Intraoperative Cell Salvage in Oncologic Surgery: A Comprehensive Review
Abstract
1. Introduction
2. History of ICS
3. Principles of ICS
4. Leukocyte Depletion Filters
5. Circulating Tumor Cells
6. ABT and Outcome
7. ICS
8. In Vitro Studies
9. Tumor Cells Detectable After LDFs
10. Irradiation
11. Observational Studies
12. Guidelines
13. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Blundell, J. Experiments on the Transfusion of Blood by the Syringe. Med. Chir. Trans. 1818, 9, 56–92. [Google Scholar] [CrossRef] [PubMed]
- Blundell, J. Researches Physiological and Pathological; Nabu Press: Charleston, SC, USA, 1824. [Google Scholar]
- Jacobs, L.M.; Hsieh, J.W. A Clinical Review of Autotransfusion and Its Role in Trauma. JAMA 1984, 251, 3283–3287. [Google Scholar] [CrossRef]
- Ashworth, A.; Klein, A.A. Cell salvage as part of a blood conservation strategy in anaesthesia. Br. J. Anaesth. 2010, 105, 401–416. [Google Scholar] [CrossRef]
- Roets, M.; Sturgess, D.J.; Wyssusek, K.; van Zundert, A.A. Intraoperative cell salvage: A technology built upon the failures, fads and fashions of blood transfusion. Anaesth. Intensive Care 2019, 47, 17–30. [Google Scholar] [CrossRef]
- Halsted, W. Refusion of carbonic oxide poisoning. New York Med. J. 1883, 36, 625–629. [Google Scholar]
- Duncan, J. On Re-Infusion of Blood in Primary and Other Amputations. Br. Med. J. 1886, 1, 192–193. [Google Scholar] [CrossRef]
- Griswold, R.A.; Ortner, A.B. The use of autotransfusion in surgery of the serous cavities. Surg. Gynecol. Obstet. 1943, 77, 167. [Google Scholar]
- Sikorski, R.A.; Rizkalla, N.A.; Yang, W.W.; Frank, S.M. Autologous blood salvage in the era of patient blood management. Vox Sang. 2017, 112, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Frank, S.M.; Sikorski, R.A.; Konig, G.; Tsilimigras, D.I.; Hartmann, J.; Popovsky, M.A.; Pawlik, T.M.; Waters, J.H. Clinical Utility of Autologous Salvaged Blood: A Review. J. Gastrointest. Surg. 2020, 24, 464–472. [Google Scholar] [CrossRef]
- Autologous blood transfusions. Council on Scientific Affairs. JAMA 1986, 256, 2378–2380. [CrossRef]
- Yaw, P.B.; Sentany, M.; Link, W.J.; Wahle, W.M.; JL, G.G. Tumor cells carried through autotransfusion. Contraindication to intraoperative blood recovery? JAMA 1975, 231, 490–491. [Google Scholar] [CrossRef]
- Scott, A.V.; Nagababu, E.; Johnson, D.J.; Kebaish, K.M.; Lipsitz, J.A.; Dwyer, I.M.; Zuckerberg, G.S.; Barodka, V.M.; Berkowitz, D.E.; Frank, S.M. 2,3-Diphosphoglycerate Concentrations in Autologous Salvaged Versus Stored Red Blood Cells and in Surgical Patients After Transfusion. Anesth. Analg. 2016, 122, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Carroll, C.; Young, F. Intraoperative cell salvage. BJA Educ. 2021, 21, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Trudeau, J.D.; Waters, T.; Chipperfield, K. Should intraoperative cell-salvaged blood be used in patients with suspected or known malignancy? Can. J. Anaesth. 2012, 59, 1058–1070. [Google Scholar] [CrossRef]
- Pinto, M.A.; Chedid, M.F.; Sekine, L.; Schmidt, A.P.; Capra, R.P.; Prediger, C.; Prediger, J.E.; Grezzana-Filho, T.J.; Kruel, C.R. Intraoperative cell salvage with autologous transfusion in liver transplantation. World J. Gastrointest. Surg. 2019, 11, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Zhai, B.; Sun, X.Y. Controversy over the use of intraoperative blood salvage autotransfusion during liver transplantation for hepatocellular carcinoma patients. World J. Gastroenterol. 2013, 19, 3371–3374. [Google Scholar] [CrossRef]
- Haemonetics Corporation. RS1VAE Leucocyte Removal Filter; Haemonetics Corporation: Boston, MA, USA, 2022. [Google Scholar]
- Lucci, A.; Hall, C.S.; Lodhi, A.K.; Bhattacharyya, A.; Anderson, A.E.; Xiao, L.; Bedrosian, I.; Kuerer, H.M.; Krishnamurthy, S. Circulating tumour cells in non-metastatic breast cancer: A prospective study. Lancet Oncol. 2012, 13, 688–695. [Google Scholar] [CrossRef]
- Hall, C.S.; Karhade, M.G.; Bowman Bauldry, J.B.; Valad, L.M.; Kuerer, H.M.; DeSnyder, S.M.; Lucci, A. Prognostic Value of Circulating Tumor Cells Identified Before Surgical Resection in Nonmetastatic Breast Cancer Patients. J. Am. Coll. Surg. 2016, 223, 20–29. [Google Scholar] [CrossRef]
- Bork, U.; Rahbari, N.N.; Schölch, S.; Reissfelder, C.; Kahlert, C.; Büchler, M.W.; Weitz, J.; Koch, M. Circulating tumour cells and outcome in non-metastatic colorectal cancer: A prospective study. Br. J. Cancer 2015, 112, 1306–1313. [Google Scholar] [CrossRef]
