Do Diabetes and Genetic Polymorphisms in the COMT and OPRM1 Genes Modulate the Postoperative Opioid Demand and Pain Perception in Osteoarthritis Patients After Total Knee and Hip Arthroplasty?
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Recruitment
2.2. Participants
2.3. Procedure
2.4. Genotyping
2.5. Statistical Analysis
3. Results
3.1. Hardy–Weinberg Equilibrium
3.2. Descriptive Analyses and Correlations
3.3. Multilevel Regression Analysis
3.3.1. OPRM1rs1799971 Polymorphisms
3.3.2. COMT rs4633 Polymorphisms
3.3.3. COMT rs4680 Polymorphism
3.3.4. COMT rs4818
3.3.5. COMT rs6269
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hunter, D.J.; March, L.; Chew, M. Osteoarthritis in 2020 and beyond: A Lancet Commission. Lancet 2020, 396, 1711–1712. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L. Osteoarthritis of the Knee. N. Engl. J. Med. 2021, 384, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Wylde, V.; Beswick, A.; Bruce, J.; Blom, A.; Howells, N.; Gooberman-Hill, R. Chronic pain after total knee arthroplasty. EFORT Open Rev. 2018, 3, 461–470. [Google Scholar] [CrossRef]
- Peng, X.; Chen, X.; Zhang, Y.; Tian, Z.; Wang, M.; Chen, Z. Advances in the pathology and treatment of osteoarthritis. J. Adv. Res. 2025. [Google Scholar] [CrossRef]
- Martel-Pelletier, J.; Barr, A.J.; Cicuttini, F.M.; Conaghan, P.G.; Cooper, C.; Goldring, M.B.; Goldring, S.R.; Jones, G.; Teichtahl, A.J.; Pelletier, J.P. Osteoarthritis. Nat. Rev. Dis. Primers 2016, 2, 16072. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, N.; Grässel, S. Involvement of complement peptides C3a and C5a in osteoarthritis pathology. Peptides 2022, 154, 170815. [Google Scholar] [CrossRef]
- Aubourg, G.; Rice, S.J.; Bruce-Wootton, P.; Loughlin, J. Genetics of osteoarthritis. Osteoarthr. Cartil. 2021, 30, 636–649. [Google Scholar] [CrossRef]
- Kulkarni, P.; Martson, A.; Vidya, R.; Chitnavis, S.; Harsulkar, A. Pathophysiological landscape of osteoarthritis. Adv. Clin. Chem. 2021, 100, 37–90. [Google Scholar] [CrossRef]
- Fu, K.; Robbins, S.R.; McDougall, J.J. Osteoarthritis: The genesis of pain. Rheumatology 2018, 57, iv43–iv50. [Google Scholar] [CrossRef]
- Jiang, M.; Deng, H.; Chen, X.; Lin, Y.; Xie, X.; Bo, Z. The efficacy and safety of selective COX-2 inhibitors for postoperative pain management in patients after total knee/hip arthroplasty: A meta-analysis. J. Orthop. Surg. Res. 2020, 15, 39. [Google Scholar] [CrossRef]
- Jordan, K.M.; Arden, N.K.; Doherty, M.; Bannwarth, B.; Bijlsma, J.W.J.; Die, K.; Hauselmann, H.; Herrero-Beaumont, G.; Kaklamanis, P.; Lohmander, S.; et al. EULAR recommendations 2003: An evidence based approach to the management of knee osteoarthritis: Report of a task force of the standing committee for international clinical studies including therapeutic trials (ESCISIT). Ann. Rheum. Dis. 2003, 62, 1145–1155. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, M.C.; Altman, R.D.; April, K.T.; Benkhalti, M.; Guyatt, G.; McGowan, J.; Towheed, T.; Welch, V.; Wells, G.; Tugwell, P. American college of rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res. 2012, 64, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Zidar, N.; Odar, K.; Glavač, D.; Jerše, M.; Zupanc, T.; Štajer, D. Cyclooxygenase in normal human tissues—Is COX-1 really a constitutive isoform, and COX-2 an inducible isoform? J. Cell. Mol. Med. 2010, 13, 3753–3763. [Google Scholar] [CrossRef] [PubMed]
- Li Volti, G.; Seta, F.; Schwartzman, M.L.; Nasjletti, A.; Abraham, N.G. Heme oxygenase attenuates angiotensin II-mediated increase in cyclooxygenase-2 activity in human femoral endothelial cells. Hypertension 2003, 41, 715. [Google Scholar] [CrossRef]
- Kaufmann, W.E.; Worley, P.F.; Pegg, J.; Bremer, M.; Isakson, P. COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. Proc. Natl. Acad. Sci. USA 1996, 93, 2317–2321. [Google Scholar] [CrossRef] [PubMed]
- Reinold, H.; Ahmadi, S.; Depner, U.B.; Layh, B.; Heindl, C.; Hamza, M.; Pahl, A.; Brune, K.; Narumiya, S.; Müller, U.; et al. Spinal inflammatory hyperalgesia is mediated by prostaglandin E receptors of the EP2 subtype. J. Clin. Investig. 2005, 115, 673–679. [Google Scholar] [CrossRef]
- Malfait, A.M.; Schnitzer, T.J. Towards a mechanism-based approach to pain management in osteoarthritis. Nat. Rev. Rheumatol. 2013, 9, 654–664. [Google Scholar] [CrossRef] [PubMed]
