Predicting Long-Term Benefits of Micro-Fragmented Adipose Tissue Therapy in Knee Osteoarthritis: Three-Year Follow-Up on Pain Relief and Mobility
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion Criteria
2.3. Data Collection
2.4. MFAT Technique
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OA | osteoarthritis |
MFAT | micro-fragmented adipose tissue |
KOA | knee osteoarthritis |
VAS | Visual Analog Scale |
OKS | Oxford Knee Score |
WOMAC | Western Ontario and McMaster Universities Osteoarthritis Index |
KOOS | Knee Injury and Osteoarthritis Outcome Score |
HOA | hip osteoarthritis |
MSCs | mesenchymal stem cells |
GMC | General Medical Council |
NIHR | National Institute for Health and Care Research |
SD | standard deviation |
ROC | receiver operating characteristic |
TKR | total knee replacement |
References
- Katz, J.N.; Arant, K.R.; Loeser, R.F. Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review. JAMA 2021, 325, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Simick Behera, N.; Duong, V.; Eyles, J.; Cui, H.; Gould, D.; Barton, C.; Belton, J.; Hunter, D.; Bunzli, S. How Does Osteoarthritis Education Influence Knowledge, Beliefs, and Behavior in People With Knee and Hip Osteoarthritis? A Systematic Review. Arthritis Care Res. 2024, 76, 1511–1531. [Google Scholar] [CrossRef] [PubMed]
- Krakowski, P.; Rejniak, A.; Sobczyk, J.; Karpiński, R. Cartilage Integrity: A Review of Mechanical and Frictional Properties and Repair Approaches in Osteoarthritis. Healthcare 2024, 12, 1648. [Google Scholar] [CrossRef]
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Lippi, L.; Ferrillo, M.; Turco, A.; Folli, A.; Moalli, S.; Refati, F.; Perrero, L.; Ammendolia, A.; de Sire, A.; Invernizzi, M. Multidisciplinary Rehabilitation after Hyaluronic Acid Injections for Elderly with Knee, Hip, Shoulder, and Temporomandibular Joint Osteoarthritis. Medicina 2023, 59, 2047. [Google Scholar] [CrossRef]
- Jang, S.; Lee, K.; Ju, J.H. Recent Updates of Diagnosis, Pathophysiology, and Treatment on Osteoarthritis of the Knee. Int. J. Mol. Sci. 2021, 22, 2619. [Google Scholar] [CrossRef]
- Sharma, L. Osteoarthritis of the Knee. N. Engl. J. Med. 2021, 384, 51–59. [Google Scholar] [CrossRef]
- McAlindon, T.E.; Bannuru, R.R.; Sullivan, M.C.; Arden, N.K.; Berenbaum, F.; Bierma-Zeinstra, S.M.A.; Hawker, G.A.; Henrotin, Y.; Hunter, D.J.; Kawaguchi, H.; et al. OARSI Guidelines for the Non-Surgical Management of Knee Osteoarthritis. Osteoarthr. Cartil. 2014, 22, 363–388. [Google Scholar] [CrossRef]
- Bannuru, R.R.; Osani, M.C.; Vaysbrot, E.E.; Arden, N.K.; Bennell, K.; Bierma-Zeinstra, S.M.A.; Kraus, V.B.; Lohmander, L.S.; Abbott, J.H.; Bhandari, M.; et al. OARSI Guidelines for the Non-Surgical Management of Knee, Hip, and Polyarticular Osteoarthritis. Osteoarthr. Cartil. 2019, 27, 1578–1589. [Google Scholar] [CrossRef]
- Afzali, T.; Fangel, M.V.; Vestergaard, A.S.; Rathleff, M.S.; Ehlers, L.H.; Jensen, M.B. Cost-Effectiveness of Treatments for Non-Osteoarthritic Knee Pain Conditions: A Systematic Review. PLoS ONE 2018, 13, e0209240. [Google Scholar] [CrossRef]