- Lindemann, F.; Schlimok, G.; Dirschedl, P.; Witte, J.; Riethmüller, G. Prognostic significance of micrometastatic tumour cells in bone marrow of colorectal cancer patients. Lancet 1992, 340, 685–689. [Google Scholar] [CrossRef]
- Hardingham, J.E.; Hewett, P.J.; Sage, R.E.; Finch, J.L.; Nuttall, J.D.; Kotasek, D.; Dobrovic, A. Molecular detection of blood-borne epithelial cells in colorectal cancer patients and in patients with benign bowel disease. Int. J. Cancer 2000, 89, 8–13. [Google Scholar] [CrossRef]
- Park, Y.; Jun, H.R.; Choi, H.W.; Hwang, D.W.; Lee, J.H.; Song, K.B.; Lee, W.; Kwon, J.; Ha, S.H.; Jun, E.; et al. Circulating tumour cells as an indicator of early and systemic recurrence after surgical resection in pancreatic ductal adenocarcinoma. Sci. Rep. 2021, 11, 1644. [Google Scholar] [CrossRef]
- Kuske, A.; Gorges, T.M.; Tennstedt, P.; Tiebel, A.-K.; Pompe, R.; Preißer, F.; Prues, S.; Mazel, M.; Markou, A.; Lianidou, E.; et al. Improved detection of circulating tumor cells in non-metastatic high-risk prostate cancer patients. Sci. Rep. 2016, 6, 39736. [Google Scholar] [CrossRef]
- Lu, Z.; Ni, H.; Yang, X.; Tan, L.; Zhuang, H.; Mo, Y.; Wei, X.; Qi, L.; Xiang, B. Prognostic potential of preoperative circulating tumor cells to predict the early progression recurrence in hepatocellular carcinoma patients after hepatectomy. BMC Cancer 2023, 23, 1150. [Google Scholar] [CrossRef] [PubMed]
- Wankhede, D.; Grover, S.; Hofman, P. Circulating Tumor Cells as a Predictive Biomarker in Resectable Lung Cancer: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 6112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Bao, Y.W.; Zhao, Y.J.; Wang, J.Q.; Guo, J.T.; Sun, S.Y. Circulating tumor cells as potential prognostic biomarkers for early-stage pancreatic cancer: A systematic review and meta-analysis. World J. Clin. Oncol. 2023, 14, 504–517. [Google Scholar] [CrossRef]
- Lu, Y.-j.; Wang, P.; Peng, J.; Wang, X.; Zhu, Y.-w.; Shen, N. Meta-analysis Reveals the Prognostic Value of Circulating Tumour Cells Detected in the Peripheral Blood in Patients with Non-Metastatic Colorectal Cancer. Sci. Rep. 2017, 7, 905. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Riethdorf, S.; Wu, G.; Wang, T.; Yang, K.; Peng, G.; Liu, J.; Pantel, K. Meta-analysis of the prognostic value of circulating tumor cells in breast cancer. Clin. Cancer Res. 2012, 18, 5701–5710. [Google Scholar] [CrossRef]
- Ma, X.; Xiao, Z.; Li, X.; Wang, F.; Zhang, J.; Zhou, R.; Wang, J.; Liu, L. Prognostic role of circulating tumor cells and disseminated tumor cells in patients with prostate cancer: A systematic review and meta-analysis. Tumour Biol. 2014, 35, 5551–5560. [Google Scholar] [CrossRef]
- Garrido Castillo, L.N.; Mejean, A.; Vielh, P.; Anract, J.; Decina, A.; Nalpas, B.; Benali-Furet, N.; Desitter, I.; Paterlini-Bréchot, P. Predictive Value of Circulating Tumor Cells Detected by ISET(®) in Patients with Non-Metastatic Prostate Cancer Undergoing Radical Prostatectomy. Life 2022, 12, 165. [Google Scholar] [CrossRef]
- Karhade, M.; Hall, C.; Mishra, P.; Anderson, A.; Kuerer, H.; Bedrosian, I.; Krishnamurthy, S.; Lucci, A. Circulating tumor cells in non-metastatic triple-negative breast cancer. Breast Cancer Res. Treat. 2014, 147, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Theil, G.; Fischer, K.; Weber, E.; Medek, R.; Hoda, R.; Lücke, K.; Fornara, P. The Use of a New CellCollector to Isolate Circulating Tumor Cells from the Blood of Patients with Different Stages of Prostate Cancer and Clinical Outcomes—A Proof-of-Concept Study. PLoS ONE 2016, 11, e0158354. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zou, K.; Zheng, L.; Xiong, B. Prognostic and clinicopathological significance of circulating tumor cells detected by RT-PCR in non-metastatic colorectal cancer: A meta-analysis and systematic review. BMC Cancer 2017, 17, 725. [Google Scholar] [CrossRef] [PubMed]
- Fidler, I.J. Metastasis: Quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2′-deoxyuridine. J. Natl. Cancer Inst. 1970, 45, 773–782. [Google Scholar]
- Lin, D.; Shen, L.; Luo, M.; Zhang, K.; Li, J.; Yang, Q.; Zhu, F.; Zhou, D.; Zheng, S.; Chen, Y.; et al. Circulating tumor cells: Biology and clinical significance. Signal Transduct. Target. Ther. 2021, 6, 404. [Google Scholar] [CrossRef]
