemic cancer patients. Ann. Oncol. 2010, 21, 1523–1528. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Kawada, K.; Obama, K. Inflammation-related biomarkers for the prediction of prognosis in colorectal cancer patients. Int. J. Mol. Sci. 2021, 22, 8002. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xin, S.; Xu, B. Value research of NLR, PLR, and RDW in prognostic assessment of patients with colorectal cancer. J. Healthc. Eng. 2022, 2022, 7971415. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Huang, X.; Xue, M.; Zhong, Z.; Wang, R.; Zhang, W.; Wang, L.; Qiao, Y.; Ling, F.; Zhang, Q.; et al. Prognostic significance of increased preoperative red cell distribution width (RDW) and changes in RDW for colorectal cancer. Cancer Med. 2023, 12, 13361–13373. [Google Scholar] [CrossRef] [PubMed]
- Sobieraj, M.; Urbanowicz, T.; Olasińska-Wiśniewska, A.; Gładki, M.; Michalak, M.; Filipiak, K.J.; Węclewska, A.; Bartkowska-Śniatkowska, A.; Tykarski, A.; Bobkowski, W.; et al. Anisocytosis as a possible predictor of low cardiac output syndrome in children undergoing mitral valve surgery. Adv. Med. Sci. 2024, 69, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, Y.Y.; Qin, Y.Y.; Lin, F.Q. The combined detection of hematological indicators is used for the differential diagnosis of colorectal cancer and benign-colorectal lesions. Cancer Biomark. 2024, 39, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Koržinek, M.; Ćelap, I.; Fabijanec, M.; Žanić, T.; Ljubičić, N.; Baršić, N.; Verbanac, D.; Barišić, K.; Rajković, M.G. Complete blood count parameters and inflammation-related biomarkers in patients with colorectal carcinoma. Acta Pharm. 2025, 74, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Li, Z.W.; Liu, F.; Liu, X.R.; Wang, C.Y. Predictive value of red blood cell distribution width and hematocrit for short-term outcomes and prognosis in colorectal cancer patients undergoing radical surgery. World J. Gastroenterol. 2024, 30, 1714–1726. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Shen, X.; Hua, Q.; Yang, L.; Zhou, R.; Zhou, C.; Xu, P. Red cell distribution width-a potential prognostic indicator for colorectal cancer patients after radical resection in China. J. Gastrointest. Oncol. 2023, 14, 1746–1758. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.L.; Zhou, X.; Xiao, D.C. Is red blood cell distribution width a prognostic factor for colorectal cancer? A meta-analysis. Front. Surg. 2022, 9, 945126. [Google Scholar] [CrossRef] [PubMed]
- Available online: www.nccn.org/professionals/physician_gls/pdf/colon.pdf (accessed on 24 November 1997).
- Hamers, P.A.H.; Vink, G.R.; Elferink, M.A.G.; Moons, L.M.G.; Punt, C.J.A.; May, A.M.; Koopman, M. Impact of colorectal cancer screening on survival after metachronous metastasis. Eur. J. Cancer 2024, 196, 113429. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Lin, H.; Huang, Y.; Wang, X.; Lin, H.; Xu, M.; Wu, J.; Wu, Y.; Shen, H.; Zhang, Q.; et al. BAP1-mediated MAFF deubiquitylation regulates tumor growth and is associated with adverse outcomes in colorectal cancer. Eur. J. Cancer 2024, 210, 114278. