The Role of C-Reactive Protein in Acute Myocardial Infarction: Unmasking Diagnostic, Prognostic, and Therapeutic Insights
Abstract
1. Introduction
2. Search Strategy
3. The Inflammatory Response After an AMI
4. The Diagnostic Role of CRP in Cardiovascular Diseases
5. Prognostic Role of CRP in AMI
6. CRP as a Treatment Target in AMI
7. Challenges and Controversies
8. Emerging Biomarkers in Combination with CRP
9. Personalized Medicine and CRP: Tailoring Treatment Strategies
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kushner, I. C-Reactive Protein—My Perspective on Its First Half Century, 1930-1982. Front. Immunol. 2023, 14, 1150103. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Munshi, C. Biological Significance of C-Reactive Protein, the Ancient Acute Phase Functionary. Front. Immunol. 2023, 14, 1238411. [Google Scholar] [CrossRef]
- Wilson, A.M.; Ryan, M.C.; Boyle, A.J. The Novel Role of C-Reactive Protein in Cardiovascular Disease: Risk Marker or Pathogen. Int. J. Cardiol. 2006, 106, 291–297. [Google Scholar] [CrossRef]
- de Ferranti, S.D.; Rifai, N. C-Reactive Protein: A Nontraditional Serum Marker of Cardiovascular Risk. Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol. 2007, 16, 14–21. [Google Scholar] [CrossRef]
- Ong, S.-B.; Hernández-Reséndiz, S.; Crespo-Avilan, G.E.; Mukhametshina, R.T.; Kwek, X.-Y.; Cabrera-Fuentes, H.A.; Hausenloy, D.J. Inflammation Following Acute Myocardial Infarction: Multiple Players, Dynamic Roles, and Novel Therapeutic Opportunities. Pharmacol. Ther. 2018, 186, 73–87. [Google Scholar] [CrossRef]
- Anzai, A.; Ko, S.; Fukuda, K. Immune and Inflammatory Networks in Myocardial Infarction: Current Research and Its Potential Implications for the Clinic. Int. J. Mol. Sci. 2022, 23, 5214. [Google Scholar] [CrossRef] [PubMed]
- Kologrivova, I.; Shtatolkina, M.; Suslova, T.; Ryabov, V. Cells of the Immune System in Cardiac Remodeling: Main Players in Resolution of Inflammation and Repair After Myocardial Infarction. Front. Immunol. 2021, 12, 664457. [Google Scholar] [CrossRef] [PubMed]
- Andreadou, I.; Cabrera-Fuentes, H.A.; Devaux, Y.; Frangogiannis, N.G.; Frantz, S.; Guzik, T.; Liehn, E.A.; Gomes, C.P.C.; Schulz, R.; Hausenloy, D.J. Immune Cells as Targets for Cardioprotection: New Players and Novel Therapeutic Opportunities. Cardiovasc. Res. 2019, 115, 1117–1130. [Google Scholar] [CrossRef]
- Ma, Y. Role of Neutrophils in Cardiac Injury and Repair Following Myocardial Infarction. Cells 2021, 10, 1676. [Google Scholar] [CrossRef]
- Carbone, F.; Bonaventura, A.; Montecucco, F. Neutrophil-Related Oxidants Drive Heart and Brain Remodeling After Ischemia/Reperfusion Injury. Front. Physiol. 2020, 10, 1587. [Google Scholar] [CrossRef]
- Heger, L.A.; Schommer, N.; Van Bruggen, S.; Sheehy, C.E.; Chan, W.; Wagner, D.D. Neutrophil NLRP3 Promotes Cardiac Injury Following Acute Myocardial Infarction through IL-1β Production, VWF Release and NET Deposition in the Myocardium. Sci. Rep. 2024, 14, 14524. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, S.A.; Dunne, A.; Monaghan, M.G. The Role of Macrophages in the Infarcted Myocardium: Orchestrators of ECM Remodeling. Front. Cardiovasc. Med. 2019, 6, 101. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.J.; Allen, J.E.; Biswas, S.K.; Fisher, E.A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L.B.; Lawrence, T.; et al. Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity 2014, 41, 14–20. [Google Scholar] [CrossRef]
- Hausenloy, D.J.; Chilian, W.; Crea, F.; Davidson, S.M.; Ferdinandy, P.; Garcia-Dorado, D.; van Royen, N.; Schulz, R.; Heusch, G. The Coronary Circulation in Acute Myocardial Ischaemia/Reperfusion Injury: A Target for Cardioprotection. Cardiovasc. Res. 2019, 115, 1143–1155. [Google Scholar] [CrossRef]
- Yin, W.; Chen, Y.; Wang, W.; Guo, M.; Tong, L.; Zhang, M.; Wang, Z.; Yuan, H. Macrophage-Mediated Heart Repair and Remodeling: A Promising Therapeutic Target for Post-Myocardial Infarction Heart Failure. J. Cell. Physiol. 2024, 239, e31372. [Google Scholar] [CrossRef]
- Martínez-Shio, E.B.; Marín-Jáuregui, L.S.; Rodríguez-Ortega, A.C.; Doníz-Padilla, L.M.; González-Amaro, R.; Escobedo-Uribe, C.D.; Monsiváis-Urenda, A.E. Regulatory T-Cell Frequency and Function in Acute Myocardial Infarction Patients and Its Correlation with Ventricular Dysfunction. Clin. Exp. Immunol. 2024, 216, 262–271. [Google Scholar] [CrossRef]
- Li, Q.; Mei, A.; Qian, H.; Min, X.; Yang, H.; Zhong, J.; Li, C.; Xu, H.; Chen, J. The Role of Myeloid-Derived Immunosuppressive Cells in Cardiovascular Disease. Int. Immunopharmacol. 2023, 117, 109955. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, X.; Zhao, J.; Guo, W.; Zhou, J. Recruitment of Myeloid-derived Suppressor Cells and Regulatory T-cells Is Associated with the Occurrence of Acute Myocardial Infarction. Biomed. Rep. 2023, 19, 55. [Google Scholar] [CrossRef]
- Chalise, U.; Becirovic-Agic, M.; Lindsey, M.L. The Cardiac Wound Healing Response to Myocardial Infarction. WIREs Mech. Dis. 2023, 15, e1584. [Google Scholar] [CrossRef]