- Rönn, K.; Reischl, N.; Gautier, E.; Jacobi, M. Current Surgical Treatment of Knee Osteoarthritis. Arthritis 2011, 2011, 454873. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Ra, H.J. Patient Satisfaction after Total Knee Arthroplasty. Knee Surg. Relat. Res. 2016, 28, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Aweid, O.; Haider, Z.; Saed, A.; Kalairajah, Y. Treatment Modalities for Hip and Knee Osteoarthritis: A Systematic Review of Safety. J. Orthop. Surg. 2018, 26, 2309499018808669. [Google Scholar] [CrossRef]
- Iorio, R.; Della Valle, C.J.; Healy, W.L.; Berend, K.R.; Cushner, F.D.; Dalury, D.F.; Lonner, J.H. Stratification of Standardized TKA Complications and Adverse Events: A Brief Communication. Clin. Orthop. Relat. Res. 2014, 472, 194–205. [Google Scholar] [CrossRef]
- Friberger Pajalic, K.; Turkiewicz, A.; Englund, M. Update on the Risks of Complications after Knee Arthroscopy. BMC Musculoskelet. Disord. 2018, 19, 179. [Google Scholar] [CrossRef]
- Salzler, M.J.; Lin, A.; Miller, C.D.; Herold, S.; Irrgang, J.J.; Harner, C.D. Complications after Arthroscopic Knee Surgery. Am. J. Sports Med. 2014, 42, 292–296. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, D.; Xu, Z.; Shi, D.; Dai, J.; Qin, J.; Qin, J.; Jiang, Q. Deep Venous Thrombosis after Knee Arthroscopy: A Systematic Review and Meta-Analysis. Arthroscopy 2014, 30, 406–412. [Google Scholar] [CrossRef]
- Li, X.; Sun, H.; Li, H.; Huang, Z.; Chen, M.; Li, D.; Cai, Z.; Xu, J.; Ma, R. Post-Operative Complications of Total Knee Arthroplasty in Patients with Hypertension. Int. Orthop. 2023, 47, 701–709. [Google Scholar] [CrossRef]
- Chahla, J.; Dean, C.S.; Moatshe, G.; Pascual-Garrido, C.; Serra Cruz, R.; LaPrade, R.F. Concentrated Bone Marrow Aspirate for the Treatment of Chondral Injuries and Osteoarthritis of the Knee: A Systematic Review of Outcomes. Orthop. J. Sports Med. 2016, 4, 2325967115625481. [Google Scholar] [CrossRef]
- Herberts, C.A.; Kwa, M.S.G.; Hermsen, H.P.H. Risk Factors in the Development of Stem Cell Therapy. J. Transl. Med. 2011, 9, 29. [Google Scholar] [CrossRef]
- Burke, J.; Hunter, M.; Kolhe, R.; Isales, C.; Hamrick, M.; Fulzele, S. Therapeutic Potential of Mesenchymal Stem Cell Based Therapy for Osteoarthritis. Clin. Transl. Med. 2016, 5, 27. [Google Scholar] [CrossRef]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, L.; Zhang, Y.; Huang, L.; Shi, Q. Mesenchymal Stem Cells—A Promising Strategy for Treating Knee Osteoarthritis. Bone Jt. Res. 2020, 9, 719–728. [Google Scholar] [CrossRef]
- Roseti, L.; Desando, G.; Cavallo, C.; Petretta, M.; Grigolo, B. Articular Cartilage Regeneration in Osteoarthritis. Cells 2019, 8, 1305. [Google Scholar] [CrossRef]
- Centeno, C.J.; Ghattas, J.R.; Dodson, E.; Steinmetz, N.J.; Murphy, M.B.; Berger, D.R. Establishing Metrics of Clinically Meaningful Change for Treating Knee Osteoarthritis with a Combination of Autologous Orthobiologics. Sci. Rep. 2025, 15, 7244. [Google Scholar] [CrossRef]
