Integrating 3D Digital Technology Advancements in the Fabrication of Orthodontic Aligner Attachments: An In Vitro Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Attachment Design and Fabrication Protocol
2.1.1. CAD
2.1.2. Three-Dimensional Printing
2.2. Attachment Bonding and Scanning Protocol
2.2.1. Bonding Procedure
2.2.2. Scanning
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barrera-Chaparro, J.P.; Plaza-Ruíz, S.P.; Parra, K.L.; Quintero, M.; Velasco, M.D.P.; Molinares, M.C.; Álvarez, C. Orthodontic treatment need, the types of brackets and the oral health-related quality of life. Dent. Med. Probl. 2023, 60, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Shashidhar, K.; Kanwal, B.; Kuttappa, M.; Nayak, U.K.; Shetty, A.; Mathew, K. Clear aligners: Where are we today? A narrative review. J. Int. Oral Health 2022, 14, 222. [Google Scholar] [CrossRef]
- Jedliński, M.; Mazur, M.; Greco, M.; Belfus, J.; Grocholewicz, K.; Janiszewska-Olszowska, J. Attachments for the orthodontic aligner treatment—State of the art: A comprehensive systematic review. Int. J. Environ. Res. Public Health 2023, 20, 4481. [Google Scholar] [CrossRef]
- Ho, C.T.; Huang, Y.T.; Chao, C.W.; Huang, T.H.; Kao, C.T. Effects of different aligner materials and attachments on orthodontic behavior. J. Dent. Sci. 2021, 16, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Qian, L.; Qian, Y.; Zhang, Z.; Wen, X. Comparative study of three composite materials in bonding attachments for clear aligners. Orthod. Craniofac. Res. 2021, 24, 520–527. [Google Scholar] [CrossRef]
- Kuncio, D.; Maganzini, A.; Shelton, C.; Freeman, K. In vitro evaluation of the retention of attachments used for aligner therapy. J. Clin. Orthod. 2014, 48, 61–67. [Google Scholar]
- Rossini, G.; Parrini, S.; Castroflorio, T.; Deregibus, A.; Debernardi, C.L. Efficacy of clear aligners in controlling orthodontic tooth movement: A systematic review. Angle Orthod. 2015, 85, 881–889. [Google Scholar] [CrossRef]
- Dasy, H.; Dasy, A.; Asatrian, G.; Rózsa, N.; Lee, H.-F.; Kwak, J.H. Effects of variable attachment shapes and aligner material on aligner retention. Angle Orthod. 2015, 85, 934–940. [Google Scholar] [CrossRef]
- Weckmann, J.; Scharf, S.; Graf, I.; Schwarze, J.; Keilig, L.; Bourauel, C.; Braumann, B. Influence of attachment bonding protocol on precision of the attachment in aligner treatments. J. Orofac. Orthop. 2020, 81, 30–40. [Google Scholar] [CrossRef]
- D’Antò, V.; Muraglie, S.; Castellano, B.; Candida, E.; Sfondrini, M.F.; Scribante, A.; Grippaudo, C. Influence of dental composite viscosity in attachment reproduction: An experimental in vitro study. Materials 2019, 12, 4001. [Google Scholar] [CrossRef]
- Yaosen, C.; Mohamed, A.M.; Jinbo, W.; Ziwei, Z.; Al-Balaa, M.; Yan, Y.; Grassia, V. Factors of composite attachment loss in orthodontic patients during orthodontic clear aligner therapy: A prospective study. Biomed. Res. Int. 2021, 2021, 6620377. [Google Scholar] [CrossRef]
- Nagib, R.; Farkas, A.Z.; Szuhanek, C. Finite element analysis of the mechanical behavior of 3D-printed orthodontic attachments used in aligner treatment. Sci. Rep. 2024, 14, 14877. [Google Scholar] [CrossRef]
- Bellocchio, A.M.; Ciancio, E.; Ciraolo, L.; Barbera, S.; Nucera, R. Three-dimensional printed attachments: Analysis of reproduction accuracy compared to traditional attachments. Appl. Sci. 2024, 14, 3837. [Google Scholar] [CrossRef]
- Paľovčík, M.; Tomášik, J.; Zsoldos, M.; Thurzo, A. 3D-printed accessories and auxiliaries in orthodontic treatment. Appl. Sci. 2025, 15, 78. [Google Scholar] [CrossRef]
- Christopoulou, I.; Kaklamanos, E.G.; Makrygiannakis, M.A.; Bitsanis, I.; Perlea, P.; Tsolakis, A.I. Intraoral scanners in orthodontics: A critical review. Int. J. Environ. Res. Public Health 2022, 19, 1407. [Google Scholar] [CrossRef]