- Alter, C.; Henseler, A.-S.; Owenier, C.; Hesse, J.; Ding, Z.; Lautwein, T.; Bahr, J.; Hayat, S.; Kramann, R.; Kostenis, E.; et al. IL-6 in the Infarcted Heart Is Preferentially Formed by Fibroblasts and Modulated by Purinergic Signaling. J. Clin. Investig. 2023, 133, e163799. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, M.; Lu, X.; Zhang, Y.; Zeng, S.; Pan, X.; Zhou, Y.; Wang, H.; Chen, N.; Cai, F.; et al. IL-6 Inhibitors Effectively Reverse Post-Infarction Cardiac Injury and Ischemic Myocardial Remodeling via the TGF-Β1/Smad3 Signaling Pathway. Exp. Ther. Med. 2022, 24, 576. [Google Scholar] [CrossRef] [PubMed]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. J. Interferon Cytokine Res. 2009, 29, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Frangogiannis, N.G.; Mendoza, L.H.; Lindsey, M.L.; Ballantyne, C.M.; Michael, L.H.; Smith, C.W.; Entman, M.L. IL-10 Is Induced in the Reperfused Myocardium and May Modulate the Reaction to Injury. J. Immunol. 2000, 165, 2798–2808. [Google Scholar] [CrossRef] [PubMed]
- Frangogiannis, N.G. The Role of Transforming Growth Factor (TGF)-β in the Infarcted Myocardium. J. Thorac. Dis. 2017, 9, S52–S63. [Google Scholar] [CrossRef]
- Jung, M.; Ma, Y.; Iyer, R.P.; DeLeon-Pennell, K.Y.; Yabluchanskiy, A.; Garrett, M.R.; Lindsey, M.L. IL-10 Improves Cardiac Remodeling after Myocardial Infarction by Stimulating M2 Macrophage Polarization and Fibroblast Activation. Basic Res. Cardiol. 2017, 112, 33. [Google Scholar] [CrossRef]
- Neurath, M.F.; Finotto, S. IL-6 Signaling in Autoimmunity, Chronic Inflammation and Inflammation-Associated Cancer. Cytokine Growth Factor. Rev. 2011, 22, 83–89. [Google Scholar] [CrossRef]
- Tian, M.; Yuan, Y.-C.; Li, J.-Y.; Gionfriddo, M.R.; Huang, R.-C. Tumor Necrosis Factor-α and Its Role as a Mediator in Myocardial Infarction: A Brief Review. Chronic Dis. Transl. Med. 2015, 1, 18–26. [Google Scholar] [CrossRef]
- Krishnamurthy, P.; Rajasingh, J.; Lambers, E.; Qin, G.; Losordo, D.W.; Kishore, R. IL-10 Inhibits Inflammation and Attenuates Left Ventricular Remodeling after Myocardial Infarction via Activation of STAT3 and Suppression of HuR. Circ. Res. 2009, 104, e9–e18. [Google Scholar] [CrossRef]
- Prabhu, S.D.; Frangogiannis, N.G. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circ. Res. 2016, 119, 91–112. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget 2017, 9, 7204–7218. [Google Scholar] [CrossRef]
- Baruah, M. C-Reactive Protein (CRP) and Markers of Oxidative Stress in Acute Myocardial Infarction. In Clinical Significance of C-reactive Protein; Ansar, W., Ghosh, S., Eds.; Springer: Singapore, 2020; pp. 95–115. ISBN 978-981-15-6786-5. [Google Scholar]
- Berg, K.; Jynge, P.; Bjerve, K.; Skarra, S.; Basu, S.; Wiseth, R. Oxidative Stress and Inflammatory Response during and Following Coronary Interventions for Acute Myocardial Infarction. Free Radic. Res. 2005, 39, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Xu, L.; Dong, N.; Li, F. NLRP3 Inflammasome: The Rising Star in Cardiovascular Diseases. Front. Cardiovasc. Med. 2022, 9, 927061. [Google Scholar] [CrossRef] [PubMed]
- Mauro, A.G.; Bonaventura, A.; Mezzaroma, E.; Quader, M.; Toldo, S. NLRP3 Inflammasome in Acute Myocardial Infarction. J. Cardiovasc. Pharmacol. 2019, 74, 175–187. [Google Scholar] [CrossRef]
- Thackeray, J.T. Molecular Imaging Using Cardiac PET/CT: Opportunities to Harmonize Diagnosis and Therapy. Curr. Cardiol. Rep. 2021, 23, 96. [Google Scholar] [CrossRef]
- Saxena, A.; Russo, I.; Frangogiannis, N.G. Inflammation as a Therapeutic Target in Myocardial Infarction: Learning from Past Failures to Meet Future Challenges. Transl. Res. 2016, 167, 152–166. [Google Scholar] [CrossRef]
- Shimamoto, A.; Chong, A.J.; Yada, M.; Shomura, S.; Takayama, H.; Fleisig, A.J.; Agnew, M.L.; Hampton, C.R.; Rothnie, C.L.; Spring, D.J.; et al. Inhibition of Toll-like Receptor 4 with Eritoran Attenuates Myocardial Ischemia-Reperfusion Injury. Circulation 2006, 114, I270-274. [Google Scholar] [CrossRef]
- Yang, Y.; Lv, J.; Jiang, S.; Ma, Z.; Wang, D.; Hu, W.; Deng, C.; Fan, C.; Di, S.; Sun, Y.; et al. The Emerging Role of Toll-like Receptor 4 in Myocardial Inflammation. Cell Death Dis. 2016, 7, e2234. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, X.R.; Han, X. MicroRNA-146b Induces the PI3K/Akt/NF-κB Signaling Pathway to Reduce Vascular Inflammation and Apoptosis in Myocardial Infarction by Targeting PTEN. Exp. Ther. Med. 2019, 17, 1171–1181. [Google Scholar] [CrossRef]
- Mitsis, A.; Kadoglou, N.P.E.; Lambadiari, V.; Alexiou, S.; Theodoropoulos, K.C.; Avraamides, P.; Kassimis, G. Prognostic Role of Inflammatory Cytokines and Novel Adipokines in Acute Myocardial Infarction: An Updated and Comprehensive Review. Cytokine 2022, 153, 155848. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, S.; Yao, Y.; Tang, X.-F.; Xu, N.; Jiang, L.; Gao, Z.; Chen, J.; Yang, Y.-J.; Gao, R.-L.; et al. Impact of High-Sensitivity C-Reactive Protein on Coronary Artery Disease Severity and Outcomes in Patients Undergoing Percutaneous Coronary Intervention. J. Cardiol. 2020, 75, 60–65. [Google Scholar] [CrossRef]
- Carrero, J.J.; Andersson Franko, M.; Obergfell, A.; Gabrielsen, A.; Jernberg, T. hsCRP Level and the Risk of Death or Recurrent Cardiovascular Events in Patients with Myocardial Infarction: A Healthcare-Based Study. J. Am. Heart Assoc. 2019, 8, e012638. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Buring, J.E.; Rifai, N.; Cook, N.R. Development and Validation of Improved Algorithms for the Assessment of Global Cardiovascular Risk in Women: The Reynolds Risk Score. JAMA 2007, 297, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Cook, N. Clinical Usefulness of Very High and Very Low Levels of C-Reactive Protein across the Full Range of Framingham Risk Scores. Circulation 2004, 109, 1955–1959. [Google Scholar] [CrossRef]