- Arendt-Nielsen, L.; Egsgaard, L.L.; Petersen, K.K. Evidence for a central mode of action for etoricoxib (COX-2 inhibitor) in patients with painful knee osteoarthritis. Pain 2016, 157, 1634–1644. [Google Scholar] [CrossRef]
- Zhang, W.; Moskowitz, R.W.; Nuki, G.; Abramson, S.; Altman, R.D.; Arden, N.; Bierma-Zeinstra, S.; Brandt, K.D.; Croft, P.; Doherty, M.; et al. OARSI recommendations for the management of hip and knee osteoarthritis, part II: OARSI evidence-based, expert consensus guidelines. Osteoarthr. Cartil. 2008, 16, 137–162. [Google Scholar] [CrossRef]
- Katz, J.N.; Arant, K.R.; Loeser, R.F. Diagnosis and treatment of hip and knee osteoarthritis: A review. JAMA 2021, 325, 568–578. [Google Scholar] [CrossRef]
- Carr, A.J.; Robertsson, O.; Graves, S.; Price, A.J.; Arden, N.K.; Judge, A.; Beard, D.J. Knee replacement. Lancet 2012, 379, 1331–1340. [Google Scholar] [CrossRef]
- Skou, S.T.; Roos, E.M.; Laursen, M.B.; Rathleff, M.S.; Arendt-Nielsen, L.; Simonsen, O. A randomized, controlled trial of total knee replacement. N. Engl. J. Med. 2015, 373, 1597–1606. [Google Scholar] [CrossRef] [PubMed]
- Beswick, A.D.; Wylde, V.; Gooberman-Hill, R.; Blom, A.; Dieppe, P. What proportion of patients report long-term pain after total hip or knee replacement for osteoarthritis? A systematic review of Prospective studies in unselected patients. BMJ Open 2012, 2, e000435. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Feng, M.-L.; Cheng, J.-B.; Zhang, X.; Tao, H.-C. Meta-analysis of factors influencing anterior knee pain after total knee arthroplasty. World J. Orthop. 2024, 15, 180–191. [Google Scholar] [CrossRef]
- Brennan, F.; Carr, D.B.; Cousins, M. Pain management: A fundamental human right. Anesth. Analg. 2007, 105, 205–221. [Google Scholar] [CrossRef] [PubMed]
- Leth, M.F.; Bukhari, S.; Laursen, C.C.W.; Larsen, M.E.; Tornøe, A.S.; Jakobsen, J.C.; Maagaard, M.; Mathiesen, O. Risk of serious adverse events associated with non-steroidal anti-inflammatory drugs in orthopaedic surgery. A protocol for a systematic review. Acta Anaesthesiol. Scand. 2022, 66, 1257–1265. [Google Scholar] [CrossRef]
- Pogatzki-Zahn, E.; Chandrasena, C.; Schug, S.A. Nonopioid analgesics for postoperative pain management. Curr. Opin. Anaesthesiol. 2014, 27, 513–519. [Google Scholar] [CrossRef]
- Garimella, V.; Cellini, C. Postoperative pain control. Clin. Colon Rectal Surg. 2013, 26, 191–196. [Google Scholar] [CrossRef]
- Gelman, D.; Gelmanas, A.; Urbanaite, D.; Tamošiūnas, R.; Sadauskas, S.; Bilskienė, D.; Naudžiūnas, A.; Širvinskas, E.; Benetis, R.; Macas, A. Role of multimodal analgesia in the evolving enhanced recovery after surgery pathways. Medicina 2018, 54, 20. [Google Scholar] [CrossRef]
- Martinez, V.; Beloeil, H.; Marret, E.; Fletcher, D.; Ravaud, P.; Trinquart, L. Non-opioid analgesics in adults after major surgery: Systematic review with network meta-analysis of randomized trials. Br. J. Anaesth. 2017, 118, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Sachtleben, E.P.; Rooney, K.; Haddad, H.; Lassiegne, V.L.; Boudreaux, M.; Cornett, E.M.; Kaye, A.D. The Role of Pharmacogenomics in Postoperative Pain Management. Methods Mol. Biol. 2022, 2547, 505–526. [Google Scholar] [CrossRef]
- Buskila, D. Genetics of chronic pain states. Best Pract. Res. Clin. Rheumatol. 2007, 21, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Belfer, I.; Wu, T.; Kingman, A.; Krishnaraju, R.K.; Goldman, D.; Max, M.B.; Warltier, D.C. Candidate Gene Studies of Human Pain Mechanisms: Methods for Optimizing Choice of Polymorphisms and Sample Size. Anesthesiology 2004, 100, 1562–1572. [Google Scholar] [CrossRef]
- Awad, M.E.; Padela, M.T.; Sayeed, Z.; Abaab, L.; El-Othmani, M.M.; Saleh, K.J. Pharmacogenomics Testing for Postoperative Pain Optimization Before Total Knee and Total Hip Arthroplasty. JBJS Rev. 2018, 6, e3. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Wen, L.; Shen, X.; Zhang, H. Effects of the OPRM1 A118G Polymorphism (rs1799971) on Opioid Analgesia in Cancer Pain. Clin. J. Pain 2019, 35, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Kowarik, M.C.; Einhäuser, J.; Jochim, B.; Büttner, A.; Tölle, T.R.; Riemenschneider, M.; Platzer, S.; Berthele, A. Impact of the COMT Val(108/158)Met polymorphism on the mu-opioid receptor system in the human brain: Mu-opioid receptor, met-enkephalin and beta-endorphin expression. Neurosci. Lett. 2012, 506, 214–219. [Google Scholar] [CrossRef]
