Neurobiological Mechanisms of Action of Transcranial Direct Current Stimulation (tDCS) in the Treatment of Substance Use Disorders (SUDs)—A Review
Abstract
1. Introduction
2. Methods
2.1. Data Sources and Search Strategy
2.2. Study Selection Criteria
2.3. Screening Process
2.3.1. Title and Abstract Screening
2.3.2. Full-Text Assessment
3. Results
3.1. Summary of Included Studies
3.1.1. fMRI Studies
Nicotine-Related Studies
Behavioral Outcomes
Task-Evoked BOLD Responses
Large-Scale Network Effects
Alcohol-Related Studies
Behavioral and Clinical Outcomes
Task-Evoked BOLD Responses
Resting-State Network Reorganization
Structural Plasticity (Diffusion-Tensor Imaging)
Methamphetamine-Related Studies
Behavioral Effects
Task-Evoked BOLD Modulation
Resting-State Network Reorganization
Electric Field Dose–Response Relationships
3.1.2. EEG Studies
3.1.3. fNIRS Studies
3.1.4. Studies Using Blood Tests
4. Discussion
4.1. fMRI Outcomes
4.1.1. Network-Level Insights from fMRI
Default Mode Network (DMN)
Executive Control Network (ECN)
Salience and Reward-Related Networks
4.1.2. Single-Session vs. Multiple-Session Effects
4.1.3. Behavioral and Clinical Outcomes
4.1.4. Task-Based Versus Resting-State Findings
4.1.5. Substance-Specific Patterns of tDCS Efficacy and Neural Modulation Based on fMRI Results
4.2. EEG Outcomes
4.3. fNIRS Outcomes
4.4. Blood Test Outcomes
5. Integrated Neurobiological Model of tDCS in SUDs
5.1. Modulation of Prefrontal Circuits and Networks
5.2. Craving, Inhibitory Control, and Clinical Outcomes
5.3. Insights from EEG (ERP) Markers
5.4. Neuroplastic and Molecular Underpinnings
5.5. Conceptual Framework’s Limitations
6. Limitations and Future Directions
6.1. Limitations of Generalizing Across Diverse Studies
6.2. Methodological Limitations That Constrain Interpretation—And Practical Steps to Overcome Them
6.3. Translational and Clinical Limitations—And Strategic Routes Forward
6.4. Uncertainty About the Most Effective Stimulation Parameters
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matone, A.; Gandin, C.; Ghirini, S.; Scafato, E. Alcohol and Substance Use Disorders Diagnostic Criteria Changes and Innovations in ICD-11: An Overview. Clin. Psychol. Eur. 2022, 4, e9539. [Google Scholar] [CrossRef] [PubMed]
- Hasin, D.S.; O’Brien, C.P.; Auriacombe, M.; Borges, G.; Bucholz, K.; Budney, A.; Compton, W.M.; Crowley, T.; Ling, W.; Petry, N.M.; et al. DSM-5 criteria for substance use disorders: Recommendations and rationale. Am. J. Psychiatry 2013, 170, 834–851. [Google Scholar] [CrossRef]
- Connery, H.S.; McHugh, R.K.; Reilly, M.; Shin, S.; Greenfield, S.F. Substance Use Disorders in Global Mental Health Delivery: Epidemiology, Treatment Gap, and Implementation of Evidence-Based Treatments. Harv. Rev. Psychiatry 2020, 28, 316–327. [Google Scholar] [CrossRef] [PubMed]
- Lanza, S.T.; Vasilenko, S.A. New methods shed light on age of onset as a risk factor for nicotine dependence. Addict. Behav. 2015, 50, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Glantz, M.D.; Bharat, C.; Degenhardt, L.; Sampson, N.A.; Scott, K.M.; Lim, C.C.; Al-Hamzawi, A.; Alonso, J.; Andrade, L.H.; Cardoso, G.; et al. WHO World Mental Health Survey Collaborators. The epidemiology of alcohol use disorders cross-nationally: Findings from the World Mental Health Surveys. Addict. Behav. 2020, 102, 106128. [Google Scholar] [CrossRef]
- National Collaborating Centre for Mental Health (UK). 3, Introduction To Drug Misuse. In Drug Misuse: Psychosocial Interventions; (NICE Clinical Guidelines, No. 51); British Psychological Society (UK): Leicester, UK, 2008. Available online: https://www.ncbi.nlm.nih.gov/books/NBK53217/ (accessed on 25 May 2025).
- McHugh, R.K.; Votaw, V.R.; Sugarman, D.E.; Greenfield, S.F. Sex and gender differences in substance use disorders. Clin. Psychol. Rev. 2018, 66, 12–23. [Google Scholar] [CrossRef]
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef]
- Sohi, I.; Franklin, A.; Chrystoja, B.; Wettlaufer, A.; Rehm, J.; Shield, K. The Global Impact of Alcohol Consumption on Premature Mortality and Health in 2016. Nutrients 2021, 13, 3145. [Google Scholar] [CrossRef]
- Samet, J.M. Tobacco smoking: The leading cause of preventable disease worldwide. Thorac. Surg. Clin. 2013, 23, 103–112. [Google Scholar] [CrossRef]
- He, H.; Pan, Z.; Wu, J.; Hu, C.; Bai, L.; Lyu, J. Health Effects of Tobacco at the Global, Regional, and National Levels: Results From the 2019 Global Burden of Disease Study. Nicotine Tob. Res. 2022, 24, 864–870. [Google Scholar] [CrossRef]
- Kuerbis, A.; Sacco, P.; Blazer, D.G.; Moore, A.A. Substance abuse among older adults. Clin. Geriatr. Med. 2014, 30, 629–654. [Google Scholar] [CrossRef] [PubMed]
- Daley, D.C. Family and social aspects of substance use disorders and treatment. J. Food Drug Anal. 2013, 21, S73–S76. [Google Scholar] [CrossRef] [PubMed]
- Nolte-Troha, C.; Roser, P.; Henkel, D.; Scherbaum, N.; Koller, G.; Franke, A.G. Unemployment and Substance Use: An Updated Review of Studies from North America and Europe. Healthcare 2023, 11, 1182. [Google Scholar] [CrossRef]
- King, K.M.; Meehan, B.T.; Trim, R.S.; Chassin, L. Substance use and academic outcomes: Synthesizing findings and future directions. Addiction 2006, 101, 1688–1689. [Google Scholar] [CrossRef]
- Sinha, R. Chronic stress, drug use, and vulnerability to addiction. Ann. N. Y. Acad. Sci. 2008, 1141, 105–130. [Google Scholar] [CrossRef] [PubMed]
- Hunt, G.E.; Malhi, G.S.; Lai, H.M.X.; Cleary, M. Prevalence of comorbid substance use in major depressive disorder in community and clinical settings, 1990–2019: Systematic review and meta-analysis. J. Affect. Disord. 2020, 266, 288–304. [Google Scholar] [CrossRef] [PubMed]
- Marmorstein, N.R. Anxiety disorders and substance use disorders: Different associations by anxiety disorder. J. Anxiety Disord. 2012, 26, 88–94. [Google Scholar] [CrossRef]
- Hunt, G.E.; Malhi, G.S.; Cleary, M.; Lai, H.M.; Sitharthan, T. Prevalence of comorbid bipolar and substance use disorders in clinical settings, 1990–2015: Systematic review and meta-analysis. J. Affect. Disord. 2016, 206, 331–349. [Google Scholar] [CrossRef]
- Patton, S.C.; Watkins, L.E.; Killeen, T.K.; Hien, D.A. Posttraumatic Stress Disorder and Substance Use Disorder Screening, Assessment, and Treatment. Curr. Psychiatry Rep. 2024, 26, 843–851. [Google Scholar] [CrossRef]
- Common Comorbidities with Substance Use Disorders Research Report; National Institutes on Drug Abuse (US): Bethesda, MD, USA, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK571451/ (accessed on 25 May 2025).
- Roerecke, M.; Vafaei, A.; Hasan, O.S.M.; Chrystoja, B.R.; Cruz, M.; Lee, R.; Neuman, M.G.; Rehm, J. Alcohol Consumption and Risk of Liver Cirrhosis: A Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2019, 114, 1574–1586. [Google Scholar] [CrossRef]
- Krittanawong, C.; Isath, A.; Rosenson, R.S.; Khawaja, M.; Wang, Z.; Fogg, S.E.; Virani, S.S.; Qi, L.; Cao, Y.; Long, M.T.; et al. Alcohol Consumption and Cardiovascular Health. Am. J. Med. 2022, 135, 1213–1230.e3. [Google Scholar] [CrossRef] [PubMed]
- Warren, G.W.; Cummings, K.M. Tobacco and lung cancer: Risks, trends, and outcomes in patients with cancer. Am. Soc. Clin. Oncol. Educ. Book 2013, 359–364. [Google Scholar] [CrossRef]
- McRobbie, H.; Kwan, B. Tobacco use disorder and the lungs. Addiction 2021, 116, 2559–2571. [Google Scholar] [CrossRef]
- Des Jarlais, D.C.; Arasteh, K.; Semaan, S.; Wood, E. HIV among injecting drug users: Current epidemiology, biologic markers, respondent-driven sampling, and supervised-injection facilities. Curr. Opin. HIV AIDS 2009, 4, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Grassi, A.; Ballardini, G. Hepatitis C in injection drug users: It is time to treat. World J. Gastroenterol. 2017, 23, 3569–3571. [Google Scholar] [CrossRef]
- Hedegaard, H.; Miniño, A.M.; Warner, M. Drug overdose deaths in the United States, 1999–2018. Natl. Cent. Health Stat. 2020, 356, 1–8. Available online: https://www.cdc.gov/nchs/data/databriefs/db356-h.pdf (accessed on 25 May 2025).