- Weitz, J.; Kienle, P.; Lacroix, J.; Willeke, F.; Benner, A.; Lehnert, T.; Herfarth, C.; von Knebel Doeberitz, M. Dissemination of tumor cells in patients undergoing surgery for colorectal cancer. Clin. Cancer Res. 1998, 4, 343–348. [Google Scholar]
- Sawabata, N.; Funaki, S.; Hyakutake, T.; Shintani, Y.; Fujiwara, A.; Okumura, M. Perioperative circulating tumor cells in surgical patients with non-small cell lung cancer: Does surgical manipulation dislodge cancer cells thus allowing them to pass into the peripheral blood? Surg. Today 2016, 46, 1402–1409. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Takagi, Y.; Aoki, S.; Futamura, M.; Saji, S. Significant detection of circulating cancer cells in the blood by reverse transcriptase-polymerase chain reaction during colorectal cancer resection. Ann. Surg. 2000, 232, 58–65. [Google Scholar] [CrossRef]
- Kawase, A.; Sekihara, K.; Matsutani, N.; Yamaguchi, M.; Kudo, Y.; Endo, M.; Woo, T.; Saito, Y.; Sawabata, N. Circulating Tumor Cells from Surgical Manipulation Predict Recurrence and Poor Prognosis in Non-Small Cell Lung Cancer. J. Clin. Med. 2025, 14, 70. [Google Scholar] [CrossRef]
- Sergeant, G.; Roskams, T.; van Pelt, J.; Houtmeyers, F.; Aerts, R.; Topal, B. Perioperative cancer cell dissemination detected with a real-time RT-PCR assay for EpCAM is not associated with worse prognosis in pancreatic ductal adenocarcinoma. BMC Cancer 2011, 11, 47. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z.; Jiang, S.; Shao, B.; Liu, J.; Zhang, S.; Zhou, Y.; Zhou, Y.; Zhang, Y. Perioperative allogenenic blood transfusion is associated with worse clinical outcomes for hepatocellular carcinoma: A meta-analysis. PLoS ONE 2013, 8, e64261. [Google Scholar] [CrossRef]
- Pang, Q.-Y.; An, R.; Liu, H.-L. Perioperative transfusion and the prognosis of colorectal cancer surgery: A systematic review and meta-analysis. World J. Surg. Oncol. 2019, 17, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xu, H.; Huang, B.; Xu, Y.; Huang, J. Association of perioperative allogeneic blood transfusions and long-term outcomes following radical surgery for gastric and colorectal cancers: Systematic review and meta-analysis of propensity-adjusted observational studies. BJS Open 2023, 7, zrad075. [Google Scholar] [CrossRef]
- Wang, Y.L.; Jiang, B.; Yin, F.F.; Shi, H.Q.; Xu, X.D.; Zheng, S.S.; Wu, S.; Hou, S.C. Perioperative Blood Transfusion Promotes Worse Outcomes of Bladder Cancer after Radical Cystectomy: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0130122. [Google Scholar] [CrossRef] [PubMed]
- Soubra, A.; Zabell, J.R.; Adejoro, O.; Konety, B.R. Effect of perioperative blood transfusion on mortality for major urologic malignancies. Clin. Genitourin. Cancer 2015, 13, e173–e181. [Google Scholar] [CrossRef] [PubMed]
- Pushan, Z.; Manbiao, C.; Sulai, L.; Jun, L.; Ruidong, Z.; Hanshen, Y. The impact of perioperative blood transfusion on survival and recurrence after radical prostatectomy for prostate cancer: A systematic review and meta-analysis. J. Cancer Res. Ther. 2018, 14, S701–S707. [Google Scholar]
- Cata, J.P.; Wang, H.; Gottumukkala, V.; Reuben, J.; Sessler, D.I. Inflammatory response, immunosuppression, and cancer recurrence after perioperative blood transfusions. Br. J. Anaesth. 2013, 110, 690–701. [Google Scholar] [CrossRef]
- Agudelo-Jimenez, R.D.; Heatter, J.A.; Cata, J.P. Transfusion Therapy: Is There a Link with CancerRecurrence? Curr. Anesthesiol. Rep. 2018, 8, 426–438. [Google Scholar] [CrossRef]
- Lloyd, T.D.; Geneen, L.J.; Bernhardt, K.; McClune, W.; Fernquest, S.J.; Brown, T.; Dorée, C.; Brunskill, S.J.; Murphy, M.F.; Palmer, A.J. Cell salvage for minimising perioperative allogeneic blood transfusion in adults undergoing elective surgery. Cochrane Database Syst. Rev. 2023, 9, Cd001888. [Google Scholar] [CrossRef]
- Jacobi, K.; Walther, A.; Kühn, R.; Dworak, O.; Neidhardt, B.; Rügheimer, E. Advantages and limitations of intraoperative mechanical autotransfusion in al prostatectomies. Anaesthesist 1997, 46, 101–107. [Google Scholar] [CrossRef]
- Galaal, K.; Vickery, J.; Lopes, A.; Pritchard, C.; Barton, A.; Wingham, J.; Elsa Marques, E.M.; Palmer, J.; Ralph, C.; Fauld, J.; et al. Trial of intraoperative cell salvage versus transfusion in ovarian cancer (TIC TOC): A multi-centre randomised controlled feasibility study. Int. J. Gynecol. Cancer 2019, 29, A33. [Google Scholar] [CrossRef]