- Ridker, P.M.; JUPITER Study Group. Rosuvastatin in the Primary Prevention of Cardiovascular Disease among Patients with Low Levels of Low-Density Lipoprotein Cholesterol and Elevated High-Sensitivity C-Reactive Protein: Rationale and Design of the JUPITER Trial. Circulation 2003, 108, 2292–2297. [Google Scholar] [CrossRef]
- Pasceri, V.; Chang, J.S.; Willerson, J.T.; Yeh, E.T. Modulation of C-Reactive Protein-Mediated Monocyte Chemoattractant Protein-1 Induction in Human Endothelial Cells by Anti-Atherosclerosis Drugs. Circulation 2001, 103, 2531–2534. [Google Scholar] [CrossRef]
- Limijadi, E.K.S.; Setyadi, A.; Utami, S.B.; Puruhito, B.; Sofia, S.N. The Correlation between Neutrophil Lymphocyte Ratio, C-Reactive Protein, and Serum Amyloid a with the Degree of Stenosis in Acute Coronary Syndrome. Open Access Maced. J. Med. Sci. 2020, 8, 1234–1239. [Google Scholar] [CrossRef]
- Sánchez, P.L.; Rodríguez, M.V.; Villacort, E.; Albarrán, C.; Cruz, I.; Moreiras, J.M.; Martín, F.; Pabón, P.; Fernández-Avilés, F.; Martín-Luengo, C. Kinetics of C-reactive protein release in different forms of acute coronary syndrome. Rev. Esp. Cardiol. 2006, 59, 441–447. [Google Scholar] [CrossRef]
- de Ferranti, S.; Rifai, N. C-Reactive Protein and Cardiovascular Disease: A Review of Risk Prediction and Interventions. Clin. Chim. Acta 2002, 317, 1–15. [Google Scholar] [CrossRef]
- Maier, W.; Altwegg, L.A.; Corti, R.; Gay, S.; Hersberger, M.; Maly, F.E.; Sütsch, G.; Roffi, M.; Neidhart, M.; Eberli, F.R.; et al. Inflammatory Markers at the Site of Ruptured Plaque in Acute Myocardial Infarction: Locally Increased Interleukin-6 and Serum Amyloid A but Decreased C-Reactive Protein. Circulation 2005, 111, 1355–1361. [Google Scholar] [CrossRef]
- Mueller, C.; Buettner, H.J.; Hodgson, J.M.; Marsch, S.; Perruchoud, A.P.; Roskamm, H.; Neumann, F.-J. Inflammation and Long-Term Mortality after Non-ST Elevation Acute Coronary Syndrome Treated with a Very Early Invasive Strategy in 1042 Consecutive Patients. Circulation 2002, 105, 1412–1415. [Google Scholar] [CrossRef]
- Biasucci, L.M.; Liuzzo, G.; Grillo, R.L.; Caligiuri, G.; Rebuzzi, A.G.; Buffon, A.; Summaria, F.; Ginnetti, F.; Fadda, G.; Maseri, A. Elevated Levels of C-Reactive Protein at Discharge in Patients with Unstable Angina Predict Recurrent Instability. Circulation 1999, 99, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Karadeniz, M.; Duran, M.; Akyel, A.; Yarlıoğlueş, M.; Öcek, A.H.; Çelik, İ.E.; Kılıç, A.; Yalcin, A.A.; Ergün, G.; Murat, S.N. High Sensitive CRP Level Is Associated with Intermediate and High Syntax Score in Patients with Acute Coronary Syndrome. Int. Heart J. 2015, 56, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Polyakova, E.A.; Mikhaylov, E.N. The Prognostic Role of High-Sensitivity C-Reactive Protein in Patients with Acute Myocardial Infarction. J. Geriatr. Cardiol. 2020, 17, 379–383. [Google Scholar] [CrossRef]
- SaranyaDevi, K.S.; Rekha, B.S.; Thiyagarajan, J.V.; Dhivya, R.; Mihiran, S.; Santhosh, S. Comparative Evaluation of Salivary and Serum High-Sensitive C-Reactive Protein in Acute Myocardial Infarction. J. Pharm. Bioallied Sci. 2022, 14, S127–S130. [Google Scholar] [CrossRef]
- Domenico, T.; Rita, A.; Giacomo, S.; Diego, A.; Thelma, P.; Mariana, G.; Giampaolo, N.; Francesco, N.; Maria, G.; Francesco, F.; et al. Salivary Biomarkers for Diagnosis of Acute Myocardial Infarction: A Systematic Review. Int. J. Cardiol. 2023, 371, 54–64. [Google Scholar] [CrossRef]
- Miller, C.S.; Foley, J.D.; Floriano, P.N.; Christodoulides, N.; Ebersole, J.L.; Campbell, C.L.; Bailey, A.L.; Rose, B.G.; Kinane, D.F.; Novak, M.J.; et al. Utility of Salivary Biomarkers for Demonstrating Acute Myocardial Infarction. J. Dent. Res. 2014, 93, 72S–79S. [Google Scholar] [CrossRef]
- Shishehbor, M.H.; Bhatt, D.L.; Topol, E.J. Using C-Reactive Protein to Assess Cardiovascular Disease Risk. Clevel. Clin. J. Med. 2003, 70, 634–640. [Google Scholar] [CrossRef]
- Quispe, R.; Michos, E.D.; Martin, S.S.; Puri, R.; Toth, P.P.; Al Suwaidi, J.; Banach, M.; Virani, S.S.; Blumenthal, R.S.; Jones, S.R.; et al. High-Sensitivity C-Reactive Protein Discordance with Atherogenic Lipid Measures and Incidence of Atherosclerotic Cardiovascular Disease in Primary Prevention: The ARIC Study. J. Am. Heart Assoc. 2020, 9, e013600. [Google Scholar] [CrossRef]
- Aday, A.W.; Ridker, P.M. Targeting Residual Inflammatory Risk: A Shifting Paradigm for Atherosclerotic Disease. Front. Cardiovasc. Med. 2019, 6, 16. [Google Scholar] [CrossRef]
- Pereira, J.; Ribeiro, A.; Ferreira-Coimbra, J.; Barroso, I.; Guimarães, J.-T.; Bettencourt, P.; Lourenço, P. Is There a C-Reactive Protein Value beyond Which One Should Consider Infection as the Cause of Acute Heart Failure? BMC Cardiovasc. Disord. 2018, 18, 40. [Google Scholar] [CrossRef]