- Choi, N.G.; DiNitto, D.M.; Marti, C.N.; Choi, B.Y. Association of Traffic Injuries, Substance Use Disorders, and ED Visit Outcomes among Individuals Aged 50+ Years. J. Psychoact. Drugs 2016, 48, 369–376. [Google Scholar] [CrossRef]
- Zhong, S.; Yu, R.; Fazel, S. Drug Use Disorders and Violence: Associations With Individual Drug Categories. Epidemiol. Rev. 2020, 42, 103–116. [Google Scholar] [CrossRef]
- Kepple, N.J. Does parental substance use always engender risk for children? Comparing incidence rate ratios of abusive and neglectful behaviors across substance use behavior patterns. Child. Abuse Negl. 2018, 76, 44–55. [Google Scholar] [CrossRef]
- Bradford, J.M.; Greenberg, D.M.; Motayne, G.G. Substance abuse and criminal behavior. Psychiatr. Clin. N. Am. 1992, 15, 605–622. [Google Scholar] [CrossRef]
- Substance Abuse and Mental Health Services Administration (US); Office of the Surgeon General (US). Chapter 7, Vision For The Future: A Public Health Approach. In Facing Addiction in America: The Surgeon General’s Report on Alcohol, Drugs, and Health; US Department of Health and Human Services: Washington, DC, USA, 2016. Available online: https://www.ncbi.nlm.nih.gov/books/NBK424861/ (accessed on 25 May 2025).
- Jones-Sanpei, H.A.; Nance, R.J. Financial Capability in Addiction Research and Clinical Practice. Subst. Use Misuse 2021, 56, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Arnos, D.; Acevedo, A. Homelessness and Gender: Differences in Characteristics and Comorbidity of Substance Use Disorders at Admission to Services. Subst. Use Misuse 2023, 58, 27–35. [Google Scholar] [CrossRef]
- Semaan, A.; Khan, M.K. Neurobiology of Addiction; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK597351/ (accessed on 25 May 2025).
- Uhl, G.R.; Koob, G.F.; Cable, J. The neurobiology of addiction. Ann. N. Y. Acad. Sci. 2019, 1451, 5–28. [Google Scholar] [CrossRef]
- Horseman, C.; Meyer, A. Neurobiology of Addiction. Clin. Obstet. Gynecol. 2019, 62, 118–127. [Google Scholar] [CrossRef]
- Kelly, T.M.; Daley, D.C. Integrated treatment of substance use and psychiatric disorders. Soc. Work. Public Health 2013, 28, 388–406. [Google Scholar] [CrossRef] [PubMed]
- Toce, M.S.; Chai, P.R.; Burns, M.M.; Boyer, E.W. Pharmacologic Treatment of Opioid Use Disorder: A Review of Pharmacotherapy, Adjuncts, and Toxicity. J. Med. Toxicol. 2018, 14, 306–322. [Google Scholar] [CrossRef] [PubMed]
- Rigotti, N.A.; Kruse, G.R.; Livingstone-Banks, J.; Hartmann-Boyce, J. Treatment of Tobacco Smoking: A Review. JAMA 2022, 327, 566–577. [Google Scholar] [CrossRef]
- Maisel, N.C.; Blodgett, J.C.; Wilbourne, P.L.; Humphreys, K.; Finney, J.W. Meta-analysis of naltrexone and acamprosate for treating alcohol use disorders: When are these medications most helpful? Addiction 2013, 108, 275–293. [Google Scholar] [CrossRef] [PubMed]
- Abdel Moneam, M.H.E.D.; Mohsen, N.; Azzam, L.A.; Elsayed, Y.A.R.; Alghonaimy, A.A. The outcome of integrated motivational interviewing and cognitive-behavioral therapy in Egyptian patients with substance use disorder. Middle East. Curr. Psychiatry 2023, 30, 106. [Google Scholar] [CrossRef]
- McHugh, R.K.; Hearon, B.A.; Otto, M.W. Cognitive behavioral therapy for substance use disorders. Psychiatr. Clin. N. Am. 2010, 33, 511–525. [Google Scholar] [CrossRef]
- Carroll, K.M.; Easton, C.J.; Nich, C.; Hunkele, K.A.; Neavins, T.M.; Sinha, R.; Ford, H.L.; Vitolo, S.A.; Doebrick, C.A.; Rounsaville, B.J. The use of contingency management and motivational/skills-building therapy to treat young adults with marijuana dependence. J. Consult. Clin. Psychol. 2006, 74, 955–966. [Google Scholar] [CrossRef] [PubMed]
- Been, G.; Ngo, T.T.; Miller, S.M.; Fitzgerald, P.B. The use of tDCS and CVS as methods of non-invasive brain stimulation. Brain Res. Rev. 2007, 56, 346–361. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527 Pt 3, 633–639. [Google Scholar] [CrossRef]
- Lefaucheur, J.P. Neurophysiology of cortical stimulation. Int. Rev. Neurobiol. 2012, 107, 57–85. [Google Scholar]
- Polanía, R.; Nitsche, M.A.; Ruff, C.C. Studying and modifying brain function with non-invasive brain stimulation. Nat. Neurosci. 2018, 21, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Doemkes, S.; Karaköse, T.; Antal, A.; Liebetanz, D.; Lang, N. Shaping the effects of transcranial direct current stimulation of the human motor cortex. J. Neurophysiol. 2007, 97, 3109–3117. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001, 57, 1899–1901. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Fricke, K.; Henschke, U.; Schlitterlau, A.; Liebetanz, D.; Lang, N.; Henning, S.; Tergau, F.; Paulus, W. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. 2003, 553, 293–301. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Liebetanz, D.; Schlitterlau, A.; Henschke, U.; Fricke, K.; Frommann, K.; Lang, N.; Henning, S.; Paulus, W.; Tergau, F. GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. Eur. J. Neurosci. 2004, 19, 2720–2726. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Seeber, A.; Frommann, K.; Klein, C.C.; Rochford, C.; Nitsche, M.S.; Fricke, K.; Liebetanz, D.; Lang, N.; Antal , A.; et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J. Physiol. 2005, 568 Pt 1, 291–303. [Google Scholar] [CrossRef]
- Stagg, C.J.; Best, J.G.; Stephenson, M.C.; O’Shea, J.; Wylezinska, M.; Kincses, Z.T.; Morris, P.G.; Matthews, P.M.; Johansen-Berg, H. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J. Neurosci. 2009, 29, 5202–5206. [Google Scholar] [CrossRef] [PubMed]
- Reed, T.; Cohen Kadosh, R. Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity. J. Inherit. Metab. Dis. 2018, 41, 1123–1130. [Google Scholar] [CrossRef]
- Adelhöfer, N.; Mückschel, M.; Teufert, B.; Ziemssen, T.; Beste, C. Anodal tDCS affects neuromodulatory effects of the norepinephrine system on superior frontal theta activity during response inhibition. Brain Struct. Funct. 2019, 224, 1291–1300. [Google Scholar] [CrossRef]
- Fonteneau, C.; Redoute, J.; Haesebaert, F.; Le Bars, D.; Costes, N.; Suaud-Chagny, M.F.; Brunelin, J. Frontal transcranial direct current stimulation induces dopamine release in the ventral striatum in human. Cereb. Cortex 2018, 28, 2636–2646. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Paulus, W. Transcranial direct current stimulation—Update 2011. Restor. Neurol. Neurosci. 2011, 29, 463–492. [Google Scholar] [CrossRef] [PubMed]
- Salehinejad, M.A.; Nejati, V.; Nitsche, M.A. Neurocognitive correlates of self-esteem: From self-related attentional bias to involvement of the ventromedial prefrontal cortex. Neurosci. Res. 2020, 161, 33–43. [Google Scholar] [CrossRef]
- Mosayebi Samani, M.; Agboada, D.; Jamil, A.; Kuo, M.F.; Nitsche, M.A. Titrating the neuroplastic effects of cathodal transcranial direct current stimulation (tDCS) over the primary motor cortex. Cortex 2019, 119, 350–361. [Google Scholar] [CrossRef]
- Friehs, M.A.; Frings, C. Cathodal tDCS increases stop-signal reaction time. Cogn. Affect. Behav. Neurosci. 2019, 19, 1129–1142. [Google Scholar] [CrossRef]
- Frank, E.; Wilfurth, S.; Landgrebe, M.; Eichhammer, P.; Hajak, G. Anodal skin lesions after treatment with transcranial direct current stimulation. Brain Stimul. 2010, 3, 58–59. [Google Scholar] [CrossRef]
- Iannuzzo, F.; Crudo, S.; Basile, G.A.; Battaglia, F.; Infortuna, C.; Muscatello, M.R.A.; Bruno, A. Efficacy and safety of non-invasive brain stimulation techniques for the treatment of nicotine addiction: A systematic review of randomized controlled trials. AIMS Neurosci. 2024, 11, 212–225. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, M.; Yu, Y.; Zhong, X.; Dai, S.; Dai, Y.; Jiang, C. Is Transcranial Direct Current Stimulation Effective for Cognitive Dysfunction in Substance Use Disorders? A Systematic Review. Brain Sci. 2024, 14, 754. [Google Scholar] [CrossRef] [PubMed]