- Fujita, Y.; Taniguchi, M.; Tsuzuki, T.; Nakai, T.; Uozumi, Y.; Kimura, H.; Kohmura, E. Application of a Minimally Invasive Liposuction Technique for Harvesting Fat during Transsphenoidal Surgery: A Technical Note. Neurol. Med. Chir. 2019, 59, 184–190. [Google Scholar] [CrossRef]
- Russo, A.; Condello, V.; Madonna, V.; Guerriero, M.; Zorzi, C. Autologous and Micro-Fragmented Adipose Tissue for the Treatment of Diffuse Degenerative Knee Osteoarthritis. J. Exp. Orthop. 2017, 4, 33. [Google Scholar] [CrossRef]
- Berenbaum, F. Osteoarthritis as an Inflammatory Disease (Osteoarthritis Is Not Osteoarthrosis!). Osteoarthr. Cartil. 2013, 21, 16–21. [Google Scholar] [CrossRef]
- Cross, M.; Smith, E.; Hoy, D.; Nolte, S.; Ackerman, I.; Fransen, M.; Bridgett, L.; Williams, S.; Guillemin, F.; Hill, C.L.; et al. The Global Burden of Hip and Knee Osteoarthritis: Estimates from the Global Burden of Disease 2010 Study. Ann. Rheum. Dis. 2014, 73, 1323–1330. [Google Scholar] [CrossRef]
- Hudetz, D.; Borić, I.; Rod, E.; Jeleč, Ž.; Kunovac, B.; Polašek, O.; Vrdoljak, T.; Plečko, M.; Skelin, A.; Polančec, D.; et al. Early Results of Intra-Articular Micro-Fragmented Lipoaspirate Treatment in Patients with Late Stages Knee Osteoarthritis: A Prospective Study. Croat. Med. J. 2019, 60, 227–236. [Google Scholar] [CrossRef]
- Schiavone Panni, A.; Vasso, M.; Braile, A.; Toro, G.; De Cicco, A.; Viggiano, D.; Lepore, F. Preliminary Results of Autologous Adipose-Derived Stem Cells in Early Knee Osteoarthritis: Identification of a Subpopulation with Greater Response. Int. Orthop. 2019, 43, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Panchal, J.; Malanga, G.; Sheinkop, M. Safety and Efficacy of Percutaneous Injection of Lipogems Micro-Fractured Adipose Tissue for Osteoarthritic Knees. Am. J. Orthop. 2018, 47, 10–12788. [Google Scholar]
- Heidari, N.; Borg, T.-M.; Olgiati, S.; Slevin, M.; Danovi, A.; Fish, B.; Wilson, A.; Noorani, A. Microfragmented Adipose Tissue Injection (MFAT) May Be a Solution to the Rationing of Total Knee Replacement: A Prospective, Gender-Bias Mitigated, Reproducible Analysis at Two Years. Stem Cells Int. 2021, 2021, 9921015. [Google Scholar] [CrossRef]
- Heidari, N.; Olgiati, S.; Meloni, D.; Parkin, J.; Fish, B.; Slevin, M.; Azamfirei, L. A Gender-Bias-Mitigated, Data-Driven Precision Medicine System to Assist in the Selection of Biological Treatments of Grade 3 and 4 Knee Osteoarthritis: Development and Preliminary Validation of precisionKNEE. Cureus 2024, 16, e55832. [Google Scholar] [CrossRef]