- van Esch, A.A.; de Vries, E.; Te Morsche, R.H.; van Oijen, M.G.; Jansen, J.B.; Drenth, J.P. Catechol-O-methyltransferase (COMT) gene variants and pain in chronic pancreatitis. Neth. J. Med. 2011, 7, 330–334. [Google Scholar]
- Park, D.J.; Kim, S.H.; Nah, S.S.; Lee, J.H.; Kim, S.K.; Lee, Y.A.; Hong, S.J.; Kim, H.S.; Lee, H.S.; Kim, H.A.; et al. Association between catechol-O-methyl transferase gene polymorphisms and fibromyalgia in a Korean population: A case-control study. Eur. J. Pain 2016, 7, 1131–1139. [Google Scholar] [CrossRef]
- Pieper, G.M.; Mizoguchi, H.; Ohsawa, M.; Kamei, J.; Nagase, H.; Tseng, L.F. Decreased opioid-induced antino ciception but unaltered G-protein activation in the genetic-diabetic NOD mouse. Eur. J. Pharmacol. 2000, 401, 375–379. [Google Scholar] [CrossRef]
- Portenoy, R.K.; Foley, K.M.; Inturrisi, C.E. The nature of opioid responsiveness and its implications for neuropathic pain: New hypotheses derived from studies of opioid infusions. Pain 1990, 43, 273–286. [Google Scholar] [CrossRef]
- Ekstrom, W.; Al-Ani, A.N.; Saaf, M.; Cederholm, T.; Ponzer, S.; Hedstrom, M. Health related quality of life, reoperation rate and function in patients with diabetes mellitus and hip fracture—A 2 year follow-up study. Injury 2013, 44, 769–775. [Google Scholar] [CrossRef]
- Sravani, K.B.; Nikhar, S.A.; Padhy, N.; Durga, P.; Ramachandran, G. Comparison of Postoperative Pain and Analgesia Requirement among Diabetic and Nondiabetic Patients undergoing Lower Limb Fracture Surgery—A Prospective Observational Study. Anesth. Essays Res. 2021, 15, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Zammit, A.; Coquet, J.; Hah, J.; El Hajouji, O.; Asch, S.M.; Carroll, I.; Curtin, C.M.; Hernandez-Boussard, T. Postoperative opioid prescribing patients with diabetes: Opportunities for personalized pain management. PLoS ONE 2023, 18, e0287697. [Google Scholar] [CrossRef]
- Gerlach, E.B.; Plantz, M.A.; Swiatek, P.R.; Wu, S.A.; Arpey, N.; Fei-Zhang, D.; Divi, S.N.; Hsu, W.K.; Patel, A.A. The Drivers of Persistent Opioid Use and Its Impact on Healthcare Utilization After Elective Spine Surgery. Glob. Spine J. 2024, 14, 370–379. [Google Scholar] [CrossRef]
- Kellgren, J.H.; Lawrence, J.S. Radiological Assessment of Osteo-Arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef]
- Bertin, K.C.; Rottinger, H. Anterolateral mini-incision hip replacement surgery: A modified Watson-Jones approach. Clin. Orthop. Relat. Res. 2004, 429, 248–255. [Google Scholar] [CrossRef]
- Ohrn, F.D.; Van Leeuwen, J.; Tsukanaka, M.; Rohrl, S.M. A 2-year RSA study of the Vanguard CR total knee system: A randomized controlled trial comparing patient-specific positioning guides with conventional technique. Acta Orthop. 2018, 89, 418–424. [Google Scholar] [CrossRef] [PubMed]
- De Luca, M.L.; Ciccarello, M.; Martorana, M.; Infantino, D.; Letizia Mauro, G.; Bonarelli, S.; Benedetti, M.G. Pain monitoring and management in a rehabilitation setting after total joint replacement. Medicine 2018, 97, e12484. [Google Scholar] [CrossRef] [PubMed]
- Muthén, L.K.; Muthén, B.O. How to Use a Monte Carlo Study to Decide on Sample Size and Determine Power. Struct. Equ. Model. 2002, 9, 599–620. [Google Scholar] [CrossRef]
- Nugent, S.M.; Lovejoy, T.I.; Shull, S.; Dobscha, S.K.; Morasco, B.J. Associations of Pain Numeric Rating Scale Scores Collected during Usual Care with Research Administered Patient Reported Pain Outcomes. Pain Med. 2021, 22, 2235–2241. [Google Scholar] [CrossRef]
- Groudine, S.; Fossum, S. Use of intravenous acetaminophen in the treatment of postoperative pain. J. Perianesth. Nurs. 2011, 26, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Gaskell, H.; Derry, S.; Wiffen, P.J.; Moore, R.A. Single dose oral ketoprofen or dexketoprofen for acute postoperative pain in adults. Cochrane Database Syst. Rev. 2017, 5, CD007355. [Google Scholar] [CrossRef]
- Aubrun, F.; Mazoit, J.-X.; Riou, B. Postoperative intravenous morphine titration. Br. J. Anaesth. 2012, 108, 193–201. [Google Scholar] [CrossRef]