- Petit, B.; Dornier, A.; Meille, V.; Demina, A.; Trojak, B. Non-invasive brain stimulation for smoking cessation: A systematic review and meta-analysis. Addiction 2022, 117, 2768–2779. [Google Scholar] [CrossRef]
- Çabuk, B.M.; Guleken, Z. Transcranial direct current stimulation in the treatment of alcohol, tobacco and opioid use disorder in clinical studies. Acta Neurobiol. Exp. 2024, 84, 111–127. [Google Scholar] [CrossRef] [PubMed]
- Padula, C.B.; Tenekedjieva, L.T.; McCalley, D.M.; Al-Dasouqi, H.; Hanlon, C.A.; Williams, L.M.; Kozel, F.A.; Knutson, B.; Durazzo, T.C.; Yesavage, J.A.; et al. Targeting the Salience Network: A Mini-Review on a Novel Neuromodulation Approach for Treating Alcohol Use Disorder. Front. Psychiatry 2022, 13, 893833. [Google Scholar] [CrossRef]
- Luigjes, J.; Segrave, R.; de Joode, N.; Figee, M.; Denys, D. Efficacy of Invasive and Non-Invasive Brain Modulation Interventions for Addiction. Neuropsychol. Rev. 2019, 29, 116–138. [Google Scholar] [CrossRef]
- Nardone, R.; Bergmann, J.; Christova, M.; Lochner, P.; Tezzon, F.; Golaszewski, S.; Trinka, E.; Brigo, F. Non-invasive brain stimulation in the functional evaluation of alcohol effects and in the treatment of alcohol craving: A review. Neurosci. Res. 2012, 74, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Philip, N.S.; Sorensen, D.O.; McCalley, D.M.; Hanlon, C.A. Non-invasive Brain Stimulation for Alcohol Use Disorders: State of the Art and Future Directions. Neurotherapeutics 2020, 17, 116–126. [Google Scholar] [CrossRef]
- Azevedo, C.A.; Mammis, A. Neuromodulation Therapies for Alcohol Addiction: A Literature Review. Neuromodulation 2018, 21, 144–148. [Google Scholar] [CrossRef]
- Maatoug, R.; Bihan, K.; Duriez, P.; Podevin, P.; Silveira-Reis-Brito, L. Non-invasive and invasive brain stimulation in alcohol use disorders: A critical review of selected human evidence and methodological considerations to guide future research. Compr. Psychiatry 2021, 109, 152257. [Google Scholar] [CrossRef]
- Mehta, D.D.; Praecht, A.; Ward, H.B.; Sanches, M.; Sorkhou, M. A systematic review and meta-analysis of neuromodulation therapies for substance use disorders. Neuropsychopharmacology 2024, 49, 649–680. [Google Scholar] [CrossRef]
- Coles, A.S.; Kozak, K.; George, T.P. A review of brain stimulation methods to treat substance use disorders. Am. J. Addict. 2018, 27, 71–91. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Qin, J.; He, Q.; Zou, Z. A Meta-Analysis of Transcranial Direct Current Stimulation on Substance and Food Craving: What Effect Do Modulators Have? Front. Psychiatry 2020, 11, 598. [Google Scholar] [CrossRef]
- Sorkhou, M.; Stogios, N.; Sayrafizadeh, N.; Hahn, M.K.; Agarwal, S.M.; George, T.P. Non-invasive neuromodulation of dorsolateral prefrontal cortex to reduce craving in alcohol use disorder: A meta-analysis. Drug Alcohol. Depend. Rep. 2022, 4, 100076. [Google Scholar] [CrossRef] [PubMed]
- Jansen, J.M.; Daams, J.G.; Koeter, M.W.; Veltman, D.J.; van den Brink, W.; Goudriaan, A.E. Effects of non-invasive neurostimulation on craving: A meta-analysis. Neurosci. Biobehav. Rev. 2013, 37 Pt 2, 2472–2480. [Google Scholar] [CrossRef]
- Mostafavi, S.A.; Khaleghi, A.; Mohammadi, M.R. Noninvasive brain stimulation in alcohol craving: A systematic review and meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 101, 109938. [Google Scholar] [CrossRef]
- Ghin, F.; Beste, C.; Stock, A.K. Neurobiological mechanisms of control in alcohol use disorder—Moving towards mechanism-based non-invasive brain stimulation treatments. Neurosci. Biobehav. Rev. 2022, 133, 104508. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Aronson Fischell, S.; Ross, T.J.; Deng, Z.D.; Salmeron, B.J.; Stein, E.A. Transcranial Direct Current Stimulation Applied to the Dorsolateral and Ventromedial Prefrontal Cortices in Smokers Modifies Cognitive Circuits Implicated in the Nicotine Withdrawal Syndrome. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2020, 5, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Mondino, M.; Luck, D.; Grot, S.; Januel, D.; Suaud-Chagny, M.F.; Poulet, E.; Brunelin, J. Effects of repeated transcranial direct current stimulation on smoking, craving and brain reactivity to smoking cues. Sci. Rep. 2018, 8, 8724. [Google Scholar] [CrossRef]
- Yang, L.Z.; Shi, B.; Li, H.; Zhang, W.; Liu, Y.; Wang, H.; Zhou, Y.; Wang, Y.; Lv, W.; Ji, X.; et al. Electrical stimulation reduces smokers’ craving by modulating the coupling between dorsal lateral prefrontal cortex and parahippocampal gyrus. Soc. Cogn. Affect. Neurosci. 2017, 12, 1296–1302. [Google Scholar] [CrossRef]
- Lu, J.; Wu, Z.; Zeng, F.; Shi, B.; Liu, M.; Wu, J.; Liu, Y. Modulation of smoker brain activity and functional connectivity by tDCS: A go/no-go task-state fMRI study. Heliyon 2023, 9, e21074. [Google Scholar] [CrossRef]
- Holla, B.; Biswal, J.; Ramesh, V.; Shivakumar, V.; Bharath, R.D.; Benegal, V.; Venkatasubramanian, G.; Chand, P.K.; Murthy, P. Effect of prefrontal tDCS on resting brain fMRI graph measures in alcohol use disorders: A randomized, double-blind, sham-controlled study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 102, 109950. [Google Scholar] [CrossRef]
- Nakamura-Palacios, E.M.; Lopes, I.B.; Souza, R.A.; Klauss, J.; Batista, E.K.; Conti, C.L.; Moscon, J.A.; de Souza, R.S. Ventral medial prefrontal cortex (vmPFC) as a target of the dorsolateral prefrontal modulation by transcranial direct current stimulation (tDCS) in drug addiction. J. Neural Transm. 2016, 123, 1179–1194. [Google Scholar] [CrossRef] [PubMed]
- Jitendriya, B.; Holla, B.; Shivkumar, V.; Chand, P.K.; Murthy, P.; Venkatsubramanian, G. Effect Of Transcranial Direct Current Stimulation On Relapse Of Alcohol. Indian J. Psychiatry 2022, 64 (Suppl. S3), S629–S630. [Google Scholar]
- Camchong, J.; Roediger, D.; Fiecas, M.; Gilmore, C.S.; Kushner, M.; Kummerfeld, E.; Mueller, B.A.; Lim, K.O. Frontal tDCS reduces alcohol relapse rates by increasing connections from left dorsolateral prefrontal cortex to addiction networks. Brain Stimul. 2023, 16, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Shahbabaie, A.; Ebrahimpoor, M.; Hariri, A.; Nitsche, M.A.; Hatami, J.; Fatemizadeh, E.; Oghabian, M.A.; Ekhtiari, H. Transcranial DC stimulation modifies functional connectivity of large-scale brain networks in abstinent methamphetamine users. Brain Behav. 2018, 8, e00922. [Google Scholar] [CrossRef]
- Ekhtiari, H.; Soleimani, G.; Kuplicki, R.; Yeh, H.W.; Cha, Y.H.; Paulus, M. Transcranial direct current stimulation to modulate fMRI drug cue reactivity in methamphetamine users: A randomized clinical trial. Hum. Brain Mapp. 2022, 43, 5340–5357. [Google Scholar] [CrossRef]
- Soleimani, G.; Towhidkhah, F.; Oghabian, M.A.; Ekhtiari, H. DLPFC stimulation alters large-scale brain networks connectivity during a drug cue reactivity task: A tDCS-fMRI study. Front. Syst. Neurosci. 2022, 16, 956315. [Google Scholar] [CrossRef]
- Soleimani, G.; Kupliki, R.; Paulus, M.; Ekhtiari, H. Dose-response in modulating brain function with transcranial direct current stimulation: From local to network levels. PLoS Comput. Biol. 2023, 19, e1011572. [Google Scholar] [CrossRef]
- Verveer, I.; Remmerswaal, D.; van der Veen, F.M.; Franken, I.H.A. Long-term tDCS effects on neurophysiological measures of cognitive control in tobacco smokers. Biol. Psychol. 2020, 156, 107962. [Google Scholar] [CrossRef]