- Heidari, N.; Olgiati, S.; Meloni, D.; Slevin, M.; Noorani, A.; Pirovano, F.; Azamfirei, L. A Quantum-Enhanced Precision Medicine Application to Support Data-Driven Clinical Decisions for the Personalized Treatment of Advanced Knee Osteoarthritis: The Development and Preliminary Validation of precisionKNEE_QNN. Cureus 2024, 16, e52093. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Borg, T.-M.; Heidari, N.; Noorani, A.; Slevin, M.; Cullen, A.; Olgiati, S.; Zerbi, A.; Danovi, A.; Wilson, A. Gender-Specific Response in Pain and Function to Biologic Treatment of Knee Osteoarthritis: A Gender-Bias-Mitigated, Observational, Intention-to-Treat Study at Two Years. Stem Cells Int. 2021, 2021, 6648437. [Google Scholar] [CrossRef]
- Jang, K.; Berrigan, W.A.; Mautner, K. Regulatory Considerations of Orthobiologic Procedures. Phys. Med. Rehabil. Clin. N. Am. 2023, 34, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Holzbauer, M.; Priglinger, E.; Kølle, S.T.; Prantl, L.; Stadler, C.; Winkler, P.W.; Gotterbarm, T.; Duscher, D. Intra-Articular Application of Autologous, Fat-Derived Orthobiologics in the Treatment of Knee Osteoarthritis: A Systematic Review. Cells 2024, 13, 750. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malanga, G.A.; Bemanian, S. Microfragmented Adipose Injections in the Treatment of Knee Osteoarthritis. J. Clin. Orthop. Trauma 2019, 10, 46–48, Erratum in J. Clin. Orthop. Trauma 2020, 11, 1175. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kohn, M.D.; Sassoon, A.A.; Fernando, N.D. Classifications in Brief: Kellgren–Lawrence Classification of Osteoarthritis. Clin. Orthop. Relat. Res. 2016, 474, 1886–1893. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jensen, M.P.; Chen, C.; Brugger, A.M. Interpretation of Visual Analog Scale Ratings and Change Scores: A Reanalysis of Two Clinical Trials of Postoperative Pain. J. Pain 2003, 4, 407–414. [Google Scholar] [CrossRef]
- da Costa, B.R.; Saadat, P.; Basciani, R.; Agarwal, A.; Johnston, B.C.; Jüni, P. Visual Analogue Scale Has Higher Assay Sensitivity than WOMAC Pain in Detecting Between-Group Differences in Treatment Effects: A Meta-Epidemiological Study. Osteoarthr. Cartil. 2021, 29, 304–312. [Google Scholar] [CrossRef]
- Khatri, C.; Harrison, C.J.; MacDonald, D.; Clement, N.; Scott, C.E.H.; Metcalfe, A.J.; Rodrigues, J.N. Item Response Theory Validation of the Oxford Knee Score and Activity and Participation Questionnaire: A Step toward a Common Metric. J. Clin. Epidemiol. 2024, 175, 111515. [Google Scholar] [CrossRef]
- Roos, E.M.; Toksvig-Larsen, S. Knee Injury and Osteoarthritis Outcome Score (KOOS)—Validation and Comparison to the WOMAC in Total Knee Replacement. Health Qual. Life Outcomes 2003, 1, 17. [Google Scholar] [CrossRef]
- Bianchi, F.; Maioli, M.; Leonardi, E.; Olivi, E.; Pasquinelli, G.; Valente, S.; Mendez, A.J.; Ricordi, C.; Raffaini, M.; Tremolada, C.; et al. A New Nonenzymatic Method and Device to Obtain a Fat Tissue Derivative Highly Enriched in Pericyte-Like Elements by Mild Mechanical Forces from Human Lipoaspirates. Cell Transplant. 2013, 22, 2063–2077. [Google Scholar] [CrossRef] [PubMed]
- Heidari, N.; Noorani, A.; Slevin, M.; Cullen, A.; Stark, L.; Olgiati, S.; Zerbi, A.; Wilson, A. Patient-Centered Outcomes of Microfragmented Adipose Tissue Treatments of Knee Osteoarthritis: An Observational, Intention-to-Treat Study at Twelve Months. Stem Cells Int. 2020, 2020, 8881405. [Google Scholar] [CrossRef]