- Pesce, P.; Nicolini, P.; Caponio, V.C.A.; Zecca, P.A.; Canullo, L.; Isola, G.; Baldi, D.; De Angelis, N.; Menini, M. Accuracy of full-arch intraoral scans versus conventional impression: A systematic review with a meta-analysis and a proposal to standardise the analysis of the accuracy. J. Clin. Med. 2025, 14, 71. [Google Scholar] [CrossRef] [PubMed]
- Nedelcu, R.; Olsson, P.; Nystrom, I.; Thor, A. Finish line distinctness and accuracy in 7 intraoral scanners versus conventional impression: An in vitro descriptive comparison. BMC Oral Health 2018, 18, 27. [Google Scholar] [CrossRef] [PubMed]
- Ciocan, L.T.; Vasilescu, V.G.; Răuță, S.-A.; Pantea, M.; Pițuru, S.-M.; Imre, M. Comparative analysis of four different intraoral scanners: An in vitro study. Diagnostics 2024, 14, 1453. [Google Scholar] [CrossRef]
- Farah, R.I.; Alresheedi, B.; Alazmi, S.; Ali, S.N.A. Evaluating the impact of scan body angulation and geometric attachments on the accuracy of complete-arch digital implant impressions: A comparison of two intraoral scanners. J. Prosthodont. 2025, 34, 174–181. [Google Scholar] [CrossRef]
- Selvaraj, A.; Dinesh, S.P.S.; Sivakumar, A.; Arvind, T.R.P.; Albar, D.H.; Alshehri, A.; Awadh, W.; Alzahrani, K.J.; Halawani, I.F.; Alshammeri, S.; et al. Evaluation of scanning accuracy for two commercially available intraoral scanners in reproducing orthodontic bracket dimensions. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 7898–7906. [Google Scholar] [CrossRef]
- Nagib, R.; Szuhanek, C.; Moldoveanu, B.; Negrutiu, M.L.; Sinescu, C.; Brad, S. Custom-designed orthodontic attachment manufactured using a biocompatible 3D printing material. Mater. Plast. 2017, 54, 757–758. [Google Scholar] [CrossRef]
- Mehl, A.; Reich, S.; Beuer, F.; Güth, J.F. Accuracy, trueness, and precision—A guideline for the evaluation of these basic values in digital dentistry. Int. J. Comput. Dent. 2021, 24, 341–352. [Google Scholar]
- Koenig, N.; Choi, J.-Y.; McCray, J.; Hayes, A.; Schneider, P.; Kim, K.B. Comparison of dimensional accuracy between direct-printed and thermoformed aligners. Korean J. Orthod. 2022, 52, 249–257. [Google Scholar] [CrossRef]
- Mantovani, E.; Castroflorio, E.; Rossini, G.; Garino, F.; Cugliari, G.; Deregibus, A.; Castroflorio, T. Scanning electron microscopy analysis of aligner fitting on anchorage attachments. J. Orofac. Orthop. 2019, 80, 79–87. [Google Scholar] [CrossRef]
- Filtek Supreme XT Flowable Restorative. 3M Product Document. Available online: https://multimedia.3m.com/mws/media/598213O/filtek-supreme-xt-flow-tpp.pdf (accessed on 23 July 2024).
- Lasance, S.J.; Koletsi, D.; Eliades, G.; Eliades, T. Degree of cure of orthodontic composite attachments underneath aligners. Eur. J. Oral Sci. 2024, 132, e12963. [Google Scholar] [CrossRef] [PubMed]
- Can, E.; Panayi, N.; Polychronis, G.; Papageorgiou, S.N.; Zinelis, S.; Eliades, G.; Eliades, T. In-house 3D-printed aligners: Effect of in vivo ageing on mechanical properties. Eur. J. Orthod. 2022, 44, 51–55. [Google Scholar] [CrossRef] [PubMed]
- von Glasenapp, J.; Hofmann, E.; Süpple, J.; Jost-Brinkmann, P.-G.; Koch, P.J. Comparison of two 3D-printed indirect bonding (IDB) tray design versions and their influence on the transfer accuracy. J. Clin. Med. 2022, 11, 1295. [Google Scholar] [CrossRef] [PubMed]
- Amornvit, P.; Rokaya, D.; Sanohkan, S. Comparison of accuracy of current ten intraoral scanners. Biomed. Res. Int. 2021, 2021, 2673040. [Google Scholar] [CrossRef] [PubMed]
- Lione, R.; De Razza, F.C.; Gazzani, F.; Lugli, L.; Cozza, P.; Pavoni, C. Accuracy, time, and comfort of different intraoral scanners: An in vivo comparison study. Appl. Sci. 2024, 14, 7731. [Google Scholar] [CrossRef]
- San José, V.; Bellot-Arcis, C.; Tarazona, B.; Zamora, N.; O Lagravere, M.; Paredes-Gallardo, V. Dental measurements and Bolton index reliability and accuracy obtained from 2D digital, 3D segmented CBCT, and 3D intraoral laser scanner. J. Clin. Exp. Dent. 2017, 9, e1466–e1473. [Google Scholar] [CrossRef]
- Flügge, T.V.; Schlager, S.; Nelson, K.; Nahles, S.; Metzger, M.C. Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 471–478. [Google Scholar] [CrossRef]
