Predictive Models for Necrotizing Soft Tissue Infections: Are the Available Scores Trustable?
Abstract
1. Introduction
2. Review of Current Scoring Systems
2.1. Relevant Sections
2.1.1. LRINEC
2.1.2. Neutrophil-to-Lymphocyte Ratio
2.1.3. Platelet-to-Lymphocyte Ratio
2.1.4. NECROSIS Score
2.1.5. POTTER Score
3. Discussion and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McDermott, J.; Kao, L.S.; Keeley, J.A.; Grigorian, A.; Neville, A.; de Virgilio, C. Necrotizing Soft Tissue Infections: A Review. JAMA Surg. 2024, 159, 1308–1315. [Google Scholar] [CrossRef] [PubMed]
- Hakkarainen, T.W.; Kopari, N.M.; Pham, T.N.; Evans, H.L. Necrotizing soft tissue infections: Review and current concepts in treatment, systems of care, and outcomes. Curr. Probl. Surg. 2014, 51, 344–362. [Google Scholar] [CrossRef] [PubMed]
- Puvanendran, R.; Huey, J.C.; Pasupathy, S. Necrotizing fasciitis. Can. Fam. Physician 2009, 55, 981–987. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC2762295/ (accessed on 12 June 2025).
- Brook, I. Microbiology and management of soft tissue and muscle infections. Int. J. Surg. 2008, 6, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Goh, T.; Goh, L.G.; Ang, C.H.; Wong, C.H. Early diagnosis of necrotizing fasciitis. Br. J. Surg. 2014, 101, e119–e125. [Google Scholar] [CrossRef]
- Olsen, R.J.; Musser, J.M. Molecular pathogenesis of necrotizing fasciitis. Annu. Rev. Pathol. Mech. Dis. 2010, 5, 1–31. [Google Scholar] [CrossRef]
- May, A.K.; Talisa, V.B.; Wilfret, D.A.; Bulger, E.; Dankner, W.; Bernard, A.; Yende, S. Estimating the Impact of Necrotizing Soft Tissue Infections in the United States: Incidence and Re-Admissions. Surg. Infect. 2021, 22, 509–515. [Google Scholar] [CrossRef]
- Bisgaard, E.K.; Bulger, E.M. Current diagnosis and management of necrotizing soft tissue infections: What you need to know. J. Trauma Acute Care Surg. 2024, 97, 678–686. [Google Scholar] [CrossRef]
- Wong, C.H.; Khin, L.W.; Heng, K.S.; Tan, K.C.; Low, C.O. The LRINEC (Laboratory Risk Indicator for Necrotizing Fasciitis) score: A tool for distinguishing necrotizing fasciitis from other soft tissue infections. Crit. Care Med. 2004, 32, 1535–1541. [Google Scholar] [CrossRef]
- Agarwal, L.; Yasin, A. Necrotising fasciitis: A fatal case of sepsis and a diagnostic challenge—Case report and review of literature. Int. J. Emerg. Med. 2018, 11, 23. [Google Scholar] [CrossRef]
- Hoesl, V.; Kempa, S.; Prantl, L.; Ochsenbauer, K.; Hoesl, J.; Kehrer, A.; Bosselmann, T. The LRINEC Score—An Indicator for the Course and Prognosis of Necrotizing Fasciitis? J. Clin. Med. 2022, 11, 3583. [Google Scholar] [CrossRef]
- Bechar, J.; Sepehripour, S.; Hardwicke, J.; Filobbos, G. Laboratory risk indicator for necrotising fasciitis (LRINEC) score for the assessment of early necrotising fasciitis: A systematic review of the literature. Ann. R. Coll. Surg. Engl. 2017, 99, 341–346. [Google Scholar] [CrossRef]
- Harshit Kumar, A.; Singh Griwan, M. A comparison of APACHE II, BISAP, Ranson’s score and modified CTSI in predicting the severity of acute pancreatitis based on the 2012 revised Atlanta Classification. Gastroenterol. Rep. 2018, 6, 127–131. [Google Scholar] [CrossRef]
- Wu, H.; Li, C.; Liu, S.; Yao, S.; Song, Z.; Ren, D.; Wang, P. Is Neutrophil Lymphocyte Ratio, Platelet Lymphocyte Ratio or Red Blood Cell Distribution Width Associated with Risk of Mortality in Patients with Necrotizing Fasciitis. Infect. Drug Resist. 2023, 16, 3861–3870. [Google Scholar] [CrossRef]
- Buonacera, A.; Stancanelli, B.; Colaci, M.; Malatino, L. Neutrophil to Lymphocyte Ratio: An Emerging Marker of the Relationships between the Immune System and Diseases. Int. J. Mol. Sci. 2022, 23, 3636. [Google Scholar] [CrossRef]
- Wirjopranoto, S. Comparison Between Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio As Predictors of Mortality on Fournier’s Gangrene Cases. Indian J. Urol. 2023, 39, 121. [Google Scholar] [CrossRef]
- Ravindhran, B.; Rajan, S.; Kerketta, D.; Balachandran, G.; Mohan, L.N. Neutrophil to Lymphocyte Ratio (NLR) and Platelet to Lymphocyte Ratio (PLR) Versus Laboratory Risk Indicator for Necrotizing Fasciitis (LRINEC) as Predictors of Outcome in Necrotising Fasciitis. Indian J. Surg. 2020, 82, 325–330. [Google Scholar] [CrossRef]
- Kim, D.Y.; Lavasile, A.; Kaji, A.H.; Nahmias, J.M.; Grigorian, A.; Mukherjee, K.M.; Penaloza, L.; Posluszny, J.; Logan, C.D.; Michelin, E.; et al. Prospective derivation and validation of a necrotizing soft tissue infections score: An EASTmulticenter trial. J. Trauma Acute Care Surg. 2024, 97, 910. [Google Scholar] [CrossRef]