- Van Genechten, W.; Vuylsteke, K.; Martinez, P.R.; Swinnen, L.; Sas, K.; Verdonk, P. Autologous Micro-Fragmented Adipose Tissue (MFAT) to Treat Symptomatic Knee Osteoarthritis: Early Outcomes of a Consecutive Case Series. J. Clin. Med. 2021, 10, 2231. [Google Scholar] [CrossRef]
- Onorato, F.; Rucci, M.; Alessio-Mazzola, M.; Bistolfi, A.; Castagnoli, C.; Formica, M.; Ferracini, R. Autologous Microfragmented Adipose Tissue Treatment of Knee Osteoarthritis Demonstrates Effectiveness in 68% of Patients at 4-Year Follow-Up. Arch. Orthop. Trauma. Surg. 2024, 144, 3925–3935. [Google Scholar] [CrossRef]
- Ulivi, M.; Meroni, V.; Viganò, M.; Colombini, A.; Lombardo, M.D.M.; Rossi, N.; Orlandini, L.; Messina, C.; Sconfienza, L.M.; Peretti, G.M.; et al. Micro-Fragmented Adipose Tissue (mFAT) Associated with Arthroscopic Debridement Provides Functional Improvement in Knee Osteoarthritis: A Randomized Controlled Trial. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 3079–3090. [Google Scholar] [CrossRef]
- Kim, K.-I.; Lee, W.-S.; Kim, J.-H.; Bae, J.-K.; Jin, W. Safety and Efficacy of the Intra-Articular Injection of Mesenchymal Stem Cells for the Treatment of Osteoarthritic Knee: A 5-Year Follow-up Study. Stem Cells Transl. Med. 2022, 11, 586–596. [Google Scholar] [CrossRef]
- Guo, B.; Sawkulycz, X.; Heidari, N.; Rogers, R.; Liu, D.; Slevin, M. Characterisation of Novel Angiogenic and Potent Anti-Inflammatory Effects of Micro-Fragmented Adipose Tissue. Int. J. Mol. Sci. 2021, 22, 3271. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Li, H.; Hu, K.; Li, L.; Bei, M. Chondromalacia Patellae: Current Options and Emerging Cell Therapies. Stem Cell Res. Ther. 2021, 12, 412. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, R.; Krakowski, P.; Jonak, J.; Machrowska, A.; Maciejewski, M.; Nogalski, A. Diagnostics of Articular Cartilage Damage Based on Generated Acoustic Signals Using ANN—Part I: Femoral-Tibial Joint. Sensors 2022, 22, 2176. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, R.; Krakowski, P.; Maciejewski, M.; Jonak, J.; Machrowska, A.; Sobczyk, J.; Rejniak, A. Multi-Scale Analysis of Knee Joint Acoustic Signals for Cartilage Degeneration Assessment. Sensors 2023, 23, 3914. [Google Scholar] [CrossRef]
- Machrowska, A.; Karpiński, R.; Maciejewski, M.; Jonak, J.; Krakowski, P.; Syta, A. Application of Recurrence Quantification Analysis in the Detection of Osteoarthritis of the Knee with the Use of Vibroarthrography. Adv. Sci. Technol. Res. J. 2024, 18, 19–31. [Google Scholar] [CrossRef]
- Machrowska, A.; Karpiński, R.; Maciejewski, M.; Jonak, J.; Krakowski, P. Application Of Eemd-Dfa Algorithms and Ann Classification for Detection of Knee Osteoarthritis Using Vibroarthrography. Appl. Comput. Sci. 2024, 20, 90–108. [Google Scholar] [CrossRef]
Pre-Operative | 3 Months | 6 Months | 1 Year | 2 Years | 3 Years | |