- Catling, S.; Williams, S.; Freites, O.; Rees, M.; Davies, C.; Hopkins, L. Use of a leucocyte filter to remove tumour cells from intra-operative cell salvage blood. Anaesthesia 2008, 63, 1332–1338. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, D.M.; Lema, M.J.; Glaves, D. The efficiency of an autotransfusion system for tumor cell removal from blood salvaged during cancer surgery. Anesth. Analg. 1994, 78, 1131–1135. [Google Scholar] [CrossRef]
- Kumar, N.; Zaw, A.S.; Khoo, B.L.; Nandi, S.; Lai, Z.; Singh, G.; Lim, C.T.; Thiery, J.P. Intraoperative cell salvage in metastatic spine tumour surgery reduces potential for reinfusion of viable cancer cells. Eur. Spine J. 2016, 25, 4008–4015. [Google Scholar] [CrossRef]
- Perseghin, P.; Viganò, M.; Rocco, G.; Della Pona, C.; Buscemi, A.; Rizzi, A. Effectiveness of leukocyte filters in reducing tumor cell contamination after intraoperative blood salvage in lung cancer patients. Vox Sang. 1997, 72, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.C.; Wellhausen, S.R.; Moehle, D.A.; Martin, A.W.; McMasters, K.M. Evaluation of intraoperative autotransfusion filtration for hepatectomy and pancreatectomy. Ann. Surg. Oncol. 2005, 12, 1017–1024. [Google Scholar] [CrossRef]
- Kongsgaard, U.E.; Wang, M.Y.; Kvalheim, G. Leucocyte depletion filter removes cancer cells in human blood. Acta Anaesthesiol. Scand. 1996, 40, 118–120. [Google Scholar] [CrossRef]
- Edelman, M.J.; Potter, P.; Mahaffey, K.G.; Frink, R.; Leidich, R.B. The potential for reintroduction of tumor cells during intraoperative blood salvage: Reduction of risk with use of the RC-400 leukocyte depletion filter. Urology 1996, 47, 179–181. [Google Scholar] [CrossRef]
- Yamada, T.; Terai, Y.; Yamashita, Y.; Ueki, M. Removal of malignant cells through a leukocyte-depletion filter for autologous blood transfusion. Int. J. Clin. Oncol. 1997, 2, 143–146. [Google Scholar] [CrossRef]
- Miller, G.V.; Ramsden, C.W.; Primrose, J.N. Autologous transfusion: An alternative to transfusion with banked blood during surgery for cancer. Br. J. Surg. 1991, 78, 713–715. [Google Scholar] [CrossRef]
- Frühauf, N.R.; Dumpich, O.; Kaudel, C.P.; Kasimir-Bauer, S.; Oldhafer, K.J. Filtration of malignant cells: Tumour cell depletion in an ex vivo model using a leukocyte adhesion filter. Perfusion 2001, 16, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Gwak, M.S.; Lee, K.W.; Kim, S.Y.; Lee, J.; Joh, J.W.; Kim, S.J.; Lee, H.H.; Park, J.W.; Kim, G.S.; Lee, S.K. Can a leukocyte depletion filter (LDF) reduce the risk of reintroduction of hepatocellular carcinoma cells? Liver Transpl. 2005, 11, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.K.H.; Menon, N.V.; Tan, P.S.; Pan, T.L.T.; Bonney, G.K.; Shridhar, I.G.; Madhavan, K.; Lim, C.T.; Kow, A.W.C. Presence of tumor cells in intra-operative blood salvage autotransfusion samples from hepatocellular carcinoma liver transplantation: Analysis using highly sensitive microfluidics technology. HPB 2021, 23, 1700–1707. [Google Scholar] [CrossRef]
- Poli, M.; Camargo, A.; Villa, L.; Moura, R.; Colella, R.; Deheinzelin, D. Intraoperative autologous blood recovery in prostate cancer surgery: In vivo validation using a tumour marker. Vox Sang. 2008, 95, 308–312. [Google Scholar] [CrossRef]
- Zong, Y.N.; Xu, C.Y.; Gong, Y.Q.; Zhang, X.Q.; Zeng, H.; Liu, C.; Zhang, B.; Xue, L.X.; Guo, X.Y.; Wei, F.; et al. Effectiveness of intraoperative cell salvage combined with a modified leucocyte depletion filter in metastatic spine tumour surgery. BMC Anesthesiol. 2022, 22, 217. [Google Scholar] [CrossRef]
- Hansen, E.; Knuechel, R.; Altmeppen, J.; Taeger, K. Blood irradiation for intraoperative autotransfusion in cancer surgery: Demonstration of efficient elimination of contaminating tumor cells. Transfusion 1999, 39, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Yang, J.T.; Liu, Y.Q.; Tang, L.H.; Wang, Y.; Wang, L.J.; Zhang, F.J.; Yan, M. Irradiation Can Selectively Kill Tumor Cells while Preserving Erythrocyte Viability in a Co-Culture System. PLoS ONE 2015, 10, e0127181. [Google Scholar] [CrossRef]
- Zhang, F.J.; Yang, J.T.; Tang, L.H.; Wang, W.N.; Sun, K.; Ming, Y.; Muhammad, K.G.; Zheng, Y.F.; Yan, M. Effect of X-ray irradiation on hepatocarcinoma cells and erythrocytes in salvaged blood. Sci. Rep. 2017, 7, 7995. [Google Scholar] [CrossRef]