- Ørn, S.; Manhenke, C.; Ueland, T.; Damås, J.K.; Mollnes, T.E.; Edvardsen, T.; Aukrust, P.; Dickstein, K. C-Reactive Protein, Infarct Size, Microvascular Obstruction, and Left-Ventricular Remodelling Following Acute Myocardial Infarction. Eur. Heart J. 2009, 30, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Reindl, M.; Reinstadler, S.J.; Feistritzer, H.-J.; Klug, G.; Tiller, C.; Mair, J.; Mayr, A.; Jaschke, W.; Metzler, B. Relation of Inflammatory Markers with Myocardial and Microvascular Injury in Patients with Reperfused ST-Elevation Myocardial Infarction. Eur. Heart J. Acute Cardiovasc. Care 2017, 6, 640–649. [Google Scholar] [CrossRef]
- Bursi, F.; Weston, S.A.; Killian, J.M.; Gabriel, S.E.; Jacobsen, S.J.; Roger, V.L. C-Reactive Protein and Heart Failure after Myocardial Infarction in the Community. Am. J. Med. 2007, 120, 616–622. [Google Scholar] [CrossRef]
- Griselli, M.; Herbert, J.; Hutchinson, W.L.; Taylor, K.M.; Sohail, M.; Krausz, T.; Pepys, M.B. C-Reactive Protein and Complement Are Important Mediators of Tissue Damage in Acute Myocardial Infarction. J. Exp. Med. 1999, 190, 1733–1740. [Google Scholar] [CrossRef]
- Ribeiro, D.R.P.; Ramos, A.M.; Vieira, P.L.; Menti, E.; Bordin, O.L.; de Souza, P.A.L.; de Quadros, A.S.; Portal, V.L. High-Sensitivity C-Reactive Protein as a Predictor of Cardiovascular Events after ST-Elevation Myocardial Infarction. Arq. Bras. Cardiol. 2014, 103, 69–75. [Google Scholar] [CrossRef]
- Akkus, M.N.; Polat, G.; Yurtdas, M.; Akcay, B.; Ercetin, N.; Cicek, D.; Doven, O.; Sucu, N. Admission Levels of C-Reactive Protein and Plasminogen Activator Inhibitor-1 in Patients with Acute Myocardial Infarction with and without Cardiogenic Shock or Heart Failure on Admission. Int. Heart J. 2009, 50, 33–45. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, Z.; Xu, R.; Wang, B.; Lou, Y.; Zhang, N.; Chen, Z. Associations of Serum High-Sensitivity C-Reactive Protein and Prealbumin with Coronary Vessels Stenosis Determined by Coronary Angiography and Heart Failure in Patients with Myocardial Infarction. J. Med. Biochem. 2023, 42, 9–15. [Google Scholar] [CrossRef]
- Hodzic, E.; Drakovac, A.; Begic, E. Troponin and CRP as Indicators of Possible Ventricular Arrhythmias in Myocardial Infarction of the Anterior and Inferior Walls of the Heart. Mater. Sociomed. 2018, 30, 185–188. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Tanno, K.; Ueno, A.; Fukamizu, S.; Murata, H.; Watanabe, N.; Sasaki, T.; Yamamoto, T.; Takayama, M.; Nagao, K. In-Hospital Electrical Storm in Acute Myocardial Infarction—Clinical Background and Mechanism of the Electrical Instability. Circ. J. 2018, 83, 91–100. [Google Scholar] [CrossRef]
- Świątkiewicz, I.; Magielski, P.; Kubica, J. C-Reactive Protein as a Risk Marker for Post-Infarct Heart Failure over a Multi-Year Period. Int. J. Mol. Sci. 2021, 22, 3169. [Google Scholar] [CrossRef]
- Sharif, D.; Hammoud, M.; Sharif-Rasslan, A.; Abinader, E.; Odeh, M. Very Early C-Reactive Protein Levels after Acute Myocardial Infarction Predict Early Outcome and Late Prognosis. Int. J. Clin. Med. 2015, 6, 547–553. [Google Scholar] [CrossRef]
- Morishima, I.; Sone, T.; Tsuboi, H.; Kondo, J.; Mukawa, H.; Kamiya, H.; Hieda, N.; Okumura, K. Plasma C-reactive Protein Predicts Left Ventricular Remodeling and Function after a First Acute Anterior Wall Myocardial Infarction Treated with Coronary Angioplasty: Comparison with Brain Natriuretic Peptide. Clin. Cardiol. 2002, 25, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Al Aseri, Z.A.; Habib, S.S.; Marzouk, A. Predictive Value of High Sensitivity C-Reactive Protein on Progression to Heart Failure Occurring after the First Myocardial Infarction. Vasc. Health Risk Manag. 2019, 15, 221–227. [Google Scholar] [CrossRef]
- Arruda-Olson, A.M.; Enriquez-Sarano, M.; Bursi, F.; Weston, S.A.; Jaffe, A.S.; Killian, J.M.; Roger, V.L. Left Ventricular Function and C-Reactive Protein Levels in Acute Myocardial Infarction. Am. J. Cardiol. 2010, 105, 917–921. [Google Scholar] [CrossRef]
- Engelen, S.E.; Robinson, A.J.B.; Zurke, Y.-X.; Monaco, C. Therapeutic Strategies Targeting Inflammation and Immunity in Atherosclerosis: How to Proceed? Nat. Rev. Cardiol. 2022, 19, 522–542. [Google Scholar] [CrossRef]
- Kayser, S.; Brunner, P.; Althaus, K.; Dorst, J.; Sheriff, A. Selective Apheresis of C-Reactive Protein for Treatment of Indications with Elevated CRP Concentrations. J. Clin. Med. 2020, 9, 2947. [Google Scholar] [CrossRef]
- Slagman, A.C.; Bock, C.; Abdel-Aty, H.; Vogt, B.; Gebauer, F.; Janelt, G.; Wohlgemuth, F.; Morgenstern, R.; Yapici, G.; Puppe, A.; et al. Specific Removal of C-Reactive Protein by Apheresis in a Porcine Cardiac Infarction Model. Blood Purif. 2011, 31, 9–17. [Google Scholar] [CrossRef]
- Sheriff, A.; Schindler, R.; Vogt, B.; Abdel-Aty, H.; Unger, J.K.; Bock, C.; Gebauer, F.; Slagman, A.; Jerichow, T.; Mans, D.; et al. Selective Apheresis of C-Reactive Protein: A New Therapeutic Option in Myocardial Infarction? J. Clin. Apher. 2015, 30, 15–21. [Google Scholar] [CrossRef]
- Mattecka, S.; Brunner, P.; Hähnel, B.; Kunze, R.; Vogt, B.; Sheriff, A. PentraSorb C-Reactive Protein: Characterization of the Selective C-Reactive Protein Adsorber Resin. Ther. Apher. Dial. 2019, 23, 474–481. [Google Scholar] [CrossRef]
- Torzewski, J.; Brunner, P.; Ries, W.; Garlichs, C.D.; Kayser, S.; Heigl, F.; Sheriff, A. Targeting C-Reactive Protein by Selective Apheresis in Humans: Pros and Cons. J. Clin. Med. 2022, 11, 1771. [Google Scholar] [CrossRef]