---|---|---|---|---|---|---|
VAS | 335 | 326 | 310 | 310 | 239 | 106 |
OKS | 323 | 269 | 241 | 232 | 179 | 59 |
KOOS | 312 | 250 | 214 | 202 | 160 | 54 |
WOMAC | 314 | 252 | 214 | 202 | 160 | 54 |
Variables | All Patients (n = 335) |
---|---|
Age, mean ± SD | 64.67 ± 11.40 |
Male, no. (%) | 186 (55.52%) |
Body mass index, mean ± SD | 27.57 ± 4.64 |
Right knee, no. (%) | 174 (51.94%) |
Left knee, no. (%) | 161 (48.06%) |
Kellgren–Lawrence Classification | |
Not available, no. (%) | 6 (1.78%) |
Grade I, no. (%) | 16 (4.78%) |
Grade II, no. (%) | 68 (20.30%) |
Grade III, no. (%) | 83 (24.78%) |
Grade IV, no. (%) | 162 (48.36%) |
Follow-Up | Pre-Operative | 3 Months | 6 Months | 1 Year | 2 Years | 3 Years | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Score | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD |
VAS Pain Score | 43.49 | 26.27 | 25.86 | 22.59 | 24.55 | 23.86 | 23.52 | 24.71 | 29.27 | 28.31 | 28.99 | 29.32 |
OKS | 30.38 | 8.91 | 36.25 | 8.41 | 37.07 | 8.55 | 37.52 | 8.72 | 36.89 | 9.73 | 40.30 | 7.81 |
WOMAC Score | 31.34 | 17.54 | 18.56 | 15.47 | 18.78 | 17.36 | 19.75 | 16.79 | 20.88 | 20.77 | 14.29 | 15.68 |
KOOS Pain Score | 60.67 | 18.86 | 74.62 | 17.57 | 74.68 | 20.21 | 73.97 | 19.53 | 73.58 | 22.34 | 80.53 | 19.55 |
KOOS Symptom Score | 62.56 | 19.02 | 74.89 | 17.89 | 74.82 | 19.32 | 74.52 | 18.89 | 74.41 | 21.83 | 79.21 | 18.56 |
KOOS Daily Activities Score | 66.42 | 19.27 | 79.63 | 17.29 | 80.61 | 18.37 | 79.74 | 17.78 | 78.37 | 22.29 | 85.83 | 16.21 |
KOOS Sport Score | 34.91 | 25.12 | 47.25 | 27.68 | 52.38 | 28.65 | 52.40 | 26.74 | 50.56 | 30.39 | 53.79 | 30.97 |
KOOS QOL Score | 37.01 | 20.09 | 51.16 | 23.22 | 56.58 | 25.36 | 54.68 | 25.41 | 56.31 | 27.67 | 65.96 | 25.48 |
Variables | AUC | Std. Error | 95% CI | p Value |
---|---|---|---|---|
1 Year Clinical Improvement | ||||
∆VAS Pain Score | 0.772 | 0.031 | 0.712–0.832 | <0.001 |
∆OKS | 0.766 | 0.037 | 0.694–0.838 | <0.001 |
∆WOMAC Score | 0.841 | 0.032 | 0.778–0.904 | <0.001 |
∆KOOS Pain Score | 0.708 | 0.039 | 0.631–0.785 | <0.001 |
∆KOOS Symptom Score | 0.734 | 0.038 | 0.661–0.808 | <0.001 |
∆KOOS Daily Activities Score | 0.855 | 0.030 | 0.797–0.913 | <0.001 |
∆KOOS Sport Score | 0.754 | 0.042 | 0.671–0.837 | <0.001 |
∆KOOS QOL Score | 0.844 | 0.030 | 0.785–0.904 | <0.001 |
2 Years Clinical Improvement | ||||
∆VAS Pain Score | 0.730 | 0.035 | 0.662–0.799 | <0.001 |
∆OKS | 0.734 | 0.048 | 0.640–0.827 | <0.001 |
∆WOMAC Score | 0.834 | 0.041 | 0.752–0.915 | <0.001 |
∆KOOS Pain Score | 0.656 | 0.056 | 0.546–0.766 | 0.005 |
∆KOOS Symptom Score | 0.734 | 0.045 | 0.646–0.822 | <0.001 |
∆KOOS Daily Activities Score | 0.831 | 0.042 | 0.749–0.914 | <0.001 |
∆KOOS Sport Score | 0.725 | 0.049 | 0.629–0.822 | <0.001 |
∆KOOS QOL Score | 0.852 | 0.036 | 0.780–0.923 | <0.001 |
3 Years Clinical Improvement | ||||
∆VAS Pain Score | 0.704 | 0.053 | 0.600–0.807 | <0.001 |
∆OKS | 0.683 | 0.031 | 0.517–0.849 | 0.031 |
∆WOMAC Score | 0.753 | 0.077 | 0.601–0.904 | 0.001 |