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.; Raeisi, M.; Chibaudel, B.; Shi, Q.; Yoshino, T.; Zalcberg, J.R.; Adams, R.; Cremolini, C.; Van Cutsem, E.; Heinemann, V.; et al. Prognostic value of liver metastases in colorectal cancer treated by systemic therapy: An ARCAD pooled analysis. Eur. J. Cancer 2024, 207, 114160. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Mullins, C.S.; Schafmayer, C.; Zeißig, S.; Linnebacher, M. A global assessment of recent trends in gastrointestinal cancer and lifestyle-associated risk factors. Cancer Commun. 2021, 41, 1137–1151. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tu, Y.X.; Chen, L.; Zhang, Y.; Pan, X.L.; Yang, S.Q.; Zhang, S.J.; Li, S.H.; Yu, K.C.; Song, S.; et al. Male-biased gut microbiome and metabolites aggravate colorectal cancer development. Adv. Sci. 2023, 10, e2206238. [Google Scholar] [CrossRef] [PubMed]
- Wele, P.; Wu, X.; Shi, H. Sex-dependent differences in colorectal cancer: With a focus on obesity. Cells 2022, 11, 3688. [Google Scholar] [CrossRef] [PubMed]
- Baraibar, I.; Ros, J.; Saoudi, N.; Salvà, F.; García, A.; Castells, M.R.; Tabernero, J.; Élez, E. Sex and gender perspectives in colorectal cancer. ESMO Open 2023, 8, 101204. [Google Scholar] [CrossRef] [PubMed]
- Hirano, H.; Kataoka, K.; Yamaguchi, T.; Wagner, A.D.; Shimada, Y.; Inomata, M.; Hamaguchi, T.; Takii, Y.; Mizusawa, J.; Sano, Y.; et al. Sex differences in toxicities and survival outcomes among Japanese patients with Stage III colorectal cancer receiving adjuvant fluoropyrimidine monotherapy: A pooled analysis of 4 randomized controlled trials (JCOG2310A). Eur. J. Cancer 2025, 214, 115139. [Google Scholar] [CrossRef] [PubMed]
- Afify, A.Y.; Ashry, M.H.; Hassan, H. Sex differences in survival outcomes of early-onset colorectal cancer. Sci. Rep. 2024, 14, 22041. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Pan, S.; Qi, Y.; Li, X.; Wang, J. The clinical application value of RDW, CA153, and MPV in breast cancer. Clin. Lab. 2021, 67, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Nocini, R.; Sanchis-Gomar, F.; Lippi, G.; Mattiuzzi, C. Red blood cell distribution width (RDW) is a significant predictor of survival in laryngeal cancer patients: Systematic literature review and meta-analysis. J. Med. Biochem. 2023, 42, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Ananthaseshan, S.; Bojakowski, K.; Sacharczuk, M.; Poznanski, P.; Skiba, D.S.; Prahl Wittberg, L.; McKenzie, J.; Szkulmowska, A.; Berg, N.; Andziak, P.; et al. Red blood cell distribution width is associated with increased interactions of blood cells with vascular wall. Sci. Rep. 2022, 12, 13676. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Martín, C.A.; Chong-Aviña, P.A.; Godinez-Breacher, V.; Aportela-Vázquez, V.A.; Bueno-Hernández, G.; Gante-García, M.F.; Pimentel-Luna, K.Y.; Sánchez-Abrego, M. Malnutrition: Muscle wasting, inflammation, RDW, and their relation with adverse outcomes. Cir. Cir. 2024, 92, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Shahgoli, V.K.; Noorolyai, S.; Ahmadpour Youshanlui, M.; Saeidi, H.; Nasiri, H.; Mansoori, B.; Holmskov, U.; Baradaran, B. Inflammatory bowel disease, colitis, and cancer: Unmasking the chronic inflammation link. Int. J. Color. Dis. 2024, 39, 173–188. [Google Scholar] [CrossRef] [PubMed]