- The Jamovi Project. Version 2.3.0. 2022. Available online: https://www.jamovi.org (accessed on 1 March 2025).
- Muthen, B.; Asparouhov, T. Bayesian Structural Equation Modeling: A More Flexible Representation of Substantive Theory. Psychol. Methods 2012, 17, 313–335. [Google Scholar] [CrossRef] [PubMed]
- Dostalek, M.; Akhlaghi, F.; Puzanovova, M. Effect of diabetes mellitus on pharmacokinetic and pharmacodynamic properties of drugs. Clin. Pharmacokinet. 2012, 51, 481–499. [Google Scholar] [PubMed]
- Slade, G.D.; Fillingim, R.B.; Ohrbach, R.; Hadgraft, H.; Willis, J.; Arbes, S.J.; Tchivileva, I.E. COMT Genotype and Efficacy of Propranolol for TMD Pain: A Randomized Trial. J. Dent. Res. 2021, 100, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, Q.; Cai, C.; Lin, X.; Yu, W.; Huang, H.; Xie, W.; Lin, M.; Chen, W.; Wu, H.; et al. Effect of OPRM1/COMT Gene Polymorphisms on Sufentanil Labor Analgesia: A Cohort Study Based on Propensity Score Matching. Pharmacogenomics 2023, 24, 675–684. [Google Scholar] [CrossRef]
- de Olazarra, A.S.; Cortade, D.L.; Wang, S.X. From saliva to SNP: Non-invasive, point-of-care genotyping for precision medicine applications using recombinase polymerase amplification and giant magnetoresistive nanosensors. Lab Chip 2022, 22, 2131–2144. [Google Scholar] [CrossRef]
- Young, E.Y.; Lariviere, W.R.; Belfer, I. Genetic basis of pain variability: Recent advances. J. Med. Genet. 2012, 49, 1–9. [Google Scholar] [CrossRef]
- Diatchenko, L.; Slade, G.D.; Nackley, A.G.; Bhalang, K.; Sigurdsson, A.; Belfer, I.; Goldman, D.; Xu, K.; Shabalina, S.A.; Shagin, D.; et al. Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum. Mol. Genet. 2005, 14, 135–143. [Google Scholar] [CrossRef]
- Perry, M.; Baumbauer, K.; Young, E.E.; Dorsey, S.G.; Taylor, J.Y.; Starkweather, A.R. The Influence of Race, Ethnicity and Genetic Variants on Postoperative Pain Intensity: An Integrative Literature Review. Pain Manag. Nurs. 2019, 20, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Jurewicz, A.; Bohatyrewicz, A.; Pawlak, M.; Tarnowski, M.; Kurzawski, M.; Machoy-Mokrzyńska, A.; Kaczmarczyk, M.; Lubkowska, A.; Chudecka, M.; Maciejewska-Skrendo, A.; et al. No Association between Genetic Variants of the COMT and OPRM1 Genes and Pain Perception among Patients Undergoing Total Hip or Knee Arthroplasty for Primary Osteoarthritis. Genes 2022, 13, 1775. [Google Scholar] [CrossRef]
- Lopez Soto, E.J.; Catanesi, C.I. Human population genetic structure detected by pain-related mu opioid receptor gene polymorphisms. Genet. Mol. Biol. 2015, 38, 152–155. [Google Scholar] [CrossRef]
- Huang, P.; Chen, C.; Mague, S.D.; Blendy, J.A.; Liu-Chen, L.Y. A common single nucleotide polymorphism A118G of the mu opioid receptor alters its N-glycosyltion and protein stability. Biochem. J. 2012, 441, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chang, Y.Z.; Kan, Q.C.; Zhang, L.R.; Lu, H.; Chu, Q.J.; Wang, Z.Y.; Li, Z.S.; Zhang, J. Association of human micro-opioid receptor gene polymorphism A118G with fentanyl analgesia consumption in Chinese gynaecological patients. Anaesthesia 2010, 65, 130–135. [Google Scholar] [CrossRef]
- Vieira, C.M.P.; Fragoso, R.M.; Pereira, D.; Medeiros, R. Pain polymorphisms and opioids: An evidence based review. Mol. Med. Rep. 2018, 19, 1423–1434. [Google Scholar] [CrossRef]
- Campa, D.; Gioia, A.; Tomei, A.; Barale, R. Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin. Pharmacol. Ther. 2008, 83, 559–566. [Google Scholar] [CrossRef]
- Turczynowicz, A.; Niedźwiecka, K.; Panasiuk, D.; Pużyńska, W.; Luchowski, K.; Kondracka, J.; Jakubów, P. Single nucleotide polymorphisms as predictors of treatment efficacy and adverse effects of morphine in palliative medicine: A literature review. Palliat. Med. Pract. 2023, 17, 29–38. [Google Scholar] [CrossRef]
- Hwang, I.C.; Park, J.Y.; Myung, S.K.; Ahn, H.Y.; Fukuda, K.; Liao, Q. OPRM1 A118G gene variant and postoperative opioid requirement: A systematic review and meta-analysis. Anesthesiology 2014, 121, 825–834. [Google Scholar] [CrossRef]
- Takemura, M.; Niki, K.; Okamoto, Y.; Kawamura, T.; Kohno, M.; Matsuda, Y.; Ikeda, K. Comparison of the Effects of OPRM1 A118G Polymorphism Using Different Opioids: A Prospective Study. J. Pain Symptom Manag. 2024, 67, 39–49.e5. [Google Scholar] [CrossRef]