∆KOOS Pain Score | 0.788 | 0.074 | 0.643–0.933 | <0.001 |
∆KOOS Symptom Score | 0.755 | 0.074 | 0.611–0.899 | 0.001 |
∆KOOS Daily Activities Score | 0.757 | 0.084 | 0.592–0.921 | 0.002 |
∆KOOS Sport Score | 0.779 | 0.073 | 0.636–0.922 | <0.001 |
∆KOOS QOL Score | 0.819 | 0.075 | 0.672–0.967 | <0.001 |
Follow-Up | 1-Year Clinical Improvement | 2-Year Clinical Improvement | 3-Year Clinical Improvement | ||||||
---|---|---|---|---|---|---|---|---|---|
Score | OR | 95% CI | p Value | OR | 95% CI | p Value | OR | 95% CI | p Value |
∆VAS Pain Score | 3.07 | 1.94–4.85 | <0.001 | 2.44 | 1.51–3.94 | <0.001 | 1.83 | 0.89–3.76 | 0.098 |
∆OKS | 2.34 | 1.51–3.63 | <0.001 | 1.81 | 1.15–2.86 | 0.011 | 4.42 | 1.48–13.14 | 0.008 |
∆WOMAC Score | 2.77 | 1.75–4.39 | <0.001 | 2.68 | 1.63–4.38 | <0.001 | 2.73 | 1.25–6.01 | 0.012 |
∆KOOS Pain Score | 5.96 | 3.10–11.47 | <0.001 | 5.85 | 2.69–12.71 | <0.001 | 2.93 | 1.20–7.14 | 0.018 |
∆KOOS Symptom Score | 2.96 | 1.79–4.88 | <0.001 | 2.61 | 1.53–4.43 | <0.001 | 3.30 | 1.48–7.33 | 0.003 |
∆KOOS Daily Activities Score | 5.94 | 3.22–10.96 | <0.001 | 8.53 | 3.72–19.59 | <0.001 | 7.07 | 1.79–27.93 | 0.005 |
∆KOOS Sport Score | 3.37 | 2.23–5.12 | <0.001 | 2.63 | 1.76–3.91 | <0.001 | 2.30 | 1.35–3.92 | 0.002 |
∆KOOS QOL Score | 6.39 | 3.35–12.19 | <0.001 | 4.88 | 2.53–9.42 | <0.001 | 2.83 | 1.24–6.45 | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanciu, N.; Heidari, N.; Slevin, M.; Ujlaki-Nagi, A.-A.; Trâmbițaș, C.; Arbănași, E.-M.; Russu, O.M.; Melinte, R.M.; Azamfirei, L.; Brînzaniuc, K. Predicting Long-Term Benefits of Micro-Fragmented Adipose Tissue Therapy in Knee Osteoarthritis: Three-Year Follow-Up on Pain Relief and Mobility. J. Clin. Med. 2025, 14, 4549. https://doi.org/10.3390/jcm14134549
Stanciu N, Heidari N, Slevin M, Ujlaki-Nagi A-A, Trâmbițaș C, Arbănași E-M, Russu OM, Melinte RM, Azamfirei L, Brînzaniuc K. Predicting Long-Term Benefits of Micro-Fragmented Adipose Tissue Therapy in Knee Osteoarthritis: Three-Year Follow-Up on Pain Relief and Mobility. Journal of Clinical Medicine. 2025; 14(13):4549. https://doi.org/10.3390/jcm14134549
Chicago/Turabian StyleStanciu, Nicolae, Nima Heidari, Mark Slevin, Alexandru-Andrei Ujlaki-Nagi, Cristian Trâmbițaș, Emil-Marian Arbănași, Octav Marius Russu, Răzvan Marian Melinte, Leonard Azamfirei, and Klara Brînzaniuc. 2025. "Predicting Long-Term Benefits of Micro-Fragmented Adipose Tissue Therapy in Knee Osteoarthritis: Three-Year Follow-Up on Pain Relief and Mobility" Journal of Clinical Medicine 14, no. 13: 4549. https://doi.org/10.3390/jcm14134549
APA StyleStanciu, N., Heidari, N., Slevin, M., Ujlaki-Nagi, A.-A., Trâmbițaș, C., Arbănași, E.-M., Russu, O. M., Melinte, R. M., Azamfirei, L., & Brînzaniuc, K. (2025). Predicting Long-Term Benefits of Micro-Fragmented Adipose Tissue Therapy in Knee Osteoarthritis: Three-Year Follow-Up on Pain Relief and Mobility. Journal of Clinical Medicine, 14(13), 4549. https://doi.org/10.3390/jcm14134549