- Acha-Sagredo, A.; Andrei, P.; Clayton, K.; Taggart, E.; Antoniotti, C.; Woodman, C.A.; Afrache, H.; Fourny, C.; Armero, M.; Moinudeen, H.K.; et al. A constitutive interferon-high immunophenotype defines response to immunotherapy in colorectal cancer. Cancer Cell 2025, 43, 292–307.e7. [Google Scholar] [CrossRef] [PubMed]
- Grellier, N.; Severino, A.; Archilei, S.; Kim, J.; Gasbarrini, A.; Cammarota, G.; Porcari, S.; Benech, N. Gut microbiota in inflammation and colorectal cancer: A potential Toolbox for Clinicians. Best Pract. Res. Clin. Gastroenterol. 2024, 72, 101942–101951. [Google Scholar] [CrossRef] [PubMed]
- Burz, C.; Bojan, A.; Balacescu, L.; Pop, V.V.; Silaghi, C.; Lupan, I.; Aldea, C.; Sur, D.; Samasca, G.; Cainap, C.; et al. Interleukin 8 as predictive factor for response to chemotherapy in colorectal cancer patients. Acta Clin. Belg. 2021, 76, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Fancellu, A.; Zinellu, A.; Mangoni, A.A.; Popova, A.; Galotti, F.; Feo, C.F.; Attene, F.; Cossu, A.; Palmieri, G.; Paliogiannis, P. Red Blood Cell Distribution Width (RDW) Correlates to the Anatomical Location of Colorectal Cancer. Implications for Clinical Use. J. Gastrointest. Cancer 2022, 53, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.C.; Lin, Y.M.; Liu, C.C.; Wu, K.L.; Lee, K.C. High Red Cell Distribution Width Is Associated with Worse Prognosis in Early Colorectal Cancer after Curative Resection: A Propensity-Matched Analysis. Cancers 2022, 14, 945. [Google Scholar] [CrossRef] [PubMed]
- Alsalman, A.; Al-Mterin, M.A.; Abu-Dayeh, A.; Alloush, F.; Murshed, K.; Elkord, E. Associations of Complete Blood Count Parameters with Disease-Free Survival in Right- and Left-Sided Colorectal Cancer Patients. J. Pers. Med. 2022, 12, 816–829. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, K.; Bi, M.; Jiao, X.; Zhang, D.; Dong, Q. Circulating microRNA expressions in colorectal cancer as predictors of response to chemotherapy. Anticancer Drugs 2014, 25, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Mhaidat, N.M.; Alzoubi, K.H.; Almomani, N.; Khabour, O.F. Expression of glucose regulated protein 78 (GRP78) determines colorectal cancer response to chemotherapy. Cancer Biomark. 2015, 15, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, P.; Zhou, X.C.; Bao, G.Q.; Lyu, Z.M.; Liu, X.N.; Wan, S.G.; He, X.L.; Huang, Q.C. Genetic variations in the HIF1A gene modulate response to adjuvant chemotherapy after surgery in patients with colorectal cancer. Asian Pac. J. Cancer Prev. 2014, 15, 4637–4642. [Google Scholar] [CrossRef] [PubMed]
Parameters | Whole Group n = 67 | Female Group n1 = 28 | Male Group n2 = 39 | p n1 vs. n2 |
---|---|---|---|---|
Demographical: | ||||
Age (years) (median (Q1–Q3) | 70 (64–76) | 72 (63–75) | 69 (65–76) | 0.770 |
BMI (kg/m2) (median (Q1–Q3) | 25.0 (22.3–27.8) | 23.2 (21.2–28.1) | 26.6 (23.9–27.7) | 0.036 |