- den Uyl, T.E.; Gladwin, T.E.; Wiers, R.W. Electrophysiological and Behavioral Effects of Combined Transcranial Direct Current Stimulation and Alcohol Approach Bias Retraining in Hazardous Drinkers. Alcohol. Clin. Exp. Res. 2016, 40, 2124–2133. [Google Scholar] [CrossRef] [PubMed]
- da Silva, M.C.; Conti, C.L.; Klauss, J.; Alves, L.G.; do Nascimento Cavalcante, H.M.; Fregni, F.; Nitsche, M.A.; Nakamura-Palacios, E.M. Behavioral effects of transcranial direct current stimulation (tDCS) induced dorsolateral prefrontal cortex plasticity in alcohol dependence. J. Physiol.-Paris 2013, 107, 493–502. [Google Scholar] [CrossRef]
- Nakamura-Palacios, E.M.; de Almeida Benevides, M.C.; da Penha Zago-Gomes, M.; de Oliveira, R.W.; de Vasconcellos, V.F.; de Castro, L.N.; da Silva, M.C.; Ramos, P.A.; Fregni, F. Auditory event-related potentials (P3) and cognitive changes induced by frontal direct current stimulation in alcoholics according to Lesch alcoholism typology. Int. J. Neuropsychopharmacol. 2012, 15, 601–616. [Google Scholar] [CrossRef]
- Brown, D.R.; Jackson, T.C.J.; Claus, E.D.; Votaw, V.R.; Stein, E.R.; Robinson, C.S.H.; Wilson, A.D.; Brandt, E.; Fratzke, V.; Clark, V.P.; et al. Decreases in the Late Positive Potential to Alcohol Images Among Alcohol Treatment Seekers Following Mindfulness-Based Relapse Prevention. Alcohol Alcohol. 2020, 55, 78–85. [Google Scholar] [CrossRef]
- Dormal, V.; Lannoy, S.; Bollen, Z.; D’Hondt, F.; Maurage, P. Can we boost attention and inhibition in binge drinking? Electrophysiological impact of neurocognitive stimulation. Psychopharmacology 2020, 237, 1493–1505. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Liu, Y.H.; Muggleton, N.G. Use of the P300 event-related potential component to index transcranial direct current stimulation effects in drug users. IBRO Neurosci. Rep. 2023, 14, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi, H.; Dadashi, M.; Faridi, A.; Kazemzadeh, F.; Eskandari, Z. Using Bilateral tDCS to Modulate EEG Amplitude and Coherence of Men With Opioid Use Disorder Under Methadone Therapy: A Sham-controlled Clinical Trial. Clin. EEG Neurosci. 2022, 53, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Conti, C.L.; Nakamura-Palacios, E.M. Bilateral transcranial direct current stimulation over dorsolateral prefrontal cortex changes the drug-cued reactivity in the anterior cingulate cortex of crack-cocaine addicts. Brain Stimul. 2014, 7, 130–132. [Google Scholar] [CrossRef]
- Contia, C.L.; Moscona, J.A.; Miyuki, E.; Palaciosa, N. Dorsolateral Prefrontal Cortex Activity and Neuromodulation in Crack-Cocaine Dependents during Early Abstinence. J. Neurol. Neurophysiol. 2016, 7, 374. [Google Scholar] [CrossRef]
- Conti, C.L.; Moscon, J.A.; Fregni, F.; Nitsche, M.A.; Nakamura-Palacios, E.M. Cognitive related electrophysiological changes induced by non-invasive cortical electrical stimulation in crack-cocaine addiction. Int. J. Neuropsychopharmacol. 2014, 17, 1465–1475. [Google Scholar] [CrossRef]
- Khajehpour, H.; Parvaz, M.A.; Kouti, M.; Hosseini Rafsanjani, T.; Ekhtiari, H.; Bakht, S.; Noroozi, A.; Makkiabadi, B.; Mahmoodi, M. Effects of Transcranial Direct Current Stimulation on Attentional Bias to Methamphetamine Cues and Its Association With EEG-Derived Functional Brain Network Topology. Int. J. Neuropsychopharmacol. 2022, 25, 631–644. [Google Scholar] [CrossRef] [PubMed]
- Kroczek, A.M.; Häußinger, F.B.; Rohe, T.; Schneider, S.; Plewnia, C.; Batra, A.; Fallgatter, A.J.; Ehlis, A.C. Effects of transcranial direct current stimulation on craving, heart-rate variability and prefrontal hemodynamics during smoking cue exposure. Drug Alcohol. Depend. 2016, 168, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Eskandari, Z.; Dadashi, M.; Mostafavi, H.; Armani Kia, A.; Pirzeh, R. Comparing the Efficacy of Anodal, Cathodal, and Sham Transcranial Direct Current Stimulation on Brain-Derived Neurotrophic Factor and Psychological Symptoms in Opioid-Addicted Patients. Basic Clin. Neurosci. 2019, 10, 641–650. [Google Scholar] [CrossRef]
- Eskandari, Z.; Mostafavi, H.; Hosseini, M.; Mousavi, S.E.; Ramazani, S.; Dadashi, M. A sham-controlled clinical trial to examine the effect of bilateral tDCS on craving, TNF-α and IL-6 expression levels, and impulsivity of males with opioid use disorder. J. Addict. Dis. 2021, 39, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Alves, P.N.; Foulon, C.; Karolis, V.; Bzdok, D.; Margulies, D.S.; Volle, E.; Thiebaut de Schotten, M. An improved neuroanatomical model of the default-mode network reconciles previous neuroimaging and neuropathological findings. Commun. Biol. 2019, 2, 370. [Google Scholar] [CrossRef]
- Mars, R.B.; Neubert, F.X.; Noonan, M.P.; Sallet, J.; Toni, I.; Rushworth, M.F. On the relationship between the “default mode network” and the “social brain”. Front. Hum. Neurosci. 2012, 6, 189. [Google Scholar] [CrossRef]
- Dalwani, M.S.; Tregellas, J.R.; Andrews-Hanna, J.R.; Mikulich-Gilbertson, S.K.; Raymond, K.M.; Banich, M.T.; Crowley, T.J.; Sakai, J.T. Default mode network activity in male adolescents with conduct and substance use disorder. Drug Alcohol. Depend. 2014, 134, 242–250. [Google Scholar] [CrossRef]
- Sutherland, M.T.; McHugh, M.J.; Pariyadath, V.; Stein, E.A. Resting state functional connectivity in addiction: Lessons learned and a road ahead. Neuroimage 2012, 62, 2281–2295. [Google Scholar] [CrossRef]
- Geng, X.; Hu, Y.; Gu, H.; Salmeron, B.J.; Adinoff, B.; Stein, E.A.; Yang, Y. Salience and default mode network dysregulation in chronic cocaine users predict treatment outcome. Brain 2017, 140, 1513–1524. [Google Scholar] [CrossRef]
- Shen, K.K.; Welton, T.; Lyon, M.; McCorkindale, A.N.; Sutherland, G.T.; Burnham, S.; Fripp, J.; Martins, R.; Grieve, S.M. Structural core of the executive control network: A high angular resolution diffusion MRI study. Hum. Brain Mapp. 2020, 41, 1226–1236. [Google Scholar] [CrossRef]
- Uddin, L.Q.; Yeo, B.T.T.; Spreng, R.N. Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks. Brain Topogr. 2019, 32, 926–942. [Google Scholar] [CrossRef] [PubMed]
- Menon, V. Large-scale brain networks and psychopathology: A unifying triple network model. Trends Cogn. Sci. 2011, 15, 483–506. [Google Scholar] [CrossRef]
- Song, X.; Long, J.; Wang, C.; Zhang, R.; Lee, T.M.C. The inter-relationships of the neural basis of rumination and inhibitory control: Neuroimaging-based meta-analyses. Psychoradiology 2022, 2, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Suk, J.W.; Hwang, S.; Cheong, C. Functional and Structural Alteration of Default Mode, Executive Control, and Salience Networks in Alcohol Use Disorder. Front. Psychiatry 2021, 12, 742228. [Google Scholar] [CrossRef] [PubMed]
- Barrós-Loscertales, A.; Costumero, V.; Rosell-Negre, P.; Fuentes-Claramonte, P.; Llopis-Llacer, J.J.; Bustamante, J.C. Motivational factors modulate left frontoparietal network during cognitive control in cocaine addiction. Addict. Biol. 2020, 25, e12820. [Google Scholar] [CrossRef]
- Costumero, V.; Barrós-Loscertales, A. The Left Frontoparietal Brain Network in Addictions. In Handbook of Substance Misuse and Addictions; Patel, V.B., Preedy, V.R., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Haber, S.N. Chapter 11 Neuroanatomy of Reward: A View from the Ventral Striatum. In Neurobiology of Sensation and Reward; Gottfried, J.A., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2011. Available online: https://www.ncbi.nlm.nih.gov/books/NBK92777/ (accessed on 25 May 2025).
