Harnessing Radiomics and Explainable AI for the Classification of Usual and Nonspecific Interstitial Pneumonia
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient
2.2. Image Acquisition and Segmentation
2.3. Data Imputation and Data Split
2.4. HCR Feature Extraction
2.5. Feature Selection and Model Development
2.6. Model Explanation and Visualization
2.7. Radiomics Quality Score, TRIPOD Guidelines, and Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Feature Extraction and Feature Selection
3.3. Performance of the Models
3.4. Explanation and Visualization of Radiomic Models
3.5. RQS, TRIPOD, Decision Curve Analysis, and Calibration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Distefano, G.; Fanzone, L.; Palermo, M.; Tiralongo, F.; Cosentino, S.; Inì, C.; Galioto, F.; Vancheri, A.; Torrisi, S.E.; Mauro, L.A.; et al. HRCT Patterns of Drug-Induced Interstitial Lung Diseases: A Review. Diagnostics 2020, 10, 244. [Google Scholar] [CrossRef] [PubMed]
- Db, C.; Re, Z.; Wc, B.; Re, S. The Epidemiology of Interstitial Lung Diseases. Am. J. Respir. Crit. Care Med. 1994, 150, 967–972. [Google Scholar] [CrossRef]
- Fragoulis, G.E.; Nikiphorou, E.; Larsen, J.; Korsten, P.; Conway, R. Methotrexate-Associated Pneumonitis and Rheumatoid Arthritis-Interstitial Lung Disease: Current Concepts for the Diagnosis and Treatment. Front. Med. 2019, 6, 238. [Google Scholar] [CrossRef]
- Raghu, G.; Remy-Jardin, M.; Richeldi, L.; Thomson, C.C.; Inoue, Y.; Johkoh, T.; Kreuter, M.; Lynch, D.A.; Maher, T.M.; Martinez, F.J.; et al. Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2022, 205, e18–e47. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Liu, Z.; Singh, A.; Lange, M.; Boddu, P.; Gong, J.Q.X.; Lee, J.; DeMarco, C.; Cao, C.; Platt, S.; et al. Interstitial Lung Disease Diagnosis and Prognosis Using an AI System Integrating Longitudinal Data. Nat. Commun. 2023, 14, 2272. [Google Scholar] [CrossRef]
- Refaee, T.; Bondue, B.; Van Simaeys, G.; Wu, G.; Yan, C.; Woodruff, H.C.; Goldman, S.; Lambin, P. A Handcrafted Radiomics-Based Model for the Diagnosis of Usual Interstitial Pneumonia in Patients with Idiopathic Pulmonary Fibrosis. J. Pers. Med. 2022, 12, 373. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, X.; Xia, B.; Ma, S. Advances in CT Features and Radiomics of Checkpoint Inhibitor-Related Pneumonitis: A Short Review. Front. Immunol. 2023, 14, 1082980. [Google Scholar] [CrossRef] [PubMed]
- Schniering, J.; Maciukiewicz, M.; Gabrys, H.S.; Brunner, M.; Blüthgen, C.; Meier, C.; Braga-Lagache, S.; Uldry, A.-C.; Heller, M.; Guckenberger, M.; et al. Computed Tomography-Based Radiomics Decodes Prognostic and Molecular Differences in Interstitial Lung Disease Related to Systemic Sclerosis. Eur. Respir. J. 2022, 59, 2004503. [Google Scholar] [CrossRef]
- du Bois, R.; King, T.E. Challenges in Pulmonary Fibrosis · 5: The NSIP/UIP Debate. Thorax 2007, 62, 1008–1012. [Google Scholar] [CrossRef]
- Raghu, G.; Collard, H.R.; Egan, J.J.; Martinez, F.J.; Behr, J.; Brown, K.K.; Colby, T.V.; Cordier, J.-F.; Flaherty, K.R.; Lasky, J.A.; et al. An Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-Based Guidelines for Diagnosis and Management. Am. J. Respir. Crit. Care Med. 2011, 183, 788–824. [Google Scholar] [CrossRef]