Co-morbidities: | ||||
Arterial hypertension (n (%)) | 42 (63) | 18 (64) | 24 (62) | 0.826 |
Diabetes mellitus (n (%)) | 14 (21) | 4 (14) | 10 (26) | 0.364 |
COPD (n (%)) | 2 (3) | 0 (0) | 2 (5) | 0.506 |
Smoking (n (%)) | 5 (8) | 2 (7) | 3 (8) | 0.944 |
Family oncological history (n (%)) | 13 (19) | 5 (18) | 8 (21) | 0.887 |
Tumor staging: | ||||
4th grade (n (%)) | 67 (100) | 28 (100) | 39 (100) | 1.000 |
Right-sided | 20 (30) | 10 (38) | 10 (26) | 0.425 |
Left-sided | 47 (70) | 18 (64) | 29 (74) | 0.425 |
Metastases (n (%)) | ||||
Multiple | 27 (40) | 10 (36) | 17 (44) | 0.899 |
Lungs | 26 (39) | 12 (43) | 14 (36) | 0.290 |
Liver | 55 (82) | 19 (68) | 36 (92) | 0.269 |
Peritoneum | 5 (8) | 2 (7) | 3 (8) | 0.936 |
Nodes | 13 (19) | 4 (14) | 9 (23) | 0.560 |
Laboratory results—prior therapy | ||||
WBC (mmol/L) (median (Q1–Q3) | 7.1 (5.8–8.8) | 6.3 (5.3–7.5) | 7.7 (6.7–9.0) | 0.005 |
Hb (mmol/L) (median (Q1–Q3) | 12.9 (11.8–13.8) | 12.3 (11.5–12.9) | 13.7 (12.1–14.5) | 0.001 |
Hct (%) (median (Q1–Q3) | 39 (37–42) | 37 (36–39) | 41 (38–44) | <0.001 |
NLR (median (Q1–Q3) | 3.1 (2.3–4.3) | 3.0 (2.2–4.0) | 3.2 (2.3–4.3) | 0.636 |
RDW-CV (%) (median (Q1–Q3) | 14.3 (13.3–15.7) | 14.6 (13.7–15.7) | 14.1 (13.3–15.5) | 0.312 |
Plt (10 × 9/L) (median (Q1–Q3) | 274 (216–316) | 266 (212–316) | 274 (218–316) | 0.884 |
Creatinine (mg/dL) (median (Q1–Q3) | 0.84 (0.71–0.96) | 0.71 (0.62–0.83) | 0.93 (0.81–1.07) | <0.001 |
Whole Group N = 67 | Female Group n1 = 28 | Male Group n1 = 39 | p n1 vs. n2 | |
---|---|---|---|---|
Prior to surgical intervention (n (%)): | 53 (79) | 22 (79) | 31 (80) | 0.935 |
Resection (n (%)) | 35 (52) | 14 (50) | 21 (54) | 0.763 |
Hemicolectomy (n (%)) | 18 (27) | 8 (29) | 10 (26) | 0.981 |
Therapy: | ||||
EGFR-CTH (n (%)) | 33 (49) | 15 (54) | 18 (46) | 0.557 |
CTH (n (%)) | 30 (45) | 12 (43) | 18 (46) | 0.796 |
VEGF (n (%)) | 4 (6) | 1 (4) | 3 (8) | 0.635 |
Applied maximal doses of therapy: | ||||
1. EGFR-CTH: | ||||
Initial (% of maximal dose) | 91 (87–96) | 90 (85–96) | 92 (90–97) | 0.876 |
After 9 months | 88 (76–99) | 90 (82–99) | 88 (77–99) | 0.737 |
2. CTH: | ||||
Initial | 92 (88–98) | 91 (87–97) | 92 (86–98) | 0.913 |
After 9 months | 89 (80–98) | 88 (78–99) | 89 (81–96) | 0.941 |
3. VEGF: | ||||
Initial | 91 (89–98) | 92 (87–99) | 90 (83–98) | 0.746 |
After 9 months | 88 (79–99) | 90 (78–99) | 87 (81–99) | 0.589 |
Whole Group N = 53 | Female Group n1 = 22 | Male Group n2 = 31 | p n1 vs. n2 | |
---|---|---|---|---|
Therapy response (n (%)) | 30 (57) | 9 (41) | 21 (68) | 0.056 |
Complete response (n (%)) | 4 (8) | 3 (14) | 1 (3) | 0.167 |
Partial response (n (%)) | 26 (49) | 6 (27) | 20 (65) | 0.008 |
Stable disease (n (%)) | 16 (30) | 7 (32) | 9 (29) | 0.838 |
Disease progression (n (%)) | 7 (13) | 6 (27) | 1 (3) | 0.010 |
Parameters | No-Response n = 23 | Response n = 30 | p |
---|---|---|---|
Demographical: | |||
Age (years) (median (Q1–Q3)) | 73 (64–78) | 68 (62–73) | 0.178 |
Sex (male (%)) | 10 (44) | 21 (70) | 0.056 |
BMI (kg/m2) (median (Q1–Q3)) | 24.7 (22.7–28.3) | 25.1 (22.8–27.6) | 0.650 |