- Futamura, N.; Nakanishi, H.; Hirose, H.; Nakamura, S.; Tatematsu, M. The effect of storage on the survival of cancer cells in blood and efficient elimination of contaminating cancer cells by a leukocyte depletion filter. Am. Surg. 2005, 71, 585–590. [Google Scholar] [CrossRef]
- Weller, A.; Seyfried, T.; Ahrens, N.; Baier-Kleinhenz, L.; Schlitt, H.-J.; Peschel, G.; Graf, B.M.; Sinner, B. Cell Salvage During Liver Transplantation for Hepatocellular Carcinoma: A Retrospective Analysis of Tumor Recurrence Following Irradiation of the Salvaged Blood. Transplant. Proc. 2021, 53, 1639–1644. [Google Scholar] [CrossRef]
- Waters, J.H.; Yazer, M.; Chen, Y.F.; Kloke, J. Blood salvage and cancer surgery: A meta-analysis of available studies. Transfusion 2012, 52, 2167–2173. [Google Scholar] [CrossRef]
- Kumar, N.; Chen, Y.; Zaw, A.S.; Nayak, D.; Ahmed, Q.; Soong, R.; Wong, H.K. Use of intraoperative cell-salvage for autologous blood transfusions in metastatic spine tumour surgery: A systematic review. Lancet Oncol. 2014, 15, e33–e41. [Google Scholar] [CrossRef] [PubMed]
- Kinnear, N.; O’Callaghan, M.; Hennessey, D.; Liddell, H.; Newell, B.; Bolt, J.; Lawrentschuk, N. Intra-operative cell salvage in urological surgery: A systematic review and meta-analysis of comparative studies. BJU Int. 2019, 123, 210–219. [Google Scholar] [CrossRef]
- Guo, T.; Jiang, L.; Luo, B.; Huang, Y. The long-term outcomes of patients with hepatocellular carcinoma after intraoperative autotransfusion: A systematic review and meta-analysis of cohort studies. Int. J. Clin. Exp. Med. 2018, 11, 7593–7600. [Google Scholar]
- Wu, W.W.; Zhang, W.Y.; Zhang, W.H.; Yang, L.; Deng, X.Q.; Ou, M.C.; Yang, Y.X.; Liu, H.B.; Zhu, T. Survival analysis of intraoperative blood salvage for patients with malignancy disease: A PRISMA-compliant systematic review and meta-analysis. Medicine 2019, 98, e16040. [Google Scholar] [CrossRef] [PubMed]
- Aijtink, V.J.; Rutten, V.C.; Meijer, B.E.M.; de Jong, R.; Isaac, J.L.; Polak, W.G.; Perera, M.T.P.R.; Sneiders, D.; Hartog, H. Safety of Intraoperative Blood Salvage During Liver Transplantation in Patients with Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Ann. Surg. 2022, 276, 239–245. [Google Scholar] [CrossRef]
- Frietsch, T.; Steinbicker, A.U.; Horn, A.; Metz, M.; Dietrich, G.; Weigand, M.A.; Waters, J.H.; Fischer, D. Safety of Intraoperative Cell Salvage in Cancer Surgery: An Updated Meta-Analysis of the Current Literature. Transfus. Med. Hemother 2022, 49, 143–157. [Google Scholar] [CrossRef]
- Murtha-Lemekhova, A.; Fuchs, J.; Ritscher, E.; Hoffmann, K. Effect of Autotransfusion in HCC Surgery on Survival and Recurrence: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 4837. [Google Scholar] [CrossRef]
- Wang, Z.; Li, S.; Jia, Y.; Liu, M.; Yang, K.; Sui, M.; Liu, D.; Liang, K. Clinical prognosis of intraoperative blood salvage autotransfusion in liver transplantation for hepatocellular carcinoma: A systematic review and meta-analysis. Front. Oncol. 2022, 12, 985281. [Google Scholar] [CrossRef]
- Rajendran, L.; Lenet, T.; Shorr, R.; Abou Khalil, J.; Bertens, K.A.; Balaa, F.K.; Martel, G. Should Cell Salvage Be Used in Liver Resection and Transplantation? A Systematic Review and Meta-analysis. Ann. Surg. 2023, 277, 456–468. [Google Scholar] [CrossRef]
- Hinojosa-Gonzalez, D.E.; Salgado-Garza, G.; Tellez-Garcia, E.; Escarcega-Bordagaray, J.A.; Bueno-Gutierrez, L.C.; Madrazo-Aguirre, K.; Muñoz-Hibert, M.I.; Diaz-Garza, K.G.; Ramirez-Mulhern, I.; Alvarez de la Reguera-Babb, R.; et al. Blood salvage and autotransfusion during orthotopic liver transplantation for hepatocellular carcinoma: A systematic review and meta-analysis. Clin. Transplant. 2024, 38, e15222. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.A.; Bailey, C.R.; Charlton, A.J.; Evans, E.; Guckian-Fisher, M.; McCrossan, R.; Nimmo, A.F.; Payne, S.; Shreeve, K.; Smith, J.; et al. Association of Anaesthetists guidelines: Cell salvage for peri-operative blood conservation 2018. Anaesthesia 2018, 73, 1141–1150. [Google Scholar] [CrossRef]
- National Institute for Health and Clinical Excellence. Interventional Procedure Overview of Intraoperative Red Blood Cell Salvage During Radical Prostatectomy or Radical Cystectomy; National Institute for Health and Clinical Excellence: London, UK, 2007. [Google Scholar]
- National Blood Authority Australia. Guidance for the Provision of Intraoperative Cell Salvage; National Blood Authority Australia: Lyneham, Australia, 2014.