- Ries, W.; Torzewski, J.; Heigl, F.; Pfluecke, C.; Kelle, S.; Darius, H.; Ince, H.; Mitzner, S.; Nordbeck, P.; Butter, C.; et al. C-Reactive Protein Apheresis as Anti-Inflammatory Therapy in Acute Myocardial Infarction: Results of the CAMI-1 Study. Front. Cardiovasc. Med. 2021, 8, 591714. [Google Scholar] [CrossRef] [PubMed]
- Banach, M.; Penson, P.E. Colchicine and Cardiovascular Outcomes: A Critical Appraisal of Recent Studies. Curr. Atheroscler. Rep. 2021, 23, 32. [Google Scholar] [CrossRef] [PubMed]
- Tardif, J.-C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef] [PubMed]
- Nidorf, S.M.; Fiolet, A.T.L.; Mosterd, A.; Eikelboom, J.W.; Schut, A.; Opstal, T.S.J.; The, S.H.K.; Xu, X.-F.; Ireland, M.A.; Lenderink, T.; et al. Colchicine in Patients with Chronic Coronary Disease. N. Engl. J. Med. 2020, 383, 1838–1847. [Google Scholar] [CrossRef]
- Bouabdallaoui, N.; Blondeau, L.; Tardif, J.-C. Lessons from COLCOT and LoDoCo2: Colchicine for Secondary Prevention in Coronary Artery Disease. Eur. Heart J. 2021, 42, 2800–2801. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
- Shah, S.R.; Abbasi, Z.; Fatima, M.; Ochani, R.K.; Shahnawaz, W.; Asim Khan, M.; Shah, S.A. Canakinumab and Cardiovascular Outcomes: Results of the CANTOS Trial. J. Community Hosp. Intern. Med. Perspect. 2018, 8, 21–22. [Google Scholar] [CrossRef]
- Ko, S.-F.; Yip, H.-K.; Leu, S.; Lee, C.-C.; Sheu, J.-J.; Lee, C.-C.; Ng, S.-H.; Huang, C.-C.; Chen, M.-C.; Sun, C.-K. Therapeutic Potential of Tacrolimus on Acute Myocardial Infarction in Minipigs: Analysis with Serial Cardiac Magnetic Resonance and Changes at Histological and Protein Levels. Biomed. Res. Int. 2014, 2014, 524078. [Google Scholar] [CrossRef]
- Elezaby, A.; Dexheimer, R.; Sallam, K. Cardiovascular Effects of Immunosuppression Agents. Front. Cardiovasc. Med. 2022, 9, 981838. [Google Scholar] [CrossRef]
- Sheu, J.-J.; Sung, P.-H.; Leu, S.; Chai, H.-T.; Zhen, Y.-Y.; Chen, Y.-C.; Chua, S.; Chen, Y.-L.; Tsai, T.-H.; Lee, F.-Y.; et al. Innate Immune Response after Acute Myocardial Infarction and Pharmacomodulatory Action of Tacrolimus in Reducing Infarct Size and Preserving Myocardial Integrity. J. Biomed. Sci. 2013, 20, 82. [Google Scholar] [CrossRef]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-κB in Biology and Targeted Therapy: New Insights and Translational Implications. Signal Transduct. Target. Ther. 2024, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- Alisky, J.M. Dexamethasone Could Improve Myocardial Infarction Outcomes and Provide New Therapeutic Options for Non-Interventional Patients. Med. Hypotheses 2006, 67, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Zhang, R.; Wei, S.; Huang, J.; Zhai, K.; Li, Y.; Gao, B. Dexamethasone Alleviates Myocardial Injury in a Rat Model of Acute Myocardial Infarction Supported by Venoarterial Extracorporeal Membrane Oxygenation. Front. Public Health 2022, 10, 900751. [Google Scholar] [CrossRef]
- Giugliano, G.R.; Giugliano, R.P.; Gibson, C.M.; Kuntz, R.E. Meta-Analysis of Corticosteroid Treatment in Acute Myocardial Infarction. Am. J. Cardiol. 2003, 91, 1055–1059. [Google Scholar] [CrossRef]
- Tan, F.; Li, X.; Wang, Z.; Li, J.; Shahzad, K.; Zheng, J. Clinical Applications of Stem Cell-Derived Exosomes. Signal Transduct. Target. Ther. 2024, 9, 17. [Google Scholar] [CrossRef]
- Singla, D.K.; Johnson, T.A.; Tavakoli Dargani, Z. Exosome Treatment Enhances Anti-Inflammatory M2 Macrophages and Reduces Inflammation-Induced Pyroptosis in Doxorubicin-Induced Cardiomyopathy. Cells 2019, 8, 1224. [Google Scholar] [CrossRef]
- Naji, A.; Eitoku, M.; Favier, B.; Deschaseaux, F.; Rouas-Freiss, N.; Suganuma, N. Biological Functions of Mesenchymal Stem Cells and Clinical Implications. Cell. Mol. Life Sci. 2019, 76, 3323–3348. [Google Scholar] [CrossRef]
- Katsur, M.; He, Z.; Vinokur, V.; Corteling, R.; Yellon, D.M.; Davidson, S.M. Exosomes from Neuronal Stem Cells May Protect the Heart from Ischaemia/Reperfusion Injury via JAK1/2 and Gp130. J. Cell. Mol. Med. 2021, 25, 4455–4465. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, J.-L.; Peng, Z.-Y.; Xu, W.-F.; Yu, G.-L. Exosomal miR-25-3p from Mesenchymal Stem Cells Alleviates Myocardial Infarction by Targeting pro-Apoptotic Proteins and EZH2. Cell Death Dis. 2020, 11, 317. [Google Scholar] [CrossRef]
- Ghibu, S.; Richard, C.; Vergely, C.; Zeller, M.; Cottin, Y.; Rochette, L. Antioxidant Properties of an Endogenous Thiol: Alpha-Lipoic Acid, Useful in the Prevention of Cardiovascular Diseases. J. Cardiovasc. Pharmacol. 2009, 54, 391–398. [Google Scholar] [CrossRef]
- Salehi, B.; Berkay Yılmaz, Y.; Antika, G.; Boyunegmez Tumer, T.; Fawzi Mahomoodally, M.; Lobine, D.; Akram, M.; Riaz, M.; Capanoglu, E.; Sharopov, F.; et al. Insights on the Use of α-Lipoic Acid for Therapeutic Purposes. Biomolecules 2019, 9, 356. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Sureda, A.; Jafari, S.; Memariani, Z.; Tewari, D.; Annunziata, G.; Barrea, L.; Hassan, S.T.S.; Šmejkal, K.; Malaník, M.; et al. Berberine in Cardiovascular and Metabolic Diseases: From Mechanisms to Therapeutics. Theranostics 2019, 9, 1923–1951. [Google Scholar] [CrossRef]