Co-morbidities: | |||
Arterial hypertension (n (%)) | 16 (70) | 17 (57) | 0.347 |
Diabetes mellitus (n (%)) | 5 (22) | 7 (23) | 0.902 |
Tumor staging: | |||
4th grade (n (%)) | 23 (100) | 30 (100) | 1.000 |
Left-sided | 16 (70) | 24 (80) | 0.522 |
Right-sided | 7 (30) | 6 (20) | 0.522 |
Metastases (n (%)) | |||
Multiple | 12 (52) | 15 (50) | 1.000 |
Lungs | 14 (61) | 12 (40) | 0.170 |
Liver | 20 (87) | 24 (80) | 0.715 |
Peritoneum | 3 (13) | 2 (7) | 0.642 |
Nodes | 6 (26) | 7 (23) | 0.986 |
Family history (n (%)): | 4 (17) | 6 (20) | 0.802 |
Pior surgery (n (%)): | 17 (74) | 26 (87) | 0.249 |
Resection (n (%)) | 11 (48) | 20 (67) | 0.175 |
Hemicolectomy (n (%)) | 7 (40) | 6 (20) | 0.393 |
Laboratory results—prior therapy: | |||
WBC (mmol/L) (median (Q1–Q3) | 6.86 (5.57–8.73) | 7.43 (5.53–8.79) | 0.676 |
Hb (mmol/L) (median (Q1–Q3) | 12.6 (11.4–13.2) | 13.1 (12.00–13.8)) | 0.108 |
Hct (%) (median (Q1–Q3) | 38 (34–40) | 40 (38–42) | 0.080 |
NLR (median (Q1–Q3) | 3.04 (2.22–4.00) | 3.04 (2.22–4.30) | 0.838 |
RDW-CV (%) (median (Q1–Q3) | 15.5 (13.6–16.6) | 13.7 (13.1–14.6) | 0.008 |
Plt (10 × 9/L) (median (Q1–Q3) | 256 (210–294) | 271 (216–312) | 0.628 |
Creatinine (mg/dL) (median (Q1–Q3) | 0.75 (0.71–0.84) | 0.92 (0.81–1.01) | 0.007 |
Chemotherapy | |||
EGFR (n (%)) | 10 (44) | 18 (60) | 0.241 |
CTH (n (%)) | 13 (52) | 10 (33) | 0.097 |
VEGF (n (%)) | 0 (0) | 2 (7) | 0.499 |
Univariable | Multivariable | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | |
Demographical | 3.91 | 1.09–14.05 | 0.037 | |||
Age | 0.97 | 0.92–1.03 | 0.310 | |||
Male Sex | 3.03 | 0.97–9.44 | 0.055 | |||
BMI | 0.94 | 0.82–1.09 | 0.418 | |||
Clinical | ||||||
Arterial hypertension | 0.57 | 0.18–1.80 | 0.339 | |||
Diabetes mellitus | 1.10 | 0.30–4.03 | 0.891 | |||
Family history | 1.21 | 0.29–5.01 | 0.788 | |||
Laboratory—prior therapy: | 0.61 | 0.42–0.88 | 0.008 | |||
NLR | 1.02 | 0.74–1.42 | 0.886 | |||
RDW | 0.64 | 0.46–0.90 | 0.011 | |||
Prior surgery | 2.29 | 0.56–9.35 | 0.247 | |||
EGFR-CTH therapy | 1.95 | 0.65–5.87 | 0.235 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankowski, M.; Grywalska, E.; Rahnama, M.; Urbanowicz, T. RDW-CV and Male Sex as Possible Response Factors to 9-Month Colorectal Cancer Palliative Chemotherapy. J. Clin. Med. 2025, 14, 5201. https://doi.org/10.3390/jcm14155201
Jankowski M, Grywalska E, Rahnama M, Urbanowicz T. RDW-CV and Male Sex as Possible Response Factors to 9-Month Colorectal Cancer Palliative Chemotherapy. Journal of Clinical Medicine. 2025; 14(15):5201. https://doi.org/10.3390/jcm14155201
Chicago/Turabian StyleJankowski, Maciej, Ewelina Grywalska, Mansur Rahnama, and Tomasz Urbanowicz. 2025. "RDW-CV and Male Sex as Possible Response Factors to 9-Month Colorectal Cancer Palliative Chemotherapy" Journal of Clinical Medicine 14, no. 15: 5201. https://doi.org/10.3390/jcm14155201
APA StyleJankowski, M., Grywalska, E., Rahnama, M., & Urbanowicz, T. (2025). RDW-CV and Male Sex as Possible Response Factors to 9-Month Colorectal Cancer Palliative Chemotherapy. Journal of Clinical Medicine, 14(15), 5201. https://doi.org/10.3390/jcm14155201