- Kietaibl, S.; Ahmed, A.; Afshari, A.; Albaladejo, P.; Aldecoa, C.; Barauskas, G.; De Robertis, E.; Faraoni, D.; Filipescu, D.C.; Fries, D.; et al. Management of severe peri-operative bleeding: Guidelines from the European Society of Anaesthesiology and Intensive Care: Second update 2022. Eur. J. Anaesthesiol.|EJA 2023, 40, 226–304. [Google Scholar] [CrossRef] [PubMed]
- Liumbruno, G.M.; Bennardello, F.; Lattanzio, A.; Piccoli, P.; Rossetti, G. Recommendations for the transfusion management of patients in the peri-operative period. II. The intra-operative period. Blood Transfus. 2011, 9, 189–217. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, V.A.; Brown, J.R.; Despotis, G.J.; Hammon, J.W.; Reece, T.B.; Saha, S.P.; Song, H.K.; Clough, E.R.; Shore-Lesserson, L.J.; Goodnough, L.T.; et al. 2011 update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines. Ann. Thorac. Surg. 2011, 91, 944–982. [Google Scholar] [CrossRef]
- Hansen, E. Is intraoperative blood salvage really safe in cancer surgery? Transfusion 2012, 52, 2723–2724. [Google Scholar] [CrossRef]
First Author, Year | Number of Included Studies | Total Number of Patients Included | Study Sample Size Range | Cancer Type | Study Design | Number of Studies Reported Use of an LDF | Reported Follow-Up Range | Risk of Bias/Quality of Evidence | Main Results |
---|---|---|---|---|---|---|---|---|---|
Waters, 2012 [73] | 11 | 2390 (769 received ICS) | 47–1038 | Hepatic, cervical, prostate, gastrointestinal | Prospective observational (n = 4) Retrospective (n = 7) | NS | 1–120 months | NS | Studies analyzing cancer recurrence (n = 10): Reduced recurrence rates in patients receiving ICS compared to controls (OR 0.65; 95% CI 0.43–0.98; p = 0.04). Prostate cancer studies (n = 5): No difference in recurrence rates in patients receiving ICS compared to controls (OR 0.54; 95% CI 0.27–1.07; p = 0.08). |
Kumar, 2014 [74] | 30 | 6888 (1860 received ICS with reinfusion and 133 without reinfusion) | 9–1862 | Gynecological, hepatobiliary, gastrointestinal, urologic, lung | Prospective observational (n = 17) Retrospective (n = 11) In vitro (n = 2) | NS | 0–61 months | NS | Gynecological cancer studies (n = 4) Reduced ABT requirements in patients receiving ICS compared to controls, without effect on metastasis or recurrence. Hepatobiliary cancer studies (n = 7): Reduced ABT requirements in patients receiving ICS compared to controls, without effect on recurrence or survival. Gastrointestinal cancer studies (n = 1): Reduced ABT requirements in patients receiving ICS compared to controls, without effect on metastasis or recurrence. Urological cancer studies (n = 15): Reduced ABT requirements in patients receiving ICS compared to controls, without increasing recurrence, metastasis, or mortality. Lung cancer studies (n = 1): LDFs effectively removed malignant cells from salvaged blood. In vitro studies (n = 2): LDFs effectively removed malignant cells from blood mixtures while standard blood filters did not. |
Kinnear, 2018 [75] | 14 | 4536 (1223 received ICS) | 27–1862 | Urologic | Prospective observational (n = 2) Retrospective (n = 12) | 6 | 0–65 months | NOS: - 5 stars (n = 1) - 6 stars (n = 3) - 7 stars (n = 1) - 8 stars (n = 6) - 9 stars (n = 3) Conclusion by the authors: 10 studies rated as low risk of bias, 4 studies as moderate risk of bias. | Prostatectomy studies (n = 4): Reduced ABT requirements in patients receiving ICS compared to controls (OR 0.34; 95% CI 0.15–0.76; p = 0.01). Studies analyzing oncological outcomes (n = 10): No difference (n = 8 studies) or improved outcomes (n = 2 studies) in patients receiving ICS compared to controls. Cystectomy and partial nephrectomy studies (n = 2): No difference in complication rates (39.5% vs. 40.5% after cystectomy and 21% vs. 17% after partial nephrectomy) in patients receiving ICS compared to controls. Studies analyzing costs (n = 2): ICS was cheaper than no blood conservation technique (GBP 320 vs. GBP 675 and GBP 163 vs. GBP 673 per patient). |