- Frangakis, S.G.; MacEachern, M.; Akbar, T.A.; Bolton, C.; Lin, V.; Smith, A.V.; Brummett, C.h.M.; Bicket, M.C. Association of genetic variants with postsurgical pain: A systematic review and meta-analyses. Anesthesiology 2023, 139, 827–839. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.C.; Lim, E.C.; Teo, Y.Y.; Lim, Y.; Law, H.Y.; Sia, A.T. Ethnicity and OPRM variant independently predict pain perception and patient-controlled analgesia usage for post-operative pain. Mol. Pain 2009, 5, 32. [Google Scholar] [CrossRef]
- Sia, A.T.; Lim, Y.; Lim, E.C.; Goh, R.W.; Law, H.Y.; Landau, R.; Teo, Y.Y.; Tan, E.C. A118G single nucleotide polymorphism of human mu-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia. Anesthesiology 2008, 109, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Saiz-Rodríguez, M.; Valdez-Acosta, S.; Borobia, A.M.; Burgueño, M.; Gálvez-Múgica, M.; Acero, J.; Cabaleiro, T.; Muñoz-Guerra, M.F.; Puerro, M.; Llanos, L.; et al. Influence of Genetic Polymorphisms on the Response to Tramadol, Ibuprofen, and the Combination in Patients with Moderate to Severe Pain After Dental Surgery. Clin. Ther. 2021, 43, e86–e102. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.I.; Lin, S.R.; Chang, L.L.; Wang, J.Y.; Lai, C.S. Association of the functional A118G polymorphism of OPRM1 in diabetic patients with foot ulcer pain. J. Diabetes Complicat. 2010, 24, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Fillingim, R.B.; Kaplan, L.; Staud, R.; Ness, T.J.; Glover, T.L.; Campbell, C.M.; Mogil, J.S.; Wallace, M.R. The A118G single nucleotide polymorphism of the mu-opioid receptor gene (OPRM1) is associated with pressure pain sensitivity in humans. J. Pain 2005, 6, 159–167. [Google Scholar] [CrossRef]
- Mura, E.; Govoni, S.; Racchi, M.; Carossa, V.; Ranzani, G.N.; Allegri, M.; van Schaik, R.H. Consequences of the 118A>G polymorphism in the OPRM1 gene: Translation from bench to bedside? J. Pain Res. 2013, 1, 331–353. [Google Scholar] [CrossRef]
- De Capraris, A.; Cinnella, G.; Marolla, A.; Salatto, P.; Da Lima, S.; Vetuschi, P.; Consoletti, L.; Gesualdo, L.; Dambrosio, M. Micro opioid receptor A118G polymorphism and post-operative pain: Opioids’ effects on heterozigous patients. Int. J. Immunopathol. Pharmacol. 2011, 24, 993–1004. [Google Scholar] [CrossRef]
- Landau, R.; Kern, C.; Columb, M.O.; Smiley, R.M.; Blouin, J.-L. Genetic variability of the μ-opioid receptor influences intrathecal fentanyl analgesia requirements in laboring women. Pain 2008, 139, 5–14. [Google Scholar] [CrossRef]
- Loggia, M.L.; Jensen, K.; Gollub, R.L.; Wasan, A.D.; Edwards, R.R.; Kong, J. The catechol-O-methyltransferase (COMT) val158met polymorphism affects brain responses to repeated painful stimuli. PLoS ONE 2011, 11, e27764. [Google Scholar] [CrossRef] [PubMed]
- Zubieta, J.K.; Heitzeg, M.M.; Smith, Y.R.; Bueller, J.A.; Xu, K.; Xu, Y.; Koeppe, R.A.; Stohler, C.S.; Goldman, D. COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science 2003, 299, 1240–1243. [Google Scholar] [CrossRef] [PubMed]
- Henker, R.A.; Lewis, A.; Dai, F.; Lariviere, W.R.; Meng, L.; Gruen, G.S.; Sereika, S.M.; Pape, H.; Tarkin, I.S.; Gowda, I.; et al. The Associations between OPRM1 and COMT Genotypes and Postoperative Pain, Opioid Use, and Opioid-Induced Sedation. Biol. Res. Nurs. 2013, 15, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.C.; Lim, E.C.; Ocampo, C.E.; Allen, J.C.; Sng, B.L.; Sia, A.T. Common variants of catechol-O-methyltransferase influence patient-controlled analgesia usage and postoperative pain in patients undergoing total hysterectomy. Pharmacogenomics J. 2016, 16, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Rakvag, T.T.; Klepstad, P.; Baar, C.; Kvam, T.-M.; Dale, O.; Kaasa, S.; Krokan, H.E.; Skorpen, F. The Val158Met polymorphism of the human catechol-O-methyltransferase (COMT) gene may influence morphine requirements in cancer pain patients. Pain 2005, 116, 73–78. [Google Scholar] [CrossRef]
- Hall, K.T.; Jablonski, K.A.; Chen, L.; Harden, M.; Tolkin, B.R.; Kaptchuk, T.J.; Bray, G.A.; Ridker, P.M.; Florez, J.C.; Diabetes Prevention Program Research Group; et al. Catechol-O-methyltransferase association with hemoglobin A1c. Metabolism 2016, 65, 961–967. [Google Scholar] [CrossRef]