- Haber, S.N.; Knutson, B. The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology 2010, 35, 4–26. [Google Scholar] [CrossRef]
- Peters, S.K.; Dunlop, K.; Downar, J. Cortico-Striatal-Thalamic Loop Circuits of the Salience Network: A Central Pathway in Psychiatric Disease and Treatment. Front. Syst. Neurosci. 2016, 10, 104. [Google Scholar] [CrossRef]
- Li, X.; Kass, G.; Wiers, C.E.; Shi, Z. The Brain Salience Network at the Intersection of Pain and Substance use Disorders: Insights from Functional Neuroimaging Research. Curr. Addict. Rep. 2024, 11, 797–808. [Google Scholar] [CrossRef]
- Cushnie, A.K.; Tang, W.; Heilbronner, S.R. Connecting Circuits with Networks in Addiction Neuroscience: A Salience Network Perspective. Int. J. Mol. Sci. 2023, 24, 9083. [Google Scholar] [CrossRef]
- Tameh, H.A.; Imani, S.; Alizadehgoradel, J.; Noroozi, A. Effect of Intensified Transcranial Direct-current Stimulation Targeting Bilateral Dorsolateral Prefrontal Cortex on Craving Reduction in Patients with Opioid (Heroin) Use Disorder. Clin. Psychopharmacol. Neurosci. 2024, 22, 512–519. [Google Scholar] [CrossRef]
- Bunai, T.; Hirosawa, T.; Kikuchi, M.; Fukai, M.; Yokokura, M.; Ito, S.; Takata, Y.; Terada, T.; Ouchi, Y. tDCS-induced modulation of GABA concentration and dopamine release in the human brain: A combination study of magnetic resonance spectroscopy and positron emission tomography. Brain Stimul. 2021, 14, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Fukai, M.; Bunai, T.; Hirosawa, T.; Kikuchi, M.; Ito, S.; Minabe, Y.; Ouchi, Y. Endogenous dopamine release under transcranial direct-current stimulation governs enhanced attention: A study with positron emission tomography. Transl. Psychiatry 2019, 9, 115. [Google Scholar] [CrossRef] [PubMed]
- Di Gregorio, F.; Battaglia, S. Advances in EEG-based functional connectivity approaches to the study of the central nervous system in health and disease. Adv. Clin. Exp. Med. 2023, 32, 607–612. [Google Scholar] [CrossRef]
- Cui, X.; Zhong, D.; Zheng, J. A meta-analysis to investigate the role of magnetic resonance spectroscopy in the detection of temporal lobe epilepsy. Adv. Clin. Exp. Med. 2023, 32, 163–173. [Google Scholar] [CrossRef]
- Ieong, H.F.; Yuan, Z. Abnormal resting-state functional connectivity in the orbitofrontal cortex of heroin users and its relationship with anxiety: A pilot fNIRS study. Sci. Rep. 2017, 7, 46522. [Google Scholar] [CrossRef]
- Carollo, A.; Cataldo, I.; Fong, S.; Corazza, O.; Esposito, G. Unfolding the real-time neural mechanisms in addiction: Functional near-infrared spectroscopy (fNIRS) as a resourceful tool for research and clinical practice. Addict. Neurosci. 2022, 4, 100048. [Google Scholar] [CrossRef]
- Porter, G.A.; O’Connor, J.C. Brain-derived neurotrophic factor and inflammation in depression: Pathogenic partners in crime? World J. Psychiatry 2022, 12, 77–97. [Google Scholar] [CrossRef] [PubMed]
- Miyanishi, H.; Nitta, A. A Role of BDNF in the Depression Pathogenesis and a Potential Target as Antidepressant: The Modulator of Stress Sensitivity “Shati/Nat8l-BDNF System” in the Dorsal Striatum. Pharmaceuticals 2021, 14, 889. [Google Scholar] [CrossRef]
- Castrén, E.; Monteggia, L.M. Brain-Derived Neurotrophic Factor Signaling in Depression and Antidepressant Action. Biol. Psychiatry 2021, 90, 128–136. [Google Scholar] [CrossRef]
- Barker, J.M.; Taylor, J.R.; De Vries, T.J.; Peters, J. Brain-derived neurotrophic factor and addiction: Pathological versus therapeutic effects on drug seeking. Brain Res. 2015, 1628 Pt A, 68–81. [Google Scholar] [CrossRef]
- Logrip, M.L.; Barak, S.; Warnault, V.; Ron, D. Corticostriatal BDNF and alcohol addiction. Brain Res. 2015, 1628 Pt A, 60–67. [Google Scholar] [CrossRef]
- Peregud, D.I.; Baronets, V.Y.; Terebilina, N.N.; Gulyaeva, N.V. Role of BDNF in Neuroplasticity Associated with Alcohol Dependence. Biochemistry 2023, 88, 404–416. [Google Scholar]
- Li, X.; Wolf, M.E. Multiple faces of BDNF in cocaine addiction. Behav. Brain Res. 2015, 279, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Ornell, F.; Hansen, F.; Schuch, F.B.; Pezzini Rebelatto, F.; Tavares, A.L.; Scherer, J.N.; Valerio, A.G.; Pechansky, F.; Paim Kessler, F.H.; von Diemen, L. Brain-derived neurotrophic factor in substance use disorders: A systematic review and meta-analysis. Drug Alcohol. Depend. 2018, 193, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ramos-Rolón, A.P.; Kass, G.; Pereira-Rufino, L.S.; Shifman, N.; Shi, Z.; Volkow, N.D.; Wiers, C.E. Imaging neuroinflammation in individuals with substance use disorders. J. Clin. Investig. 2024, 134, e172884. [Google Scholar] [CrossRef]
- Kohno, M.; Link, J.; Dennis, L.E.; McCready, H.; Huckans, M.; Hoffman, W.F.; Loftis, J.M. Neuroinflammation in addiction: A review of neuroimaging studies and potential immunotherapies. Pharmacol. Biochem. Behav. 2019, 179, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Ahearn, O.C.; Watson, M.N.; Rawls, S.M. Chemokines, cytokines and substance use disorders. Drug Alcohol. Depend. 2021, 220, 108511. [Google Scholar] [CrossRef]
- Morcuende, A.; Navarrete, F.; Nieto, E.; Manzanares, J.; Femenía, T. Inflammatory Biomarkers in Addictive Disorders. Biomolecules 2021, 11, 1824. [Google Scholar] [CrossRef]
- Agarwal, K.; Manza, P.; Chapman, M.; Nawal, N.; Biesecker, E.; McPherson, K.; Dennis, E.; Johnson, A.; Volkow, N.D.; Joseph, P.V. Inflammatory Markers in Substance Use and Mood Disorders: A Neuroimaging Perspective. Front. Psychiatry 2022, 13, 863734. [Google Scholar] [CrossRef]
- Bachtell, R.K.; Jones, J.D.; Heinzerling, K.G.; Beardsley, P.M.; Comer, S.D. Glial and neuroinflammatory targets for treating substance use disorders. Drug Alcohol. Depend. 2017, 180, 156–170. [Google Scholar] [CrossRef]
- Ma, N.; Liu, Y.; Fu, X.M.; Li, N.; Wang, C.X.; Zhang, H.; Qian, R.B.; Xu, H.S.; Hu, X.; Zhang, D.R. Abnormal brain default-mode network functional connectivity in drug addicts. PLoS ONE 2011, 6, e16560. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, Z.; Li, W.; Zhang, Y.; Wang, Y.; Zhu, J.; Chen, J.; Li, Y.; Yan, X.; Ye, J.; et al. Disrupted Default Mode Network and Basal Craving in Male Heroin-Dependent Individuals: A Resting-State fMRI Study. J. Clin. Psychiatry 2016, 77, e1211–e1217. [Google Scholar] [CrossRef]
- Chen, J.; Wang, F.; Zhu, J.; Li, Y.; Liu, W.; Xue, J.; Shi, H.; Li, W.; Li, Q.; Wang, W. Assessing effect of long-term abstinence on coupling of three core brain networks in male heroin addicts: A resting-state functional magnetic resonance imaging study. Addict. Biol. 2021, 26, e12982. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, S.; Li, Z.; Li, Y.; Huang, P.; Zhu, J.; Wang, F.; Li, Y.; Liu, W.; Xue, J.; et al. The effect of long-term methadone maintenance treatment on coupling among three large-scale brain networks in male heroin-dependent individuals: A resting-state fMRI study. Drug Alcohol. Depend. 2022, 238, 109549. [Google Scholar] [CrossRef]
- Jin, L.; Yuan, M.; Chen, J.; Zhang, W.; Wang, L.; Wei, Y.; Li, Y.; Guo, Z.; Wang, W.; Wei, L.; et al. Abnormal cerebral metabolism and metabolic connectivity in individuals with heroin dependence: An integrated resting-state PET/fMRI study in large-scale networks. J. Psychiatry Neurosci. 2023, 48, E295–E304. [Google Scholar] [CrossRef]
- Li, Q.; Liu, J.; Wang, W.; Wang, Y.; Li, W.; Chen, J.; Zhu, J.; Yan, X.; Li, Y.; Li, Z.; et al. Disrupted coupling of large-scale networks is associated with relapse behaviour in heroin-dependent men. J. Psychiatry Neurosci. 2018, 43, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Chmiel, J.; Stępień-Słodkowska, M.; Ramik-Mażewska, I. Efficacy of Transcranial Direct Current Stimulation (tDCS) on Neuropsychiatric Symptoms in Substance Use Disorder (SUD)—A Review and Insights into Possible Mechanisms of Action. J. Clin. Med. 2025, 14, 1337. [Google Scholar] [CrossRef]
- Jeong, J.E.; Park, C.H.; Kim, M.; Cho, H.; Pyeon, A.; Jung, S.; Jung, D.; Kim, J.Y.; Choi, J.; Chun, J.W.; et al. Effects of bilateral tDCS over DLPFC on response inhibition, craving, and brain functional connectivity in Internet gaming disorder: A randomized, double-blind, sham-controlled trial with fMRI. J. Behav. Addict. 2024, 13, 610–621. [Google Scholar] [CrossRef]
- Kober, H.; Mende-Siedlecki, P.; Kross, E.F.; Weber, J.; Mischel, W.; Hart, C.L.; Ochsner, K.N. Prefrontal-striatal pathway underlies cognitive regulation of craving. Proc. Natl. Acad. Sci. USA 2010, 107, 14811–14816. [Google Scholar] [CrossRef]
- Goldstein, R.Z.; Volkow, N.D. Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 2011, 12, 652–669. [Google Scholar] [CrossRef]
- Luijten, M.; Machielsen, M.W.; Veltman, D.J.; Hester, R.; de Haan, L.; Franken, I.H. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. J. Psychiatry Neurosci. 2014, 39, 149–169. [Google Scholar] [CrossRef] [PubMed]