Guo, 2018 [76] | 8 | 1755 (662 received ICS) | 47–397 | Hepatic | Retrospective (n = 8) | 1 | 0.5–134 months | NOS: - 6 stars (n = 1) - 7 stars (n = 3) - 8 stars (n = 4) Conclusion by the authors: Studies rated as moderate to high quality. | Studies analyzing recurrence rates (n = 7): No difference in recurrence rates in patients receiving ICS compared to controls (RR 0.85; 95% CI 0.71–1.02; p = 0.69). Studies analyzing recurrence free survival (n = 5): Improved recurrence-free survival in patients receiving ICS compared to controls (RR 1.18; 95% CI 1.03–1.36; p = 0.15). Studies analyzing mortality (n = 5): No difference in mortality in patients receiving ICS compared to controls (HR 0.80; 95% CI 0.58–1.11; p = 0.84). |
Wu, 2019 [77] | 9 | 4354 (1346 received ICS) | 71–1862 | Urologic, cervical, hepatic | Prospective observational (n = 1) Retrospective (n = 8) | NS | NS | NOS: - 5 stars (n = 3) - 6 stars (n = 3) - 7 stars (n = 3) Conclusion by the authors: 6 studies rated as moderate quality, 3 studies as high quality. | Studies analyzing overall survival (n = 4): No difference in five-year overall survival in patients receiving ICS compared to controls (OR 1.12; 95% CI 0.80–1.58; p = 0.51). Studies analyzing disease-free survival (n = 3): No difference in five-year disease-free survival in patients receiving ICS compared to controls (OR 1.08; 95% CI 0.57–1.67; p = 0.53). Studies analyzing recurrence rates (n = 6): No difference in five-year recurrence rates in patients receiving ICS compared to controls (OR 0.86; 95% CI 0.71–1.05; p = 0.15). Liver transplantation studies (n = 4): No difference in five-year overall survival in patients receiving ICS compared to controls (2 studies; OR 0.97; 95% CI 0.57–1.67; p = 0.92). Reduced five-year recurrence rates in patients receiving ICS compared to controls (4 studies; OR 0.65; 95% CI 0.46–0.92; p = 0.02). |
Aijtink, 2022 [78] | 9 | 1997 (1200 received ICS) | 52–397 | Hepatic | Retrospective (n = 9) | 5 | 18–78 months | ROBINS-I: - Low risk of bias (n = 2) - Moderate risk of bias (n = 5) - Serious risk of bias (n = 2) Conclusion by the authors: Studies predominantly rated as moderate quality. | Studies analyzing disease-free survival (n = 4): No difference in disease-free survival in patients receiving ICS compared to controls (HR 0.90; 95% CI 0.66–1.24; p = 0.53). Studies analyzing recurrence rates (n = 5): No difference in recurrence rates in patients receiving ICS compared to controls (HR 0.83; 95% CI 0.57–1.23; p = 0.36). Studies analyzing overall survival (n = 4): No difference in overall survival in patients receiving ICS compared to controls compared to controls (HR 1.07; 95% CI 0.70–1.62, p = 0.75). |
Frietsch, 2022 [79] | 34 | 8503 (3161 received ICS) | 16–395 | Hepatic, renal, prostate, bladder, cervical, colorectal, pancreatic, liver metastases, metastatic spine tumors, gastrointestinal, growth or lung metastases from kidney cancer or sarcoma | Prospective observational (n = 12) Retrospective (n = 22) | 11 | 9–96 months | GRADE: - Very low quality (n = 1) - Very low to low quality (n = 1) - Low quality (n = 28) - Low to moderate quality (n = 3) - NS (n = 1) Conclusion by the authors: Studies predominantly rated as low quality and risk of bias considered high, since all included studies were observational. | Studies analyzing recurrence rates (n = 25): Reduced recurrence rates in patients receiving ICS compared to controls (OR 0.76; 95% CI 0.64–0.90). Studies analyzing mortality (n = 20): No difference in mortality in patients receiving ICS compared to controls (OR 0.95; 95% CI 0.71–1.27). Studies analyzing LOS (n = 10): No difference in LOS in patients receiving ICS compared to controls (mean difference 0.07 days; 95% CI −0.63–0.48). |
Murtha-Lemekhova, 2022 [80] | 14 | 1314 (803 received ICS) | 47–319 | Hepatic | Prospective observational (n = 1) Retrospective (n = 9) | 1 | NS | ROBINS-I: - Low risk of bias (n = 11) - Moderate risk of bias (n = 3) Conclusion by the authors: Studies predominantly rated as moderate risk of bias. Certainty of evidence, according to GRADE, rated as very low. | Studies analyzing overall survival (n = 6): No difference in overall survival in patients receiving ICS compared to controls (HR 1.13; 95% CI 0.89–1.42; p = 0.31). Studies analyzing disease-free survival (n = 8): No difference in disease-free survival in patients receiving ICS compared to controls (HR 0.97; 95% CI 0.76–1.24; p = 0.83). Studies analyzing recurrence rates (n = 6): No difference in recurrence rates in patients receiving ICS compared to controls (OR 0.71; 95% CI 0.41–1.23; p = 0.22). |