- El Hechi, M.W.; Maurer, L.R.; Levine, J.; Zhuo, D.; El Moheb, M.; Velmahos, G.C.; Dunn, J.; Bertsimas, D.; Kaafarani, H.M. Validation of the Artificial Intelligence-Based Predictive Optimal Trees in Emergency Surgery Risk (POTTER) Calculator in Emergency General Surgery and Emergency Laparotomy Patients. J. Am. Coll. Surg. 2021, 232, 912. [Google Scholar] [CrossRef]
- Bertsimas, D.; Dunn, J.; Velmahos, G.C.; Kaafarani, H.M.A. Surgical Risk Is Not Linear: Derivation and Validation of a Novel, User-friendly, and Machine-learning-based Predictive OpTimal Trees in Emergency Surgery Risk (POTTER) Calculator. Ann. Surg. 2018, 268, 574. [Google Scholar] [CrossRef]
- Ribeiro Junior, M.A.F.R.; Smaniotto, R.; Gebran, A.; Zamudio, J.P.; Mohseni, S.; Rodrigues, J.M.d.S.; Kaafarani, H. The use of POTTER (Predictive Optimal Trees in Emergency Surgery Risk) calculator to predict mortality and complications in patients submitted to Emergency Surgery. Rev. Colégio Bras. Cir. 2023, 50, e20233624. [Google Scholar] [CrossRef]
- Lawrence, Z.; Kim, S.; Chan, E.Y. Application of the Predictive Optimal Trees in Emergency Surgery Risk Calculator (POTTER) to Emergency Surgical Debridement for Necrotizing Skin and Soft Tissue Infection. J. Am. Coll. Surg. 2021, 233, e57. [Google Scholar] [CrossRef]
- Norimatsu, Y.; Fukasawa, T.; Ohno, Y.; Norimatsu, Y.; Matsuda, K.M.; Hisamoto, T.; Kotani, H.; Kuzumi, A.; Yoshizaki-Ogawa, A.; Miyagawa, T.; et al. Validation of Laboratory Risk Indicator for Necrotizing Fasciitis (LRINEC) score and establishment of novel score in Japanese patients with necrotizing fasciitis (J-LRINEC score). J. Dermatol. 2025, 52, 439–444. [Google Scholar] [CrossRef]
- Cheng, N.C.; Tai, H.C.; Chang, S.C.; Chang, C.H.; Lai, H.S. Necrotizing fasciitis in patients with diabetes mellitus: Clinical characteristics and risk factors for mortality. BMC Infect. Dis. 2015, 15, 417. [Google Scholar] [CrossRef]
- Johnson, S.R.; Benvenuti, T.; Nian, H.; Thomson, I.P.; Baldwin, K.; Obremskey, W.T.; Schoenecker, J.G.; Moore-Lotridge, S.N. Measures of Admission Immunocoagulopathy as an Indicator for In-Hospital Mortality in Patients with Necrotizing Fasciitis. JBJS Open Access 2023, 8, e22.00106. [Google Scholar] [CrossRef]
- Alzubi, J.; Nayyar, A.; Kumar, A. Machine Learning from Theory to Algorithms: An Overview. J. Phys. Conf. Ser. 2018, 1142, 012012. [Google Scholar] [CrossRef]
Predictive Score | Strengths | Limitations | NSTI Validation |
---|---|---|---|
LRINEC | Allows for early detection of NSTI | Heavy reliance on hematologic values; high rates of false negatives | Yes |
NLR | Early marker for acute stress, simple to calculate with basic labs that are readily available | Lacks fixed cutoff values which makes interpretation difficult; does not account for confounding variables such as pre-existing comorbidities | No |
PLR | Marker for inflammatory processes, simple to calculate with basic labs that are readily available | Conflicting data regarding efficacy in predicting morbidity and mortality related to NSTI | No |
NECROSIS | Quick diagnostic test based on only three readily available variables; inexpensive tests required; high sensitivity (92%) for patients with one variable | Non-inclusive and limited number of variables; vague cutoff for systolic blood pressure (≤120 considered normal) | Yes |
POTTER | Interactive structure allows for greater accuracy and interpretability; user-friendly cell phone application allows greater opportunity for bedside counseling of patient and family | May require information such as clinical lab values or patient medical history that is not readily available to the provider at the time of the calculation; not validated as a reliable predictor when tested among patients undergoing debridement for NSTI | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, S.; Pullano, K.J.; Henry, S.; Ribeiro, M.A.F., Jr. Predictive Models for Necrotizing Soft Tissue Infections: Are the Available Scores Trustable? J. Clin. Med. 2025, 14, 4550. https://doi.org/10.3390/jcm14134550
Tran S, Pullano KJ, Henry S, Ribeiro MAF Jr. Predictive Models for Necrotizing Soft Tissue Infections: Are the Available Scores Trustable? Journal of Clinical Medicine. 2025; 14(13):4550. https://doi.org/10.3390/jcm14134550
Chicago/Turabian StyleTran, Sophie, Kerry J. Pullano, Sharon Henry, and Marcelo A. F. Ribeiro, Jr. 2025. "Predictive Models for Necrotizing Soft Tissue Infections: Are the Available Scores Trustable?" Journal of Clinical Medicine 14, no. 13: 4550. https://doi.org/10.3390/jcm14134550
APA StyleTran, S., Pullano, K. J., Henry, S., & Ribeiro, M. A. F., Jr. (2025). Predictive Models for Necrotizing Soft Tissue Infections: Are the Available Scores Trustable? Journal of Clinical Medicine, 14(13), 4550. https://doi.org/10.3390/jcm14134550