- Bozek, T.; Blazekovic, A.; Perkovic, M.N.; Jercic, K.G.; Sustar, A.; Smircic-Duvnjak, L.; Outeiro, T.F.; Pivac, N.; Borovecki, F. The influence of dopamine-beta-hydroxylase and catechol O-methyltransferase gene polymorphism on the efficacy of insulin detemir therapy in patients with type 2 diabetes mellitus. Diabetol. Metab. Syndr. 2017, 9, 97. [Google Scholar] [CrossRef]
Variable | Min | Max | M | Mdn | SD | Hip Replacement n = 133 | Knee Replacement n = 62 | Comparison Between Types of Surgery | |||
---|---|---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | t(193) | Cohen’s d | ||||||
Age | 33 | 77 | 63.31 | 65 | 9.03 | 62.73 | 9.78 | 64.56 | 7.07 | 1.32 | 0.20 |
BMI | 20.4 | 43.4 | 30.1 | 29.8 | 4.74 | 29.18 | 4.39 | 32.08 | 4.90 | 4.14 *** | 0.64 |
Morphine—first day (in mg) | 0 | 20 | 8.67 | 10 | 5.9 | 8.46 | 5.75 | 9.11 | 6.24 | 0.72 | 0.11 |
Morphine—second day (in mg) | 0 | 30 | 1.97 | 0 | 4.61 | 1.8 | 4.66 | 2.34 | 4.50 | 0.75 | 0.12 |
Ketoprofen—first day (in mg) | 0 | 200 | 134.36 | 100 | 57.43 | 130.83 | 57.97 | 141.94 | 55.95 | 1.26 | 0.19 |
Ketoprofen—second day (in mg) | 0 | 200 | 97.44 | 100 | 56.93 | 95.49 | 57.56 | 101.61 | 55.79 | −0.70 | −0.11 |
Acetaminophen—first day (in mg) | 0 | 4000 | 2210.26 | 2000 | 800.71 | 2248.12 | 829.44 | 2129.03 | 735.16 | −0.97 | −0.15 |
Acetaminophen—second day (in mg) | 0 | 3000 | 1497.44 | 2000 | 851.77 | 1511.28 | 840.42 | 1467.74 | 881.83 | −0.33 | −0.05 |
Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| - | |||||||||||||
| 0.03 | - | ||||||||||||
| 0.13 | * | 0.15 | * | - | |||||||||
| 0.02 | 0.02 | 0.11 | - | ||||||||||
| 0.03 | −0.03 | 0.04 | 0.01 | - | |||||||||
| 0.14 | 0.03 | 0.07 | −0.08 | −0.05 | - | ||||||||
| −0.16 | * | 0.05 | 0.02 | 0.21 | ** | 0.02 | 0.04 | - | |||||
| −0.02 | 0.08 | −0.02 | 0.14 | * | −0.09 | 0.28 | *** | 0.17 | * | ||||
| 0.04 | 0.03 | −0.08 | 0.13 | 0.00 | −0.07 | 0.13 | 0.23 | ** |
Step 1 | Step 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Predictors | β | Post SD | 95% CI | p | β | Post SD | 95% CI | p | ||
Age | 0.00 | 0.03 | −0.06 | 0.06 | 0.900 | |||||
BMI | 0.03 | 0.03 | −0.02 | 0.10 | 0.260 | |||||
Diabetes | 0.03 | 0.05 | −0.05 | 0.13 | 0.340 | 0.02 | 0.04 | −0.06 | 0.09 | 0.740 |
Morphine | −0.03 | 0.06 | −0.13 | 0.09 | 0.560 | −0.03 | 0.05 | −0.15 | 0.06 | 0.520 |
Ketoprofen | 0.00 | 0.05 | −0.10 | 0.08 | 0.999 | 0.00 | 0.06 | −0.10 | 0.13 | 0.880 |
OPRM1rs1799971 | −0.05 | 0.05 | −0.13 | 0.03 | 0.280 | −0.03 | 0.04 | −0.11 | 0.03 | 0.400 |
Diabetes × Morphine | −0.08 | 0.06 | −0.19 | 0.04 | 0.240 | −0.07 | 0.05 | −0.18 | 0.03 | 0.140 |
Diabetes × Ketoprofen | 0.01 | 0.05 | −0.09 | 0.12 | 0.800 | 0.02 | 0.06 | −0.08 | 0.13 | 0.760 |
Diabetes × OPRM1rs1799971 | 0.02 | 0.05 | −0.07 | 0.12 | 0.540 | 0.02 | 0.05 | −0.08 | 0.12 | 0.520 |
Morphine × OPRM1rs1799971 | −0.10 | 0.07 | −0.22 | 0.03 | 0.100 | −0.10 | 0.05 | −0.22 | 0.00 | 0.060 |
Ketoprofen × OPRM1rs1799971 | −0.05 | 0.06 | −0.14 | 0.07 | 0.440 | −0.04 | 0.06 | −0.16 | 0.06 | 0.440 |
Diabetes × Morphine × OPRM1rs1799971 | −0.21 | 0.06 | −0.31 | −0.11 | 0.001 | −0.20 | 0.06 | −0.31 | −0.10 | 0.001 |
Diabetes × Ketoprofen × OPRM1rs1799971 | −0.05 | 0.05 | −0.16 | 0.04 | 0.260 | −0.05 | 0.06 | −0.19 | 0.06 | 0.340 |
Step 1 | Step 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Predictors | β | Post SD | 95% CI | p | β | Post SD | 95% CI | p | ||
Age | −0.01 | 0.03 | −0.06 | 0.05 | 0.820 | |||||
BMI | 0.03 | 0.03 | −0.03 | 0.09 | 0.320 | |||||
Diabetes | −0.01 | 0.04 | −0.09 | 0.06 | 0.720 | −0.03 | 0.04 | −0.10 | 0.05 | 0.580 |
Morphine | 0.05 | 0.04 | −0.04 | 0.12 | 0.260 | 0.04 | 0.04 | −0.04 | 0.14 | 0.340 |
Ketoprofen | 0.05 | 0.05 | −0.05 | 0.14 | 0.320 | 0.05 | 0.04 | −0.03 | 0.12 | 0.260 |
rs4633 CT | 0.11 | 0.05 | 0.00 | 0.18 | 0.040 | 0.10 | 0.05 | 0.00 | 0.18 | 0.040 |
rs4633 TT | 0.05 | 0.05 | −0.04 | 0.13 | 0.400 | 0.06 | 0.05 | −0.05 | 0.14 | 0.360 |
Diabetes × Morphine | 0.08 | 0.05 | 0.00 | 0.17 | 0.080 | 0.08 | 0.04 | −0.02 | 0.16 | 0.080 |
Diabetes × Ketoprofen | 0.08 | 0.04 | −0.01 | 0.14 | 0.080 | 0.07 | 0.05 | −0.02 | 0.19 | 0.140 |
Diabetes × COMT rs4633 CT | 0.12 | 0.04 | 0.02 | 0.19 | 0.020 | 0.11 | 0.05 | 0.03 | 0.20 | 0.020 |