Wang, 2022 [81] | 12 | 2253 (1374 received ICS) | 23–397 | Hepatic | Retrospective (n = 12) | 6 | NS | NOS: - 6 stars (n = 1) - 7 stars (n = 5) - 8 stars (n = 5) - 9 stars (n = 1) Conclusion by the authors: 1 study rated as moderate quality, 11 studies as high quality. | Studies analyzing recurrence rates: Reduced five-year recurrence rates in patients receiving ICS compared to controls (9 studies; OR 0.75; 95% CI 0.59–0.95; p = 0.02). Reduced 7-year recurrence rates in patients receiving ICS compared to controls (5 studies; OR 0.65; 95% CI 0.44–0.95; p = 0.03). Reduced five-year recurrence rates in patients receiving ICS with an LDF compared to controls (6 studies; OR 0.73; 95% CI 0.55–0.96; p = 0.03). Studies analyzing overall survival (n = 7): No difference in five-year overall survival in patients receiving ICS compared to controls (OR 1.04; 95% CI 0.76–1.40; p = 0.82). Studies analyzing disease-free survival (n = 2): No difference in five-year disease-free survival in patients receiving ICS compared to controls (OR 0.88; 95% CI 0.60–1.28; p = 0.50). |
Rajendran, 2023 [82] | 21 | 3433 (1445 received ICS) | 41–670 | Hepatic, colorectal metastases | Retrospective (n = 21) | 5 | 12–120 months | MINORS: - 14 (n = 1) - 15 (n = 2) - 16 (n = 2) - 17 (n = 8) - 18 (n = 4) - 19 (n = 3) - 20 (n = 1) Conclusion by the authors: 16 studies rated as low risk of bias, 5 studies rated as high risk of bias. Certainty of evidence, according to GRADE, rated as very low to low. | Studies analyzing ABT requirements (n = 6):
No difference in ABT requirements (number of units) in patients receiving ICS compared to controls (mean difference −1.28 units; 95% CI −3.26–0.70; p = 0.20). Studies analyzing overall survival: No difference in overall survival in liver transplant patients receiving ICS compared to controls (3 studies; HR 1.10; 95% CI 0.67–1.79; p = 0.71). No difference in overall survival in liver resection patients receiving ICS compared to controls (2 studies; HR 0.69; 95% CI 0.45–1.05; p = 0.08). Studies analyzing disease-free survival: No difference in disease-free survival in liver transplant patients receiving ICS compared to controls (5 studies; HR 0.93; 95% CI 0.57–1.49; p = 0.75). No difference in disease-free survival in liver resection patients receiving ICS compared to controls (2 studies; HR 0.89; 95% CI 0.43–1.85; p = 0.75). |
Hinojosa-Gonzalez, 2024 [83] | 12 | 1704 (969 received ICS) | 23–319 | Hepatic | Retrospective (n = 12) | 5 | NS | NOS: - 6 stars (n = 2) - 7 stars (n = 8) - 8 stars (n = 2) Conclusion by the authors: 2 studies rated as moderate quality, 10 studies as high quality. | Studies analyzing ABT requirements (n = 7):
No difference in ABT requirements (number of units) in patients receiving ICS compared to controls (mean difference −0.56 units; 95% CI −1.89–0.78; p = 0.41). Studies analyzing recurrence rates: No difference in recurrence rates in patients receiving ICS without an LDF compared to controls (6 studies; HR 0.82; 95% CI 0.59–1.15; p = 0.25). No difference in recurrence rates in patients receiving ICS with an LDF compared to controls (5 studies; HR 0.81; 95% CI 0.59–1.12; p = 0.20). Studies analyzing 1-year recurrence-free survival (n = 11): No difference in 1-year recurrence-free survival in patients receiving ICS compared to controls (HR 0.89; 95% CI 0.63–1.25; p = 0.50). Studies analyzing overall survival (n = 5): No difference in overall survival in patients receiving ICS compared to controls (HR 0.86; 95% CI 0.66–1.13; p = 0.29). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Ven, W.H.; Hollmann, M.W. Intraoperative Cell Salvage in Oncologic Surgery: A Comprehensive Review. J. Clin. Med. 2025, 14, 4786. https://doi.org/10.3390/jcm14134786
van der Ven WH, Hollmann MW. Intraoperative Cell Salvage in Oncologic Surgery: A Comprehensive Review. Journal of Clinical Medicine. 2025; 14(13):4786. https://doi.org/10.3390/jcm14134786
Chicago/Turabian Stylevan der Ven, Ward H., and Markus W. Hollmann. 2025. "Intraoperative Cell Salvage in Oncologic Surgery: A Comprehensive Review" Journal of Clinical Medicine 14, no. 13: 4786. https://doi.org/10.3390/jcm14134786
APA Stylevan der Ven, W. H., & Hollmann, M. W. (2025). Intraoperative Cell Salvage in Oncologic Surgery: A Comprehensive Review. Journal of Clinical Medicine, 14(13), 4786. https://doi.org/10.3390/jcm14134786