- Tominaga, J.; Sakai, F.; Johkoh, T.; Noma, S.; Akira, M.; Fujimoto, K.; Colby, T.V.; Ogura, T.; Inoue, Y.; Taniguchi, H.; et al. Diagnostic Certainty of Idiopathic Pulmonary Fibrosis/Usual Interstitial Pneumonia: The Effect of the Integrated Clinico-Radiological Assessment. Eur. J. Radiol. 2015, 84, 2640–2645. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; He, L.; Zhang, J.; Han, T.; Zhu, B.; Guo, Y.; Jin, C. Construction of a classification model for image subtypes based on the radiomics features of patients with dermatomyositis/polymyositis-related interstitial lung disease for machine learning. Chin. J. Rheumatol. 2023, 27, 521–522. [Google Scholar]
- Walsh, S.; de Jong, E.E.C.; van Timmeren, J.E.; Ibrahim, A.; Compter, I.; Peerlings, J.; Sanduleanu, S.; Refaee, T.; Keek, S.; Larue, R.T.H.M.; et al. Decision Support Systems in Oncology. JCO Clin. Cancer Inform. 2019, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.; Granton, P.; Zegers, C.M.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. Eur. J. Cancer 2012, 48, 441. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2015, 278, 563. [Google Scholar] [CrossRef]
- Refaee, T.; Salahuddin, Z.; Frix, A.-N.; Yan, C.; Wu, G.; Woodruff, H.C.; Gietema, H.; Meunier, P.; Louis, R.; Guiot, J.; et al. Diagnosis of Idiopathic Pulmonary Fibrosis in High-Resolution Computed Tomography Scans Using a Combination of Handcrafted Radiomics and Deep Learning. Front. Med. 2022, 9, 915243. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, G.; Yang, X.; Liao, Y.; Zhou, Z. Exploring the Value of Features of Lung Texture in Distinguishing Between Usual and Nonspecific Interstitial Pneumonia. Acad. Radiol. 2023, 30, 1066–1072. [Google Scholar] [CrossRef]
- Martini, K.; Baessler, B.; Bogowicz, M.; Blüthgen, C.; Mannil, M.; Tanadini-Lang, S.; Schniering, J.; Maurer, B.; Frauenfelder, T. Applicability of Radiomics in Interstitial Lung Disease Associated with Systemic Sclerosis: Proof of Concept. Eur. Radiol. 2020, 31, 1987. [Google Scholar] [CrossRef]
- Pirozzi, S.; Horvat, M.; Piper, J.; Nelson, A. SU-E-J-106: Atlas-Based Segmentation: Evaluation of a Multi-Atlas Approach for Lung Cancer. Med. Phys. 2012, 39, 3677. [Google Scholar] [CrossRef]
- White, I.R.; Royston, P.; Wood, A.M. Multiple Imputation Using Chained Equations: Issues and Guidance for Practice. Stat. Med. 2011, 30, 377–399. [Google Scholar] [CrossRef]
- Azur, M.J.; Stuart, E.A.; Frangakis, C.; Leaf, P.J. Multiple Imputation by Chained Equations: What Is It and How Does It Work? Int. J. Methods Psychiatr. Res. 2011, 20, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Müller, A.; Nothman, J.; Louppe, G.; et al. Scikit-Learn: Machine Learning in Python 2018. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Sivakumar, M.; Parthasarathy, S.; Padmapriya, T. Trade-off between Training and Testing Ratio in Machine Learning for Medical Image Processing. PeerJ Comput. Sci. 2024, 10, e2245. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-Based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [PubMed]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef]
- Li, L.; Li, J.; Wu, H.; Zhao, Y.; Liu, Q.; Zhang, H.; Xu, W. Optimal Channel and Feature Selection for Automatic Prediction of Functional Brain Age of Preterm Infant Based on EEG. Front. Neurosci. 2025, 19, 1517141. [Google Scholar] [CrossRef]
- Deist, T.M.; Dankers, F.J.W.M.; Valdes, G.; Wijsman, R.; Hsu, I.-C.; Oberije, C.; Lustberg, T.; van Soest, J.; Hoebers, F.; Jochems, A.; et al. Machine Learning Algorithms for Outcome Prediction in (Chemo)Radiotherapy: An Empirical Comparison of Classifiers. Med. Phys. 2018, 45, 3449–3459. [Google Scholar] [CrossRef]