Diabetes × COMT rs4633 CC | 0.02 | 0.05 | −0.11 | 0.10 | 0.720 | 0.02 | 0.05 | −0.09 | 0.10 | 0.680 |
Morphine × COMT rs4633 CT | −0.03 | 0.06 | −0.14 | 0.08 | 0.600 | −0.02 | 0.06 | −0.13 | 0.09 | 0.740 |
Morphine × COMT rs4633 CC | −0.05 | 0.07 | −0.20 | 0.10 | 0.380 | −0.06 | 0.07 | −0.19 | 0.09 | 0.300 |
Ketoprofen × COMT rs4633 CT | −0.02 | 0.05 | −0.13 | 0.07 | 0.560 | −0.02 | 0.06 | −0.14 | 0.08 | 0.720 |
Ketoprofen × COMT rs4633 CC | 0.04 | 0.06 | −0.07 | 0.16 | 0.460 | 0.04 | 0.06 | −0.07 | 0.16 | 0.500 |
Diabetes × Morphine × COMT rs4633 CT | −0.06 | 0.06 | −0.17 | 0.06 | 0.340 | −0.06 | 0.05 | −0.17 | 0.04 | 0.260 |
Diabetes × Morphine × COMT rs4633 CC | −0.07 | 0.06 | −0.18 | 0.06 | 0.300 | −0.08 | 0.06 | −0.21 | 0.04 | 0.240 |
Diabetes × Ketoprofen × COMT rs4633 CT | −0.04 | 0.06 | −0.18 | 0.07 | 0.320 | −0.06 | 0.06 | −0.17 | 0.04 | 0.440 |
Diabetes × Ketoprofen × COMT rs4633 CC | −0.03 | 0.06 | −0.13 | 0.11 | 0.720 | −0.03 | 0.07 | −0.16 | 0.10 | 0.700 |
Step 1 | Step 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Predictors | β | Post SD | 95% CI | p | β | Post SD | 95% CI | p | ||
Age | 0.00 | 0.03 | −0.06 | 0.05 | 0.920 | |||||
BMI | 0.03 | 0.03 | −0.03 | 0.09 | 0.340 | |||||
Diabetes | −0.01 | 0.04 | −0.09 | 0.06 | 0.840 | −0.02 | 0.04 | −0.10 | 0.05 | 0.680 |
Morphine | 0.05 | 0.04 | −0.04 | 0.12 | 0.280 | 0.04 | 0.04 | −0.05 | 0.14 | 0.360 |
Ketoprofen | 0.05 | 0.05 | −0.05 | 0.14 | 0.280 | 0.06 | 0.04 | −0.02 | 0.12 | 0.200 |
rs4680 AG | 0.11 | 0.04 | 0.00 | 0.18 | 0.040 | 0.10 | 0.05 | 0.00 | 0.18 | 0.040 |
rs4680 GG | 0.04 | 0.05 | −0.05 | 0.12 | 0.440 | 0.05 | 0.05 | −0.05 | 0.13 | 0.400 |
Diabetes × Morphine | 0.08 | 0.05 | −0.01 | 0.17 | 0.100 | 0.08 | 0.04 | −0.02 | 0.16 | 0.080 |
Diabetes × Ketoprofen | 0.08 | 0.04 | −0.01 | 0.14 | 0.080 | 0.08 | 0.05 | −0.02 | 0.19 | 0.140 |
Diabetes × COMT rs4680 AG | 0.11 | 0.04 | 0.01 | 0.18 | 0.020 | 0.11 | 0.04 | 0.03 | 0.19 | 0.020 |
Diabetes × COMT rs4680 GG | 0.02 | 0.05 | −0.12 | 0.09 | 0.700 | 0.01 | 0.05 | −0.09 | 0.10 | 0.720 |
Morphine × COMT rs4680 AG | −0.02 | 0.06 | −0.13 | 0.09 | 0.740 | −0.01 | 0.05 | −0.12 | 0.09 | 0.860 |
Morphine × COMT rs4680 GG | −0.05 | 0.07 | −0.20 | 0.12 | 0.560 | −0.05 | 0.07 | −0.18 | 0.10 | 0.420 |
Ketoprofen × COMT rs4680 AG | −0.01 | 0.05 | −0.12 | 0.08 | 0.740 | −0.01 | 0.06 | −0.13 | 0.09 | 0.820 |
Ketoprofen × COMT rs4680 GG | 0.06 | 0.06 | −0.04 | 0.19 | 0.220 | 0.06 | 0.06 | −0.05 | 0.18 | 0.220 |
Diabetes × Morphine × COMT rs4680 AG | −0.05 | 0.06 | −0.16 | 0.06 | 0.360 | −0.05 | 0.05 | −0.16 | 0.04 | 0.360 |
Diabetes × Morphine × COMT rs4680 GG | −0.06 | 0.06 | −0.18 | 0.08 | 0.440 | −0.07 | 0.06 | −0.20 | 0.05 | 0.340 |
Diabetes × Ketoprofen × COMT rs4680 AG | −0.04 | 0.06 | −0.17 | 0.08 | 0.440 | −0.05 | 0.06 | −0.15 | 0.05 | 0.560 |
Diabetes × Ketoprofen × COMT rs4680 GG | −0.01 | 0.06 | −0.11 | 0.12 | 0.880 | −0.01 | 0.07 | −0.15 | 0.12 | 0.840 |
Step 1 | Step 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Predictors | β | Post SD | 95% CI | p | β | Post SD | 95% CI | p | ||
Age | 0.00 | 0.03 | −0.07 | 0.07 | 0.900 | |||||
BMI | 0.03 | 0.03 | −0.02 | 0.09 | 0.200 | |||||
Diabetes | −0.02 | 0.04 | −0.11 | 0.06 | 0.620 | −0.04 | 0.04 | −0.11 | 0.05 | 0.420 |
Morphine | 0.02 | 0.05 | −0.08 | 0.10 | 0.780 | 0.01 | 0.05 | −0.09 | 0.12 | 0.780 |
Ketoprofen | 0.02 | 0.05 | −0.08 | 0.13 | 0.620 | 0.03 | 0.05 | −0.06 | 0.11 | 0.520 |
rs4818 CG | 0.02 | 0.04 | −0.07 | 0.09 | 0.520 | 0.02 | 0.04 | −0.08 | 0.07 | 0.800 |
rs4818 GG | −0.03 | 0.06 | −0.12 | 0.08 | 0.720 | −0.02 | 0.06 | −0.13 | 0.07 | 0.720 |
Diabetes × Morphine | 0.06 | 0.05 | −0.03 | 0.16 | 0.220 | 0.06 | 0.05 | −0.05 | 0.15 | 0.260 |
Diabetes × Ketoprofen | 0.05 | 0.05 | −0.04 | 0.12 | 0.340 | 0.05 | 0.06 | −0.06 | 0.18 | 0.400 |
Diabetes × COMT rs4818 CG | 0.03 | 0.04 | −0.07 | 0.10 | 0.420 | 0.02 | 0.04 | −0.05 | 0.11 | 0.520 |
Diabetes × COMT rs4818 GG | −0.07 | 0.06 | −0.23 | 0.01 | 0.080 | −0.09 | 0.05 | −0.20 | 0.01 | 0.100 |
Morphine × COMT rs4818 CG | −0.03 | 0.05 | −0.14 | 0.06 | 0.540 | −0.03 | 0.05 | −0.13 | 0.07 | 0.560 |
Morphine × COMT rs4818 GG | −0.10 | 0.08 | −0.23 | 0.07 | 0.280 | −0.11 | 0.08 | −0.23 | 0.09 | 0.200 |
Ketoprofen × COMT rs4818 CG | 0.04 | 0.04 | −0.05 | 0.13 | 0.300 | 0.04 | 0.05 | −0.04 | 0.14 | 0.260 |