- Ruan, J.; Shi, Z.; Cao, X.; Dang, Z.; Zhang, Q.; Zhang, W.; Wu, L.; Zhang, Y.; Wang, T. Research Progress on Anti-Inflammatory Effects and Related Mechanisms of Astragalin. Int. J. Mol. Sci. 2024, 25, 4476. [Google Scholar] [CrossRef]
- Dinarello, C.A. Unraveling the NALP-3/IL-1beta Inflammasome: A Big Lesson from a Small Mutation. Immunity 2004, 20, 243–244. [Google Scholar] [CrossRef]
- Yao, J.; Sterling, K.; Wang, Z.; Zhang, Y.; Song, W. The Role of Inflammasomes in Human Diseases and Their Potential as Therapeutic Targets. Signal Transduct. Target. Ther. 2024, 9, 10. [Google Scholar] [CrossRef]
- Shen, S.; Wang, Z.; Sun, H.; Ma, L. Role of NLRP3 Inflammasome in Myocardial Ischemia-Reperfusion Injury and Ventricular Remodeling. Med. Sci. Monit. 2022, 28, e934255-1–e934255-13. [Google Scholar] [CrossRef]
- Toldo, S.; Mezzaroma, E.; Buckley, L.F.; Potere, N.; Di Nisio, M.; Biondi-Zoccai, G.; Van Tassell, B.W.; Abbate, A. Targeting the NLRP3 Inflammasome in Cardiovascular Diseases. Pharmacol. Ther. 2022, 236, 108053. [Google Scholar] [CrossRef]
- Koenig, W.; Khuseyinova, N. Lipoprotein-Associated and Secretory Phospholipase A2 in Cardiovascular Disease: The Epidemiological Evidence. Cardiovasc. Drugs Ther. 2009, 23, 85–92. [Google Scholar] [CrossRef]
- Saxena, J.; Das, S.; Kumar, A.; Sharma, A.; Sharma, L.; Kaushik, S.; Kumar Srivastava, V.; Jamal Siddiqui, A.; Jyoti, A. Biomarkers in Sepsis. Clin. Chim. Acta 2024, 562, 119891. [Google Scholar] [CrossRef]
- Szalai, A.J. C-Reactive Protein (CRP) and Autoimmune Disease: Facts and Conjectures. Clin. Dev. Immunol. 2004, 11, 221–226. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Lan, H.; Tang, Y. Role of C-Reactive Protein in Kidney Diseases. Kidney Dis. 2022, 9, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Hart, P.C.; Rajab, I.M.; Alebraheem, M.; Potempa, L.A. C-Reactive Protein and Cancer—Diagnostic and Therapeutic Insights. Front. Immunol. 2020, 11, 595835. [Google Scholar] [CrossRef]
- Visser, M.; Bouter, L.M.; McQuillan, G.M.; Wener, M.H.; Harris, T.B. Elevated C-Reactive Protein Levels in Overweight and Obese Adults. JAMA 1999, 282, 2131–2135. [Google Scholar] [CrossRef]
- Neumaier, M.; Metak, G.; Scherer, M.A. C-Reactive Protein as a Parameter of Surgical Trauma: CRP Response after Different Types of Surgery in 349 Hip Fractures. Acta Orthop. 2006, 77, 788–790. [Google Scholar] [CrossRef]
- Brzezinski, R.Y.; Melloul, A.; Berliner, S.; Goldiner, I.; Stark, M.; Rogowski, O.; Banai, S.; Shenhar-Tsarfaty, S.; Shacham, Y. Early Detection of Inflammation-Prone STEMI Patients Using the CRP Troponin Test (CTT). J. Clin. Med. 2022, 11, 2453. [Google Scholar] [CrossRef]
- Osman, R.; L’Allier, P.L.; Elgharib, N.; Tardif, J.-C. Critical Appraisal of C-Reactive Protein Throughout the Spectrum of Cardiovascular Disease. Vasc. Health Risk Manag. 2006, 2, 221–237. [Google Scholar] [CrossRef]
- Matter, M.A.; Paneni, F.; Libby, P.; Frantz, S.; Stähli, B.E.; Templin, C.; Mengozzi, A.; Wang, Y.-J.; Kündig, T.M.; Räber, L.; et al. Inflammation in Acute Myocardial Infarction: The Good, the Bad and the Ugly. Eur. Heart J. 2024, 45, 89–103. [Google Scholar] [CrossRef]
- Mitsis, A.; Kyriakou, M.; Sokratous, S.; Karmioti, G.; Drakomathioulakis, M.; Myrianthefs, M.; Ziakas, A.; Tzikas, S.; Kassimis, G. Exploring the Landscape of Anti-Inflammatory Trials: A Comprehensive Review of Strategies for Targeting Inflammation in Acute Myocardial Infraction. Biomedicines 2024, 12, 701. [Google Scholar] [CrossRef]
- Mitchell, A.M.; Garvey, J.L.; Kline, J.A. Multimarker Panel to Rule out Acute Coronary Syndromes in Low-Risk Patients. Acad. Emerg. Med. 2006, 13, 803–806. [Google Scholar] [CrossRef]
- Ritschel, V.N.; Seljeflot, I.; Arnesen, H.; Halvorsen, S.; Weiss, T.; Eritsland, J.; Andersen, G.Ø. IL-6 Signalling in Patients with Acute ST-Elevation Myocardial Infarction. Results Immunol. 2014, 4, 8–13. [Google Scholar] [CrossRef]
- Rafiqi, K.; Hoeks, C.B.; Løfgren, B.; Mortensen, M.B.; Bruun, J.M. Diagnostic Impact of Hs-CRP and IL-6 for Acute Coronary Syndrome in Patients Admitted to the ED with Chest Pain: Added Value to the HEART Score? Open Access Emerg. Med. 2023, 15, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.; Khan, S.Q.; Dhillon, O.; Quinn, P.; Struck, J.; Squire, I.B.; Davies, J.E.; Ng, L.L. Procalcitonin as a Prognostic Marker in Patients with Acute Myocardial Infarction. Biomarkers 2010, 15, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Reindl, M.; Tiller, C.; Holzknecht, M.; Lechner, I.; Henninger, B.; Mayr, A.; Brenner, C.; Klug, G.; Bauer, A.; Metzler, B.; et al. Association of Myocardial Injury with Serum Procalcitonin Levels in Patients With ST-Elevation Myocardial Infarction. JAMA Netw. Open 2020, 3, e207030. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Sun, J.; Liu, X. Serum C Reactive Protein and Procalcitonin Are Valuable Predictors of Coronary Heart Disease and Poor Prognosis in the Elderly. Am. J. Transl. Res. 2023, 15, 4188–4195. [Google Scholar]
- Churov, A.; Summerhill, V.; Grechko, A.; Orekhova, V.; Orekhov, A. MicroRNAs as Potential Biomarkers in Atherosclerosis. Int. J. Mol. Sci. 2019, 20, 5547. [Google Scholar] [CrossRef]
- Kim, E.N.; Kim, C.J.; Kim, S.R.; Song, J.-A.; Choe, H.; Kim, K.-B.; Choi, J.-S.; Oh, S.J. High Serum CRP Influences Myocardial miRNA Profiles in Ischemia-Reperfusion Injury of Rat Heart. PLoS ONE 2019, 14, e0216610. [Google Scholar] [CrossRef]