- Dousset, C.; Chenut, C.; Kajosch, H.; Kornreich, C.; Campanella, S. Comparison of Neural Correlates of Reactive Inhibition in Cocaine, Heroin, and Polydrug Users through a Contextual Go/No-Go Task Using Event-Related Potentials. Biology 2022, 11, 1029. [Google Scholar] [CrossRef] [PubMed]
- Kohen, C.B.; Cofresí, R.U.; Piasecki, T.M.; Bartholow, B.D. Predictive utility of the P3 event-related potential (ERP) response to alcohol cues for ecologically assessed alcohol craving and use. Addict. Biol. 2024, 29, e13368. [Google Scholar] [CrossRef]
- Bartholow, B.D.; Lust, S.A.; Tragesser, S.L. Specificity of P3 event-related potential reactivity to alcohol cues in individuals low in alcohol sensitivity. Psychol. Addict. Behav. 2010, 24, 220–228. [Google Scholar] [CrossRef]
- Littel, M.; Franken, I.H. Intentional modulation of the late positive potential in response to smoking cues by cognitive strategies in smokers. PLoS ONE 2011, 6, e27519. [Google Scholar] [CrossRef]
- Preston, T.J.; Cougle, J.R.; Schmidt, N.B.; Macatee, R.J. Decomposing the late positive potential to cannabis cues in regular cannabis users: A temporal-spatial principal component analysis. Psychophysiology 2024, 61, e14471. [Google Scholar] [CrossRef]
- Pogarell, O.; Padberg, F.; Karch, S.; Segmiller, F.; Juckel, G.; Mulert, C.; Hegerl, U.; Tatsch, K.; Koch, W. Dopaminergic mechanisms of target detection—P300 event related potential and striatal dopamine. Psychiatry Res. 2011, 194, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef]
- Parvaz, M.A.; Moeller, S.J.; Malaker, P.; Sinha, R.; Alia-Klein, N.; Goldstein, R.Z. Abstinence reverses EEG-indexed attention bias between drug-related and pleasant stimuli in cocaine-addicted individuals. J. Psychiatry Neurosci. 2017, 42, 78–86. [Google Scholar] [CrossRef]
- Minnix, J.A.; Versace, F.; Robinson, J.D.; Lam, C.Y.; Engelmann, J.M.; Cui, Y.; Brown, V.L.; Cinciripini, P.M. The late positive potential (LPP) in response to varying types of emotional and cigarette stimuli in smokers: A content comparison. Int. J. Psychophysiol. 2013, 89, 18–25. [Google Scholar] [CrossRef]
- Webber, H.E.; de Dios, C.; Kessler, D.A.; Schmitz, J.M.; Lane, S.D.; Suchting, R. Late positive potential as a candidate biomarker of motivational relevance in substance use: Evidence from a meta-analysis. Neurosci. Biobehav. Rev. 2022, 141, 104835. [Google Scholar] [CrossRef] [PubMed]
Notable Observations | Key Neural and Behavioral Findings | Tasks/Measures | tDCS Protocol | Sample and Design | Study |
---|---|---|---|---|---|
- Despite no overt behavioral effect, there was a pronounced tDCS-induced DMN deactivation under the left-DLPFC-anode montage. - ACC activity changes emerged specifically for correct Flanker responses. | - Behavior: No significant main or interaction effects of tDCS; nicotine-abstinent smokers performed worse/slower across tasks. - ROI Flanker: tDCS × Group interaction in R ACC (p = 0.03), greatest under An-lDLPFC in sated smokers. - Whole-brain N-back: Stronger DMN deactivation under An-lDLPFC vs. reversed polarity or sham (p < 0.01). - Nicotine sated: Additional DMN deactivation in 3-back minus 0-back. | - Modified Faces/Shapes (amygdala reactivity). - Parametric Flanker (ACC/insular activity). - N-back (WM, DMN suppression). - fMRI during or shortly after tDCS. | - Single-session tDCS but repeated in 3 separate conditions (left anodal DLPFC/right cathodal vmPFC, reversed polarity, sham). - 2 mA, 25 min each. | - 15 smokers (7F), 28 nonsmokers (14F). - All underwent 3 tDCS sessions (double-blind, crossover). - Smokers tested once while nicotine-sated (patch), once while abstinent (placebo patch, ≥12 h). | [82] |
- Craving was notably reduced by active tDCS, despite no difference in actual cigarette consumption or CO levels. - A dorsal PCC cluster showed opposite activation changes in active vs. sham. | - Smoking: Consumption decreased over 5 days then rose after; no between-group difference. - Craving: Active group had stronger session-by-session craving reduction (p = 0.031). - fMRI: A right dorsal posterior cingulate region showed time × group interaction; activity ↑ in active group, ↓ in sham (p < 0.005 uncorrected). - No correlation with smoking behavior changes. | - Daily cigarette use, exhaled CO. - Self-reported craving pre-/post-session. - fMRI cue reactivity (smoking, neutral, target images) pre- vs. post-tDCS. | - Active vs. Sham (anode ~F4–Fp2 over right DLPFC, cathode left occipital). - 2 mA, 20 min per session. | - 29 adult smokers wanting to quit. - Randomized, double-blind, parallel arms. - 10 sessions over 5 days (2×/day). | [83] |
- Demonstrates a direct link between fronto-hippocampal connectivity and craving modulation. -Single 30 min session was sufficient to alter neural reactivity to smoking cues. | - Craving: Overall rose from pre- to post-cue, but smaller increase under real vs. sham (p = 0.027). - Cue reactivity fMRI: tDCS × Cue interaction in L superior and middle frontal gyri; smoking-minus-neutral activation was reduced more with real tDCS (p < 0.01). - Connectivity: PPI between L DLPFC and R parahippocampal gyrus was altered by real tDCS (p < 0.001), correlating with craving changes (r = −0.52). - No effect on emotion task or reaction times. | - Pre/post-craving ratings. - Resting-state fMRI. - Smoking cue reactivity (neutral vs. smoking pics). - Emotion-processing task (negative vs. neutral). | - Anode over left DLPFC, cathode over right DLPFC. - 1 mA, 30 min. - tDCS administered inside MRI scanner. | - 32 male chronic smokers (≥10 cig/day, ≥2 y). - Within-subject, counterbalanced (real vs. sham). - 1-week interval. - 2 tDCS sessions–real and sham. | [84] |
- Indicates lateralized effects: anodal right DLPFC speeds up go responses; anodal left DLPFC modifies other regions’ activity/connectivity. - Single session can alter network-level BOLD, even without large behavioral shifts on No-Go. | - Behavior: Right-DLPFC group had faster Go RT vs. Sham (p = 0.008). No-go errors unchanged. - BOLD: Both left and right groups had decreased activation in occipital/precuneus areas for Go. Right group had increased STG/cerebellar activation in No-Go. - Connectivity: Post-stimulation changes in DLPFC-based networks, with distinct patterns for left vs. right anode. - No direct craving measure reported. | - Go/No-Go performance (RT, errors) - BOLD signal changes pre- vs. Post-stimulation - Seed-based connectivity (left or right DLPFC) | - 2 mA, 20 min. - Cathode on contralateral supraorbital area. - Pre/post fMRI during Go/No-Go. | - 46 right-handed male smokers. - Randomly assigned to left anode DLPFC, right anode DLPFC, or sham. - Single tDCS session. | [85] |
- Suggests fronto-cingulate network reorganization can improve impulse control and prolong abstinence. - Graph metrics (efficiency/clustering) predicted relapse risk. | Connectivity: Active group ↑ global efficiency (p = 0.007) and ↓ global clustering (p = 0.008); sham no change. - Sub-network analysis found stronger connectivity in right ACC and frontal nodes. Clinical: Active group took ~30 days to relapse vs. ~15 for Sham (p = 0.013). - Greater reductions in global clustering correlated with faster stop-signal response times (r = 0.57). | - Resting-state fMRI (pre/post). - Graph–theoretic network measures (global efficiency/clustering). - Time to first alcohol use after discharge. | - Anode on right DLPFC (F4), cathode on left DLPFC (F3). - 2 mA, 20 min. | - 24 males with alcohol use disorder. -Randomized double-blind to active or sham. - 5 sessions (once/day). | [86] |
- Evidence that bilateral DLPFC tDCS can structurally strengthen specific fronto-limbic connections. - White matter changes closely tracked craving improvements. | - Only the left vmPFC–NAcc white matter tract changed significantly in active tDCS (↑ voxel count, FA, ADC, all p < 0.05). - Gains in left vmPFC–NAcc DTI indices correlated with greater craving reduction (R2 ≥ 0.29, p < 0.05). - No changes in other tracts. | - ERP for cue reactivity. - DTI focusing on 3 tracts: VTA–NAcc, VTA–PFC, vmPFC–NAcc. - Craving scales. | - Cathode on left DLPFC (F3), anode on right DLPFC (F4). - Typically 2 mA, 20 min or 13 + 20 + 13 min protocols. | - 14 men (7 active, 7 sham), with alcohol or crack-cocaine dependence. - 5 sessions. - Behavioral, EEG/ERP, DTI measures. | [87] |
- Even a short 5-day course can upregulate frontal responsiveness to alcohol cues, tied to reduced relapse. - Supports frontal “boost” in controlling cue-related urges. | - At baseline, no group difference in BOLD reactivity. Post-tDCS, real group had increased DLPFC activation to alcohol cues vs. sham. - This DLPFC increase correlated with longer abstinence (p = 0.048). | - Baseline and post-treatment fMRI with a visual alcohol cue paradigm (VICE). - Time to lapse after treatment. | - 2 mA, 20 min - Cathode over left DLPFC, anode over right DLPFC. | - 24 patients with alcohol dependence after detox. - Real vs. sham tDCS, daily for 5 days. | [88] |