- Winkler, J.; Gkantidis, N. Trueness and precision of intraoral scanners in the maxillary dental arch: An in vivo analysis. Sci. Rep. 2020, 10, 1172. [Google Scholar] [CrossRef]
- Ergül, T.; Güleç, A.; Göymen, M. The use of 3D printers in orthodontics—A narrative review. Turk. J. Orthod. 2023, 36, 134–142. [Google Scholar] [CrossRef]
Parameters | Definition | Purpose |
---|---|---|
Mean | Average of all deviation values | Indicates the typical deviation per scanner |
Median | Middle value when data are ordered | Reflects central tendency, less affected by outliers |
Mean Absolute Deviation (MAD) | Average of absolute deviations from the mean | Measures consistency: lower MAD implies higher precision |
Root Mean Square Error (RMSE) | Square root of average squared deviations from the mean | Emphasizes larger errors; indicates overall accuracy |
Standard Deviation (SD) | Dispersion of values around the mean | Shows how tightly deviations cluster; lower SD equals more consistent results |
Variance | Square of the standard deviation | Quantifies the overall variability within the data set |
Trueness [(P90 − P10)/2] | Half the range between the 90th and 10th percentile values | Indicates accuracy by assessing the spread of central 80% of data |
Tolerance | Percentage of deviations within a predefined acceptable range | Measures how often scanner deviations fall within clinically acceptable limits |
Parameters | Total | Incisors | Attachments | ||||||
---|---|---|---|---|---|---|---|---|---|
Aoral 2 | Aoral 3 | iTero | Aoral 2 | Aoral 3 | iTero | Aoral 2 | Aoral 3 | iTero | |
Min. (mm) | −1.941 | −0.106 | −1.777 | −0.325 | −0.273 | −0.242 | −0.106 | −0.127 | −0.110 |
Max. (mm) | 0.463 | 0.098 | 0.472 | 0.362 | 0.172 | 0.239 | 0.098 | 0.128 | 0.089 |
Median (mm) | −0.005 | −0.002 | 0.007 | −0.011 | −0.007 | −0.010 | −0.002 | −0.005 | −0.000 |
Avg. (mm) | −0.004 | 0.001 | −0.006 | −0.014 | −0.011 | −0.013 | 0.001 | −0.003 | −0.000 |
Abs Avg. (mm) | 0.029 | 0.021 | 0.032 | 0.024 | 0.020 | 0.021 | 0.021 | 0.019 | 0.016 |
RMSE (mm) | 0.047 | 0.028 | 0.049 | 0.041 | 0.034 | 0.033 | 0.028 | 0.027 | 0.022 |
Std. Dev. (mm) | 0.047 | 0.028 | 0.049 | 0.038 | 0.032 | 0.030 | 0.028 | 0.027 | 0.022 |
Variance (mm) | 0.002 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.000 |
Avg. (+) (mm) | 0.028 | 0.023 | 0.032 | 0.017 | 0.013 | 0.015 | 0.023 | 0.021 | 0.015 |
Avg. (−) (mm) | −0.029 | −0.018 | −0.032 | −0.026 | −0.023 | −0.023 | −0.018 | −0.019 | −0.016 |
Trueness (mm) | 0.039 | 0.032 | 0.045 | 0.029 | 0.027 | 0.026 | 0.032 | 0.028 | 0.023 |
5 Percentile (mm) | −0.060 | −0.042 | −0.070 | −0.066 | −0.059 | −0.064 | −0.042 | −0.050 | −0.034 |
95 Percentile (mm) | 0.046 | 0.048 | 0.054 | 0.024 | 0.025 | 0.022 | 0.048 | 0.040 | 0.035 |
In Tol. (%) | 87.50 | 91.66 | 83.34 | 90.95 | 92.48 | 92.33 | 91.66 | 92.02 | 95.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagib, R.; Chircu, A.; Szuhanek, C. Integrating 3D Digital Technology Advancements in the Fabrication of Orthodontic Aligner Attachments: An In Vitro Study. J. Clin. Med. 2025, 14, 5093. https://doi.org/10.3390/jcm14145093
Nagib R, Chircu A, Szuhanek C. Integrating 3D Digital Technology Advancements in the Fabrication of Orthodontic Aligner Attachments: An In Vitro Study. Journal of Clinical Medicine. 2025; 14(14):5093. https://doi.org/10.3390/jcm14145093
Chicago/Turabian StyleNagib, Riham, Andrei Chircu, and Camelia Szuhanek. 2025. "Integrating 3D Digital Technology Advancements in the Fabrication of Orthodontic Aligner Attachments: An In Vitro Study" Journal of Clinical Medicine 14, no. 14: 5093. https://doi.org/10.3390/jcm14145093
APA StyleNagib, R., Chircu, A., & Szuhanek, C. (2025). Integrating 3D Digital Technology Advancements in the Fabrication of Orthodontic Aligner Attachments: An In Vitro Study. Journal of Clinical Medicine, 14(14), 5093. https://doi.org/10.3390/jcm14145093