Ketoprofen × COMT rs4818 GG | 0.01 | 0.07 | −0.10 | 0.16 | 0.720 | 0.02 | 0.07 | −0.11 | 0.16 | 0.800 |
Diabetes × Morphine × COMT rs4818 CG | −0.06 | 0.05 | −0.15 | 0.04 | 0.300 | −0.06 | 0.05 | −0.15 | 0.03 | 0.280 |
Diabetes × Morphine × COMT rs4818 GG | −0.08 | 0.07 | −0.21 | 0.06 | 0.420 | −0.08 | 0.08 | −0.22 | 0.05 | 0.300 |
Diabetes × Ketoprofen × COMT rs4818 CG | −0.01 | 0.05 | −0.12 | 0.10 | 0.860 | −0.01 | 0.05 | −0.12 | 0.07 | 0.820 |
Diabetes × Ketoprofen × COMT rs4818 GG | −0.02 | 0.07 | −0.14 | 0.10 | 0.620 | −0.03 | 0.08 | −0.20 | 0.11 | 0.760 |
Step 1 | Step 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Predictors | β | Post SD | 95% CI | p | β | Post SD | 95% CI | p | ||
Age | 0.01 | 0.03 | −0.05 | 0.06 | 0.780 | |||||
BMI | 0.03 | 0.03 | −0.03 | 0.09 | 0.320 | |||||
Diabetes | −0.04 | 0.04 | −0.14 | 0.04 | 0.340 | −0.06 | 0.04 | −0.14 | 0.03 | 0.220 |
Morphine | 0.02 | 0.05 | −0.08 | 0.11 | 0.780 | 0.01 | 0.05 | −0.09 | 0.13 | 0.800 |
Ketoprofen | 0.02 | 0.05 | −0.10 | 0.12 | 0.780 | 0.02 | 0.05 | −0.07 | 0.10 | 0.660 |
rs4818 CG | 0.02 | 0.04 | −0.07 | 0.09 | 0.520 | 0.01 | 0.04 | −0.07 | 0.09 | 0.800 |
rs4818 GG | −0.05 | 0.06 | −0.15 | 0.07 | 0.440 | −0.04 | 0.06 | −0.16 | 0.06 | 0.540 |
Diabetes × Morphine | 0.06 | 0.05 | −0.04 | 0.17 | 0.320 | 0.06 | 0.05 | −0.06 | 0.15 | 0.340 |
Diabetes × Ketoprofen | 0.05 | 0.05 | −0.05 | 0.12 | 0.420 | 0.05 | 0.06 | −0.07 | 0.18 | 0.500 |
Diabetes × COMT rs6269 GA | 0.03 | 0.04 | −0.06 | 0.10 | 0.380 | 0.03 | 0.04 | −0.04 | 0.11 | 0.480 |
Diabetes × COMT rs6269 GG | −0.10 | 0.06 | −0.27 | −0.01 | 0.020 | −0.12 | 0.05 | −0.23 | −0.02 | 0.001 |
Morphine × COMT rs6269 GA | −0.04 | 0.05 | −0.15 | 0.06 | 0.500 | −0.03 | 0.05 | −0.13 | 0.07 | 0.540 |
Morphine × COMT rs6269 GG | −0.10 | 0.08 | −0.25 | 0.08 | 0.360 | −0.11 | 0.08 | −0.24 | 0.10 | 0.240 |
Ketoprofen × COMT rs6269 GA | 0.05 | 0.04 | −0.05 | 0.13 | 0.280 | 0.05 | 0.05 | −0.04 | 0.14 | 0.220 |
Ketoprofen × COMT rs6269 GG | 0.00 | 0.07 | −0.13 | 0.15 | 0.960 | 0.00 | 0.07 | −0.13 | 0.15 | 0.960 |
Diabetes × Morphine × COMT rs6269 GA | −0.06 | 0.05 | −0.16 | 0.04 | 0.260 | −0.06 | 0.05 | −0.15 | 0.03 | 0.280 |
Diabetes × Morphine × COMT rs6269 GG | −0.08 | 0.08 | −0.23 | 0.07 | 0.440 | −0.08 | 0.08 | −0.23 | 0.06 | 0.300 |
Diabetes × Ketoprofen × COMT rs6269 GA | −0.01 | 0.05 | −0.12 | 0.10 | 0.860 | −0.01 | 0.05 | −0.11 | 0.07 | 0.820 |
Diabetes × Ketoprofen × COMT rs6269 GG | −0.03 | 0.07 | −0.15 | 0.11 | 0.560 | −0.04 | 0.09 | −0.22 | 0.12 | 0.760 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurewicz, A.; Gasiorowska, A.; Leźnicka, K.; Maciejewska-Skrendo, A.; Pawlak, M.; Machoy-Mokrzyńska, A.; Bohatyrewicz, A.; Tarnowski, M. Do Diabetes and Genetic Polymorphisms in the COMT and OPRM1 Genes Modulate the Postoperative Opioid Demand and Pain Perception in Osteoarthritis Patients After Total Knee and Hip Arthroplasty? J. Clin. Med. 2025, 14, 4634. https://doi.org/10.3390/jcm14134634
Jurewicz A, Gasiorowska A, Leźnicka K, Maciejewska-Skrendo A, Pawlak M, Machoy-Mokrzyńska A, Bohatyrewicz A, Tarnowski M. Do Diabetes and Genetic Polymorphisms in the COMT and OPRM1 Genes Modulate the Postoperative Opioid Demand and Pain Perception in Osteoarthritis Patients After Total Knee and Hip Arthroplasty? Journal of Clinical Medicine. 2025; 14(13):4634. https://doi.org/10.3390/jcm14134634
Chicago/Turabian StyleJurewicz, Alina, Agata Gasiorowska, Katarzyna Leźnicka, Agnieszka Maciejewska-Skrendo, Maciej Pawlak, Anna Machoy-Mokrzyńska, Andrzej Bohatyrewicz, and Maciej Tarnowski. 2025. "Do Diabetes and Genetic Polymorphisms in the COMT and OPRM1 Genes Modulate the Postoperative Opioid Demand and Pain Perception in Osteoarthritis Patients After Total Knee and Hip Arthroplasty?" Journal of Clinical Medicine 14, no. 13: 4634. https://doi.org/10.3390/jcm14134634
APA StyleJurewicz, A., Gasiorowska, A., Leźnicka, K., Maciejewska-Skrendo, A., Pawlak, M., Machoy-Mokrzyńska, A., Bohatyrewicz, A., & Tarnowski, M. (2025). Do Diabetes and Genetic Polymorphisms in the COMT and OPRM1 Genes Modulate the Postoperative Opioid Demand and Pain Perception in Osteoarthritis Patients After Total Knee and Hip Arthroplasty? Journal of Clinical Medicine, 14(13), 4634. https://doi.org/10.3390/jcm14134634