- Zhao, F.-H.; Fan, H.-J.; Shan, K.-F.; Zhou, L.; Pang, Z.-Z.; Fu, C.-L.; Yang, Z.-B.; Wu, M.-K.; Sun, J.-H.; Yang, X.-M.; et al. Predictive Efficacy of a Radiomics Random Forest Model for Identifying Pathological Subtypes of Lung Adenocarcinoma Presenting as Ground-Glass Nodules. Front. Oncol. 2022, 12, 872503. [Google Scholar] [CrossRef]
- Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions 2017. In Proceedings of the 31st International Conference on Neural Information Processing System, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Rodríguez-Pérez, R.; Bajorath, J. Interpretation of Compound Activity Predictions from Complex Machine Learning Models Using Local Approximations and Shapley Values. J. Med. Chem. 2020, 63, 8761–8777. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. Ann. Intern. Med. 2015, 162, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.A.; Zimmerman, J.E. Assessing the Calibration of Mortality Benchmarks in Critical Care: The Hosmer-Lemeshow Test Revisited. Crit. Care Med. 2007, 35, 2052–2056. [Google Scholar] [CrossRef] [PubMed]
- Zaizen, Y.; Fukuoka, J. Pathology of Idiopathic Interstitial Pneumonias. Surg. Pathol. Clin. 2020, 13, 91–118. [Google Scholar] [CrossRef] [PubMed]
- Nayfeh, A.S.; Chippa, V.; Moore, D.R. Nonspecific Interstitial Pneumonia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Devnath, L.; Luo, S.; Summons, P.; Wang, D. Automated Detection of Pneumoconiosis with Multilevel Deep Features Learned from Chest X-Ray Radiographs. Comput. Biol. Med. 2021, 129, 104125. [Google Scholar] [CrossRef]
Characteristic | NSIP (n = 45) | UIP (n = 60) | p-Value |
---|---|---|---|
Age, mean (SD) | 51.24 (16.29) | 64.01 (15.48) | <0.001 |
Sex, n (%) | |||
Female | 34 (75.6) | 22 (36.1) | <0.001 |
Male | 11 (24.4) | 38 (63.9) | |
BMI, mean (SD) | 30.84 (8.70) | 28.82 (5.04) | 0.035 |
FEV1, mean (SD) | 61.29 (17.37) | 58.51 (15.64) | 0.227 |
FVC, mean (SD) | 53.52 (14.76) | 49.68 (13.47) | 0.052 |
Model | Accuracy % | Sensitivity % | Specificity % | PPV % | NPV % |
---|---|---|---|---|---|
Clinical | 64 | 54 | 78 | 78 | 54 |
HCR | 86 | 85 | 89 | 92 | 80 |
Combined | 84 | 88 | 78 | 85 | 82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Refaee, T.; Aloofy, O.; Alduraibi, K.; Ageeli, W.; Alyami, A.; Mohtasib, R.; Majrashi, N.; Lambin, P. Harnessing Radiomics and Explainable AI for the Classification of Usual and Nonspecific Interstitial Pneumonia. J. Clin. Med. 2025, 14, 4934. https://doi.org/10.3390/jcm14144934
Refaee T, Aloofy O, Alduraibi K, Ageeli W, Alyami A, Mohtasib R, Majrashi N, Lambin P. Harnessing Radiomics and Explainable AI for the Classification of Usual and Nonspecific Interstitial Pneumonia. Journal of Clinical Medicine. 2025; 14(14):4934. https://doi.org/10.3390/jcm14144934
Chicago/Turabian StyleRefaee, Turkey, Ouf Aloofy, Khalid Alduraibi, Wael Ageeli, Ali Alyami, Rafat Mohtasib, Naif Majrashi, and Philippe Lambin. 2025. "Harnessing Radiomics and Explainable AI for the Classification of Usual and Nonspecific Interstitial Pneumonia" Journal of Clinical Medicine 14, no. 14: 4934. https://doi.org/10.3390/jcm14144934
APA StyleRefaee, T., Aloofy, O., Alduraibi, K., Ageeli, W., Alyami, A., Mohtasib, R., Majrashi, N., & Lambin, P. (2025). Harnessing Radiomics and Explainable AI for the Classification of Usual and Nonspecific Interstitial Pneumonia. Journal of Clinical Medicine, 14(14), 4934. https://doi.org/10.3390/jcm14144934