- Provides evidence that strengthening top–down control to subcortical/limbic networks fosters reduced relapse. - Directed connectivity measures highlight a possible causal effect of tDCS. | Connectivity: Active group ↑ directed connections from lDLPFC to incentive salience and negative emotionality networks, sham group ↓. - This connectivity gain predicted staying abstinent at 4 months. - Relapse rate: 19% active vs. 38% sham; difference more pronounced among females. | - Resting-state fMRI (pre/post). - “Causal discovery” methods of connectivity in 4 hypothesized addiction networks. - Relapse monitoring at 1 and 4 months. | - Anode on left DLPFC (F3), cathode on right DLPFC (F4). - 2 mA, 20 min/day. | - 60 AUD patients in early abstinence (residential). - Randomized to active vs. sham. - 5 days of tDCS + cognitive training. | [89] |
- Demonstrates that bilateral DLPFC stimulation can reconfigure network connectivity in early meth abstinence and yield immediate craving relief. | - Craving: Active tDCS → ~15-point drop, sham → ~1-point drop (p = 0.03). - Connectivity: Decreases in DMN (posterior cingulate, precuneus), increases in ECN (parietal, temporal), and SN (lingual gyrus, cingulate). - Larger connectivity shifts correlated with bigger craving reductions. | - Resting-state fMRI (pre/post). - Self-reported meth craving (0–100). - Large-scale network connectivity (DMN, ECN, SN). | - Anode on right DLPFC (F4), cathode on left DLPFC (F3). - 2 mA, 20 min each session. | - 15 male participants in early abstinence from methamphetamine. - Double-blind, crossover (active vs. sham). - 1-week washout. - 2 session of tDCS (real and sham). | [90] |
- Shows that actual electric field (EF) strength in targeted cortical sites predicts local functional changes. - No net difference in craving, but distinct BOLD trajectories for active vs. sham. | - Craving: Both groups declined, no group difference. - fMRI: sham → decreased activation on 2nd exposure; active → increased BOLD in L MFG, insula, IPL, precuneus, IFG. - EF in right SFG correlated with local BOLD and frontoparietal connectivity changes (only in active). | - fMRI cue reactivity (meth vs. neutral images). - Computational head models to map EF distribution. - Self-reported craving. | - Anode on right DLPFC, cathode contralateral supraorbital. - 2 mA, 20 min. | - 60 adult males in residential treatment for methamphetamine use. - Randomized, single-session (active vs. sham). - Triple-blind design. - Single tDCS session. | [91] |
- Suggests rebalancing among large-scale networks (ECN, VAN, DMN) that parallels craving reduction. - Head-model EF intensities correlated with these connectivity shifts. | - Craving: active → larger drop vs. sham. - gPPI: From an ECN seed, connectivity with visual/precuneus region ↑ in active, but ↓ in sham. - DMN seed connectivity with a parietal cluster ↓ in active, ↑ in sham. - Gains in ECN/VAN connectivity, reduced DMN connectivity. | - fMRI during pictorial meth cue reactivity task. - Seeds in ECN, DMN, VAN. - Craving measured pre/post. | - Bilateral DLPFC: anode at F4, cathode at F3. - 2 mA, 20 min. | - 15 men with MUD in residential program. - Double-blind, crossover (active vs. sham). - 1-week washout. - 2 tDCS sessions (real and sham). | [92] |
- Highlights that tDCS “dose” (EF intensity) may shape network connectivity rather than localized activation. - No significant group-level craving benefit from single session. | - No robust EF–fMRI correlations at voxel/ROI/cluster levels (corrected). - Network-level analysis: EF in right-frontal regions positively correlated with frontoparietal connectivity changes (r = 0.43, p = 0.03). - Craving did not differ significantly real vs. sham. | - Structural MRI to build head-model Efs. - fMRI cue reactivity (meth vs. neutral) pre-/post. - Craving assessments. | - Anode over right DLPFC (F4), cathode over left eyebrow (Fp1). - 2 mA, 20 min. | - 60 males with MUD. - Randomized to real vs. sham. - Single session in MRI scanner. | [93] |
Notable Observations | Key Findings | Tasks/Measures | tDCS Protocol | Sample and Design | Study |
---|---|---|---|---|---|
- Suggests delayed tDCS effects on inhibitory control - P3 amplitude change tied to attenuated salience of smoking cues | - 1-day post: No between-group differences in RT, accuracy, or ERPs - 3-month post: Active tDCS → faster RT (esp. post-correct) and reduced NoGo P3 for smoking images vs. sham | - Go–NoGo task with smoking vs. neutral images - EEG: N2, P3, ERN amplitudes | - Bilateral DLPFC: anode R-DLPFC (F4), cathode L-DLPFC (F3)-2 mA - 13 min ×2 (with 20 min break), per session | - 73 daily tobacco smokers - 6 total sessions over 3 days, plus 3 lab visits (pre, 1-day post, 3-month FU) | [94] |
- Minimal synergy between tDCS and CBM on behavior - EEG indicated some craving benefit with active tDCS - Overall, changes in approach bias not driven by tDCS | - CBM alone reduced approach bias but effect mainly in 1st session - tDCS had no main effect on bias or consumption - In cue reactivity EEG, an interaction (time × tDCS) showed active tDCS → greater reduction in craving for alcohol images post-assessment | - Approach Avoidance Task (AAT) - Implicit Association Test (IAT) - Self-reported craving and alcohol use - EEG (oddball and cue-reactivity tasks; P300) | - Left DLPFC montage - 1 mA, 15 min - Cathode contralateral supraorbital | - 78 hazardous drinkers (AUDIT > 8) - 2 × 2 design (sham/active tDCS × Control/Active CBM) - 3 training sessions | [95] |
- Contrasting results: real tDCS lowered craving and depression but had higher relapse rate - Points to complexity of clinical vs. electrophysiological outcomes | - Relapse: 66.7% real vs. 14.3% sham (p = 0.053) - Craving decreased more under real tDCS (Δ = −9.1 vs. −1.5, p = 0.015) - Depression reduced more (p = 0.005) - ERP changes were smaller in real tDCS group vs. bigger shifts in sham | - Craving, depression, anxiety, QoL - Executive functioning (Frontal Assessment Battery) - ERPs (neutral/alcohol pics), LORETA analysis | - Anode on left DLPFC - Cathode on contralateral (right) supradeltoid - 2 mA, 20 min, 1×/week ×5 | - 13 male Lesch Type IV alcoholics - Weekly “real” anodal tDCS vs. “sham” for 5 consecutive weeks | [96] |
- Effects are strongly subtype dependent (Type IV responded most positively) - Highlights individual difference in tDCS response | - Alcohol-related sounds → ↑ P3 amplitude post–tDCS, stronger in real vs. sham - Type IV: greatest P3 rise at all electrode sites + improved FAB with real tDCS - Type II: P3 amplitude decreased under real vs. sham - No changes in craving | - P3 amplitude to alcohol vs. neutral sounds - Frontal Assessment Battery, daily alcohol consumption by subtype | - Left DLPFC, 1 mA, 10 min - Cathode on contralateral supradeltoid - Focus on P3 amplitude at Fz, Cz, Pz | - 49 outpatients with alcohol dependence (Lesch Types I–IV) - 2 sessions (sham vs. real) - ERP recordings (before/during/after) | [97] |
- Suggests vmPFC involvement is crucial for maintaining abstinence w/bilateral tDCS - LORETA localized distinct cortical generators of P3 changes | - Active, abstinent participants showed largest P3 changes in vmPFC - Sham/relapse participants had shifts in middle temporal gyrus - A similar pattern emerged for crack-cocaine subset | - P3 amplitude changes w/drug images - Brain areas (vmPFC vs. Others) - Abstinence vs. relapse - LORETA | - Bilateral DLPFC: cathode L-DLPFC, anode rightDLPFC - 2 mA, 20 min | - 22 men (8 active, 14 sham) -alcohol or crack-cocaine dependence - 5 tDCS sessions | [87] |
- Suggests MBRP is key driver of craving and LPP changes - Active tDCS had no robust incremental effect - LPP correlates w/emotional cue processing | - Overall craving and LPP to alcohol decreased significantly pre→post (p < 0.02) - tDCS did not significantly improve craving vs. sham - Higher baseline LPP in the active group - More MBRP sessions → greater craving reduction | - EEG w/alcohol, neutral, negative images - Late positive potential (LPP) - Self-reported craving and negativity ratings | - tDCS over right IFG (F10), 2 mA, 20 min - Cathode on left upper arm | - 68 participants (alcohol use disorder/heavy drinking) - 8-session MBRP group + active vs. sham tDCS | [98] |