- Kristono, G.; Holley, A.; Harding, S.; Larsen, P. Using C-Reactive Protein and Cytokines to Identify Inflammatory States in Acute Myocardial Infarction. Heart Lung Circ. 2021, 30, S250. [Google Scholar] [CrossRef]
- Mitsis, A.; Myrianthefs, M.; Sokratous, S.; Karmioti, G.; Kyriakou, M.; Drakomathioulakis, M.; Tzikas, S.; Kadoglou, N.P.E.; Karagiannidis, E.; Nasoufidou, A.; et al. Emerging Therapeutic Targets for Acute Coronary Syndromes: Novel Advancements and Future Directions. Biomedicines 2024, 12, 1670. [Google Scholar] [CrossRef]
- Amezcua-Castillo, E.; González-Pacheco, H.; Sáenz-San Martín, A.; Méndez-Ocampo, P.; Gutierrez-Moctezuma, I.; Massó, F.; Sierra-Lara, D.; Springall, R.; Rodríguez, E.; Arias-Mendoza, A.; et al. C-Reactive Protein: The Quintessential Marker of Systemic Inflammation in Coronary Artery Disease—Advancing toward Precision Medicine. Biomedicines 2023, 11, 2444. [Google Scholar] [CrossRef]
- Ridker, P.M.; Rifai, N.; Clearfield, M.; Downs, J.R.; Weis, S.E.; Miles, J.S.; Gotto, A.M.; Air Force/Texas Coronary Atherosclerosis Prevention Study Investigators. Measurement of C-Reactive Protein for the Targeting of Statin Therapy in the Primary Prevention of Acute Coronary Events. N. Engl. J. Med. 2001, 344, 1959–1965. [Google Scholar] [CrossRef]
- Schuetz, P.; Aujesky, D.; Müller, C.; Müller, B. Biomarker-Guided Personalised Emergency Medicine for All—Hope for Another Hype? Swiss Med. Wkly. 2015, 145, w14079. [Google Scholar] [CrossRef] [PubMed]
- Burgos, L.M.; Baro Vila, R.C.; Botto, F.; Diez, M. SCAI Cardiogenic Shock Classification for Predicting In-Hospital and Long-Term Mortality in Acute Heart Failure. J. Soc. Cardiovasc. Angiogr. Interv. 2022, 1, 100496. [Google Scholar] [CrossRef] [PubMed]
- Aladağ, N.; Asoğlu, R.; Ozdemir, M.; Asoğlu, E.; Derin, A.R.; Demir, C.; Demir, H. Oxidants and Antioxidants in Myocardial Infarction (MI): Investigation of Ischemia Modified Albumin, Malondialdehyde, Superoxide Dismutase and Catalase in Individuals Diagnosed with ST Elevated Myocardial Infarction (STEMI) and Non-STEMI (NSTEMI). J. Med. Biochem. 2021, 40, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Silvis, M.J.M.; Demkes, E.J.; Fiolet, A.T.L.; Dekker, M.; Bosch, L.; van Hout, G.P.J.; Timmers, L.; de Kleijn, D.P.V. Immunomodulation of the NLRP3 Inflammasome in Atherosclerosis, Coronary Artery Disease, and Acute Myocardial Infarction. J. Cardiovasc. Transl. Res. 2021, 14, 23–34. [Google Scholar] [CrossRef]
- Toldo, S.; Mauro, A.G.; Cutter, Z.; Van Tassell, B.W.; Mezzaroma, E.; Del Buono, M.G.; Prestamburgo, A.; Potere, N.; Abbate, A. The NLRP3 Inflammasome Inhibitor, OLT1177 (Dapansutrile), Reduces Infarct Size and Preserves Contractile Function After Ischemia Reperfusion Injury in the Mouse. J. Cardiovasc. Pharmacol. 2019, 73, 215–222. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, J.; Tan, C.; Xu, W.; Sun, Q.; Li, J. Genetic Association Studies Reporting on Variants in the C-Reactive Protein Gene and Coronary Artery Disease. Medicine 2015, 94, e1131. [Google Scholar] [CrossRef]
- Schulz, S.; Rehm, S.; Schlitt, A.; Lierath, M.; Lüdike, H.; Hofmann, B.; Bitter, K.; Reichert, S. C-Reactive Protein Level and the Genetic Variant Rs1130864 in the CRP Gene as Prognostic Factors for 10-Year Cardiovascular Outcome. Cells 2023, 12, 1775. [Google Scholar] [CrossRef]
- Nie, S.; Zhang, S.; Zhao, Y.; Li, X.; Xu, H.; Wang, Y.; Wang, X.; Zhu, M. Machine Learning Applications in Acute Coronary Syndrome: Diagnosis, Outcomes and Management. Adv. Ther. 2025, 42, 636–665. [Google Scholar] [CrossRef]
Molecular Pathway | Key Components | Role in CRP-Mediated Inflammation |
---|---|---|
IL-1β Pathway | IL-1β, IL-6, NF-kB | Amplifies CRP expression and drives acute inflammatory responses post-AMI |
NLRP3 Inflammasome | NLRP3, Caspase-1, IL-18 | Activates inflammatory cytokines and contributes to myocardial damage |
Oxidative Stress | ROS, NADPH Oxidase, NOX2 | Promotes CRP production and enhances vascular inflammation |
Toll-Like Receptors | TLR2, TLR4 | Activates immune cells, increases CRP levels, and worsens myocardial injury |
Monocyte Recruitment | MCP-1, CCR2 | Recruits monocytes to inflamed areas, promoting macrophage activity and CRP release |
Author | Study Design | Country | Population | Associated Outcomes | Study Findings |
---|---|---|---|---|---|
Griselli et al. (1999) [65] | Experimental study | UK | Animal model and human samples | Tissue damage | CRP and complement were found to be important mediators of tissue damage in AMI, suggesting that elevated CRP correlates with increased tissue damage. |
Morishima et al. (2002) [73] | Prospective observational | Japan | 250 AMI patients treated with coronary angioplasty | Left ventricular remodeling | High CRP levels (>2.0 mg/dL) were associated with poor left ventricular remodeling and decreased function following AMI (p < 0.05). |
Bursi et al. (2007) [64] | Community-based cohort | USA | 546 AMI patients | Heart failure post-AMI | Elevated CRP levels (>3 mg/L) were associated with an increased risk of heart failure in AMI patients (HR: 2.8; 95% CI: 1.9–4.3; p < 0.001). |
Akkus et al. (2009) [67] | Prospective observational | Turkey | 100 AMI patients | Cardiogenic shock, heart failure | High admission CRP levels (>10 mg/L) were associated with increased risk of cardiogenic shock (p = 0.001) and heart failure (p = 0.003) in AMI patients. |