- tDCS modulated early conflict (N2) in binge drinkers - Non-binge drinkers had stronger inhibitory P3 w/tDCS - Illustrates subgroup differences in neural responsiveness | - Behavioral performance similar across conditions and groups - Binge: Larger N2 amplitude under active, no P3 change - Non-binge: Larger No-Go P3 under active vs. sham - No direct correlation between ERP and performance | - Behavioral (RTs, No-Go accuracy) - ERPs: N2, P3 for correct Go/No-Go | - Left DLPFC, 1.5 mA - Cathode above right eye (Fp2) - tDCS applied during a neutral Go/No-Go | - 40 participants (20 binge, 20 non-binge) - Within-subject, 2 sessions (active vs. sham), 1-week apart | [99] |
- Suggests enhanced attentional control for neutral stimuli - Real tDCS uniquely improved invalid-cue performance over 5 days | - Only real tDCS group improved on invalid-minus-valid RT - P300 amplitude (300–410 ms) increased in real tDCS group under neutral cues - No drug-cue P300 changes - Sham/control → no improvement | - Posner cueing task (drug/neutral) measuring attentional RT - EEG P300 for invalid vs. valid targets | - Cathode on left DLPFC (F3), anode on R-DLPFC (F4) - 2 mA, 13:20:13 protocol, daily ×5 | - 30 total (10 real tDCS, 9 sham, 11 control) - Abstinent amphetamine users vs. controls - 5-day regimen of tDCS | [100] |
- Suggests repeated bilateral tDCS can reorganize resting-state EEG, especially connectivity in slower frequencies. - No direct craving or usage measure. | - Active (both directions): Larger reductions in slow-wave amplitude (delta–alpha) than sham. - Greater increases in coherence (delta, theta, beta) in frontal/parietal/temporal. - Sham had smaller or different patterns. | - EEG amplitude (delta, theta, alpha, beta) - EEG coherence (connectivity) among 19 channels | - 2 mA, 20 min, bilateral DLPFC | - 30 men w/opioid use disorder on MMT - 10 daily sessions of tDCS vs. sham - 3 groups: left-anode/right-cathode, right-anode/left-cathode, sham | [101] |
- Single bilateral session can dampen ACC reactivity to crack cues. - Sham shows typical “rise” in ACC under drug stimuli. | - Sham: ACC current density increased from baseline for crack images. - Active: ACC density decreased for crack images (p < 0.0001). Neutral unaffected. | - EEG (N2 ~200–350 ms) - Crack vs. neutral images - LORETA in ACC | - 2 mA, 20 min - Anodal right DLPFC, cathodal left DLPFC | - 13 adults with crack-cocaine addiction - Left-cathode/right-anode vs. sham - Single session | [102] |
- Suggests a single left-cathodal/right-anodal session can blunt left DLPFC reactivity - Reinforces the role of DLPFC in cue-provoked responding | - Real tDCS prevented typical rise in left DLPFC activation when viewing crack images (p < 0.0001) - Sham group did not show this suppression; no changes in right DLPFC - Strong correlation of DLPFC activity with days of abstinence | - Cue reactivity paradigm (drug vs. neutral) - 32-channel EEG + LORETA for DLPFC (BA 9, 46) | - 2 mA, 20 min - Anodal right DLPFC, cathodal left DLPFC | - 16 participants, crack-cocaine dependent (≤30 days abstinent) - Left-cathode/right-anode vs. sham - Single session, then P3 analysis | [103] |
- Demonstrates both immediate and cumulative tDCS effects on P3 sources in left DLPFC and beyond - Multiple sessions broaden the affected prefrontal regions (frontopolar, OFC, ACC) | - After single active session → P3 in L DLPFC ↑ for neutral cues, ↓ for crack cues - Sham → opposite direction - After 5 active sessions → changes extended to frontopolar, orbitofrontal, ACC - Sham → smaller or no changes | - EEG P3 (350–600 ms) for neutral vs. drug cues - LORETA of prefrontal regions | - 2 mA, 20 min - Anodal right DLPFC, cathodal left DLPFC | - 13 crack-cocaine–dependent adults - Randomized to real (left cathode/right anode) vs. sham - 5 successive sessions | [104] |
- Single bilateral session specifically reduced initial attentional bias (P3) to MA cues - Relationship to network efficiency suggests baseline connectivity modulates tDCS response | - P3: Real tDCS → drop in amplitude for MA cues vs. sham (p = 0.002 at post); LPP unaffected - Craving: Dropped more in tDCS group but between-group difference n.s. - Network topology: Those with higher local/global efficiency at baseline showed smaller P3 declines | - ERP P3 and LPP to MA vs. neutral - Self-reported craving - Weighted phase lag index and graph efficiency metrics | - 2 mA, anode right DLPFC (F4), cathode left DLPFC (F3) | - 42 men with methamphetamine use disorder, abstinent 1 wk–6 mos - Single bilateral (R-anode/L-cathode) vs. sham | [105] |
Notable Observations | Key Findings | Tasks/Measures | tDCS Protocol | Sample and Design | Study |
---|---|---|---|---|---|
- No group differences for subjective craving or LF-HRV across the session. - No changes in high-frequency HRV or LF/HF ratio. - Greater prefrontal connectivity (fNIRS) observed with real tDCS, suggesting localized neuromodulatory effects without overtly reducing craving or HRV. | - Craving increased significantly over time for both groups (p < 0.001), with no interaction by tDCS. - LF-HRV rose over time (p = 0.001), but no difference between real vs. sham. - fNIRS: Time-by-stimulation effect in left BA9 (p = 0.039). Higher connectivity between orbitofrontal (CH48) and dorsolateral PFC region (CH6) in real tDCS vs. sham (d = 0.66, p < 0.001). | - 20 min “in vivo” smoking-cue exposure. - Craving (self-report ratings). - Heart-rate variability (HRV) from ECG (low-frequency, high-frequency, LF/HF ratio). - fNIRS (prefrontal hemodynamics; changes in deoxygenated hemoglobin). | - 2 mA, 115 min. - Anode at F3 (left DLPFC), cathode at Fp2 (orbitofrontal). | - 29 adult smokers (university students smoking at least weekly). - Random assignment to real (anode left DLPFC, cathode orbitofrontal) or sham tDCS. - Single-session design, with in vivo smoking-cue exposure. | [106] |
Notable Observations | Key Findings | Tasks/Measures | tDCS Protocol | Sample and Design | Study |
---|---|---|---|---|---|
- Both active tDCS groups had some advantage over sham on specific measures - No direct difference emerged between left-anode vs. right-anode groups - Indicates selective benefits (e.g., left-anode for mood/stress, right-anode for BDNF) | - BDNF: Right-anode group vs. sham was significant (p = 0.042); left-anode vs. sham not significant - Depression: Left-anode vs. sham (p = 0.023) - Anxiety: Left-anode vs. sham (p = 0.001), right-anode vs. sham (p = 0.006) - Stress: Left-anode vs. Sham (p = 0.014); right-anode vs. sham not significant - Craving: Both active protocols significantly differed from sham | - Serum BDNF via ELISA - Depression, anxiety, stress via DASS - Craving via Desires for Drug Questionnaire (DDQ) | - 2 mA for 20 min - Left-anode group: Anode at F3, cathode at F4 - Right-anode group: Anode at F4, cathode at F3 | - 30 male patients with opioid use disorder, randomized into 3 groups (n = 10 each): (1) Left-anode/right-cathode DLPFC (2) Right-anode/left-cathode DLPFC (3) Sham | [107] |
- Despite within-group cytokine reductions in the right-anode group, between-group comparisons were nonsignificant - Sham group also showed a decrease in craving, though to a lesser extent - The large effect sizes suggest strong impact on craving in both active groups | - Craving: Significant overall group effect (ANOVA p < 0.001); both active groups had large effect sizes (d > 2.0); sham had a moderate effect (d = 0.52) - Cytokines: No significant group-level changes (ANOVA p > 0.25), but in the right-anode group alone, IL-6 and TNF-α decreased significantly (within-group p < 0.01) | - Craving: Desires for Drug Questionnaire (DDQ) - Cytokines (IL-6, TNF-α) via ELISA - Impulsivity: Barratt Impulsiveness Scale (BIS-11) | - 2 mA for 20 min over - bilateral DLPFC (F3 and F4) - Left-anode or right-anode | - 31 men with opioid use disorder, assigned to (1) Left-anode/right-cathode DLPFC (2) Right-anode/left-cathode DLPFC (3) Sham - Randomized, double-blind, sham-controlled - 10 consecutive tDCS sessions | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmiel, J.; Kurpas, D. Neurobiological Mechanisms of Action of Transcranial Direct Current Stimulation (tDCS) in the Treatment of Substance Use Disorders (SUDs)—A Review. J. Clin. Med. 2025, 14, 4899. https://doi.org/10.3390/jcm14144899
Chmiel J, Kurpas D. Neurobiological Mechanisms of Action of Transcranial Direct Current Stimulation (tDCS) in the Treatment of Substance Use Disorders (SUDs)—A Review. Journal of Clinical Medicine. 2025; 14(14):4899. https://doi.org/10.3390/jcm14144899
Chicago/Turabian StyleChmiel, James, and Donata Kurpas. 2025. "Neurobiological Mechanisms of Action of Transcranial Direct Current Stimulation (tDCS) in the Treatment of Substance Use Disorders (SUDs)—A Review" Journal of Clinical Medicine 14, no. 14: 4899. https://doi.org/10.3390/jcm14144899
APA StyleChmiel, J., & Kurpas, D. (2025). Neurobiological Mechanisms of Action of Transcranial Direct Current Stimulation (tDCS) in the Treatment of Substance Use Disorders (SUDs)—A Review. Journal of Clinical Medicine, 14(14), 4899. https://doi.org/10.3390/jcm14144899