Ribeiro et al. (2014) [66] | Prospective cohort | Brazil | 208 AMI patients (STEMI) | Cardiovascular events post-AMI | Hs-CRP (>3 mg/L) was a significant predictor of adverse cardiovascular events after STEMI (HR: 2.51; 95% CI: 1.33–4.74; p = 0.005). |
Sharif et al. (2015) [72] | Prospective observational | Israel | 150 AMI patients | Early and late prognosis | Elevated CRP levels (>2.5 mg/dL) immediately after AMI were predictive of adverse outcomes at 30 days and 1 year (p < 0.01 for all time points). |
Kobayashi et al. (2018) [70] | Prospective observational | Japan | 274 AMI patients | Electrical instability, in-hospital electrical storm | CRP >5 mg/L was associated with increased risk of electrical storm post-AMI (OR: 3.1; p < 0.01). |
Al Aseri et al. (2019) [74] | Prospective observational | Saudi Arabia | 200 first MI patients | Progression to heart failure | hs-CRP >3 mg/L significantly increased risk of heart failure post-first MI (HR: 2.27; 95% CI: 1.62–3.19; p < 0.001). |
Świątkiewicz et al. (2021) [71] | Longitudinal observational | Poland | 1000 post-AMI patients | Post-infarct heart failure | Discharge CRP > 3 mg/L predicted a >50% increased risk of heart failure at 5-year follow-up (p < 0.001). |
Zhu et al. (2023) [68] | Retrospective cohort | China | 300 AMI patients | Coronary vessel stenosis, heart failure | hs-CRP >2 mg/L was significantly associated with severe coronary artery stenosis (p = 0.003) and higher incidence of heart failure (p = 0.004). |
Method | Mechanism of Action | Advantages | Limitations |
---|---|---|---|
CRP Apheresis | Direct removal of CRP from the bloodstream via apheresis | Rapid reduction of CRP levels, potential to limit myocardial damage | Limited clinical trials, cost, and invasive procedure |
Colchicine | Anti-inflammatory agent that suppresses neutrophil activation | Reduces inflammation and CRP levels, oral administration, low cost | Gastrointestinal side effects, long-term safety in AMI patients unclear |
IL-1ß Blockade | Inhibits the IL-1ß pathway, reducing systemic inflammation | Proven reduction in major adverse cardiovascular events (CANTOS) | High cost, increased risk of infections |
Stem Cell-Derived Exosomes | Modulates immune response and promotes tissue repair | Non-invasive, regenerative potential, reduces systemic inflammation | Early-stage clinical development, unclear long-term outcomes |
Tacrolimus | Suppresses immune activation and inflammatory pathways | Potent immunosuppressive and anti-inflammatory effects | Risk of nephrotoxicity, increased susceptibility to infections |
Dexamethasone | Corticosteroid that inhibits multiple inflammatory pathways | Strong anti-inflammatory effects, reduces CRP levels | Immunosuppression, potential for hyperglycemia and other systemic side effects |
α-Lipoic Acid | Antioxidant that reduces oxidative stress and inflammation | Low cost, oral administration | Limited evidence in AMI, may require combination with other therapies |
Berberine | Reduces inflammation and modulates lipid metabolism | Anti-inflammatory and cardioprotective properties | Limited data in AMI-specific applications, gastrointestinal side effects |
Astragalin | Anti-inflammatory agent with antioxidant properties | Natural compound with potential cardioprotective effects | Limited clinical data, unclear dosage and efficacy in humans |
NLRP3 Inflammasome Modulation | Inhibits the NLRP3 inflammasome to prevent cytokine release | Targets a specific inflammatory pathway, potential for long-term benefits | Experimental stage, risk of off-target effects |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsis, A.; Sokratous, S.; Karmioti, G.; Kyriakou, M.; Drakomathioulakis, M.; Myrianthefs, M.M.; Eftychiou, C.; Kadoglou, N.P.E.; Tzikas, S.; Fragakis, N.; et al. The Role of C-Reactive Protein in Acute Myocardial Infarction: Unmasking Diagnostic, Prognostic, and Therapeutic Insights. J. Clin. Med. 2025, 14, 4795. https://doi.org/10.3390/jcm14134795
Mitsis A, Sokratous S, Karmioti G, Kyriakou M, Drakomathioulakis M, Myrianthefs MM, Eftychiou C, Kadoglou NPE, Tzikas S, Fragakis N, et al. The Role of C-Reactive Protein in Acute Myocardial Infarction: Unmasking Diagnostic, Prognostic, and Therapeutic Insights. Journal of Clinical Medicine. 2025; 14(13):4795. https://doi.org/10.3390/jcm14134795
Chicago/Turabian StyleMitsis, Andreas, Stefanos Sokratous, Georgia Karmioti, Michaela Kyriakou, Michail Drakomathioulakis, Michael M. Myrianthefs, Christos Eftychiou, Nikolaos P. E. Kadoglou, Stergios Tzikas, Nikolaos Fragakis, and et al. 2025. "The Role of C-Reactive Protein in Acute Myocardial Infarction: Unmasking Diagnostic, Prognostic, and Therapeutic Insights" Journal of Clinical Medicine 14, no. 13: 4795. https://doi.org/10.3390/jcm14134795
APA StyleMitsis, A., Sokratous, S., Karmioti, G., Kyriakou, M., Drakomathioulakis, M., Myrianthefs, M. M., Eftychiou, C., Kadoglou, N. P. E., Tzikas, S., Fragakis, N., & Kassimis, G. (2025). The Role of C-Reactive Protein in Acute Myocardial Infarction: Unmasking Diagnostic, Prognostic, and Therapeutic Insights. Journal of Clinical Medicine, 14(13), 4795. https://doi.org/10.3390/jcm14134795