Outcomes of Femtosecond Laser-Assisted Arcuate Keratotomy in the Management of Keratoplasty-Related Astigmatism
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Surgical Technique
Postoperative Management and Follow-Up
3. Results
3.1. Demographics and Clinical Characteristics
3.2. Visual Acuity and Refractive Outcomes
3.2.1. Visual and Refractive Outcomes Based on Transplant Type
Penetrating Keratoplasty (PKP)
Lamellar Keratoplasty (LKP)
3.3. Tomographic Changes
3.3.1. Tomographic Changes Based on Transplant Type
Penetrating Keratoplasty (PKP)
Lamellar Keratoplasty (LKP)
3.4. Success and Non-Success Groups
3.5. Comparative Outcomes Between PKP and LKP
3.6. Vector Analysis of the Astigmatism for PKP Versus LKP
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kymionis, G.D.; Kymionis, G.D.; Yoo, S.H.; Ide, T.; Culbertson, W.W. Femtosecond-assisted astigmatic keratotomy for post-keratoplasty irregular astigmatism. J. Cataract. Refract. Surg. 2009, 35, 11–13. [Google Scholar] [CrossRef] [PubMed]
- Elzarga, A.A.A.; Osman, A.A.; Gamal, M.; Khafagy, M.M.; Osman, I.S. Vector Analysis of Femtosecond Laser-Assisted Arcuate Keratotomy for Post-Keratoplasty Astigmatic Correction. Ophthalmic Res. 2019, 62, 150–156. [Google Scholar] [CrossRef]
- Mozayan, E.; Lee, J.K. Update on astigmatism management. Curr. Opin. Ophthalmol. 2014, 25, 286–290. [Google Scholar] [CrossRef]
- Sorkin, N.; Kreimei, M.; Einan-Lifshitz, A.; Mednick, Z.; Telli, A.; Trinh, T.; Santaella, G.; Chan, C.C.; Rootman, D.S. Stepwise Combination of Femtosecond Astigmatic Keratotomy with Phacoemulsification and Toric Intraocular Lens Implantation in Treatment of Very High Postkeratoplasty Astigmatism. Cornea 2020, 39, 71–76. [Google Scholar] [CrossRef]
- Katz, T.; Wagenfeld, L.; Galambos, P.; Darrelmann, B.G.; Richard, G.; Linke, S.J. LASIK versus photorefractive keratectomy for high myopic (>3 diopter) astigmatism. J. Refract. Surg. 2013, 29, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Nubile, M.; Carpineto, P.; Lanzini, M.; Calienno, R.; Agnifili, L.; Ciancaglini, M.; Mastropasqua, L. Femtosecond Laser Arcuate Keratotomy for the Correction of High Astigmatism after Keratoplasty. Ophthalmology 2009, 116, 1083–1092. [Google Scholar] [CrossRef]
- Al Sabaani, N.; Al Malki, S.; Al Jindan, M.; Al Assiri, A.; Al Swailem, S. Femtosecond astigmatic keratotomy for postkeratoplasty astigmatism. Saudi J. Ophthalmol. 2016, 30, 163–168. [Google Scholar] [CrossRef] [PubMed]
- St Clair, R.M.; Sharma, A.; Huang, D.; Yu, F.; Goldich, Y.; Rootman, D.; Yoo, S.; Cabot, F.; Jun, J.; Zhang, L.; et al. Development of a nomogram for femtosecond laser astigmatic keratotomy for astigmatism after keratoplasty. J. Cataract. Refract. Surg. 2016, 42, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Butrus, S.I.; Ashraf, M.F.; Azar, D.T. Postkeratoplasty astigmatism: Etiology, management and femtosecond laser applications. In Refract Surgery, 2nd ed.; Azar, D.T., Ed.; Mosby-Elsevier: St. Louis, MO, USA, 2007; pp. 549–559. [Google Scholar]
- Levinger, N.; Levinger, S.; Erdinest, N.; Achiron, A.; London, N.; Trivizki, O.; Levinger, E.; Barequet, I.S. Repeated Femtosecond Laser-Assisted Astigmatic Keratotomies in Post-Keratoplasty Eyes. J. Clin. Med. 2022, 11, 4221. [Google Scholar] [CrossRef]
- Alsaif, B.A.; Al Somali, A.; Banaji, S.H.; Alshaibani, A.K. Vector Analysis and Prognostic Factors for Femtosecond Arcuate Keratotomy in Post-Keratoplasty Astigmatism. Clin. Ophthalmol. 2023, 17, 3747–3759. [Google Scholar] [CrossRef]
- Chang, J.S.M. Femtosecond laser-assisted astigmatic keratotomy: A review. Eye Vis. 2018, 5, 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fadlallah, A.; Mehanna, C.; Saragoussi, J.J.; Chelala, E.; Amari, B.; Legeais, J.M. Safety and efficacy of femtosecond laser-assisted arcuate keratotomy to treat irregular astigmatism after penetrating keratoplasty. J. Cataract. Refract. Surg. 2015, 41, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.L.; Kaiserman, I.; Shehadeh-Mashor, R.; Sansanayudh, W.; Ritenour, R.; Rootman, D.S. IntraLase-enabled astigmatic keratotomy for post-keratoplasty astigmatism: On-axis vector analysis. Ophthalmology 2010, 117, 1228–1235.e1. [Google Scholar] [CrossRef]
- anNakhli, F.; Khattak, A. Vector analysis of femtosecond laser-assisted astigmatic keratotomy after deep anterior lamellar keratoplasty and penetrating keratoplasty. Int. Ophthalmol. 2019, 39, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Sorkin, N.; Mimouni, M.; Santaella, G.; Kreimei, M.; Trinh, T.; Yang, Y.; Saeed, D.; Cohen, E.; Rootman, D.S.; Chan, C.C.; et al. Comparison of manual and femtosecond astigmatic keratotomy in the treatment of postkeratoplasty astigmatism. Acta Ophthalmol. 2021, 99, e747–e752. [Google Scholar] [CrossRef] [PubMed]
- Trivizki, O.; Levinger, E.; Levinger, S. Correction ratio and vector analysis of femtosecond laser arcuate keratotomy for the correction of post-mushroom profile keratoplasty astigmatism. J. Cataract. Refract. Surg. 2015, 41, 1973–1979. [Google Scholar] [CrossRef]
- Alkharashi, M.; Otaif, W.; Al-Essa, R.S. Infectious Keratitis in Corneal Graft following Astigmatic Keratotomy: A Case Report and Literature Review. Case Rep. Ophthalmol. 2022, 13, 1048–1051. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Day, A.C.; Stevens, J.D. Predictors of femtosecond laserintrastromal astigmatic keratotomy efficacy for astigmatism management in cataract surgery. J. Cataract. Refract. Surg. 2016, 42, 251–257. [Google Scholar] [CrossRef]
- Abdelkader, A. Influence of different keratoplasty techniques on the biomechanical properties of the cornea. Acta Ophthalmol. 2013, 91, e567–e572. [Google Scholar] [CrossRef] [PubMed]
- Alpins, N.; Ong, J.K.; Stamatelatos, G. Corneal coupling of astigmatism applied to incisional and ablative surgery. J. Cataract. Refract. Surg. 2014, 40, 1813–1827. [Google Scholar] [CrossRef] [PubMed]
- Khattak, A.; Cheema, H.R. Unexpected overcorrection with femtosecond laser-assisted astigmatic keratotomy following deep anterior lamellar keratoplasty. JCRS Online Case Rep. 2014, 2, 45–49. [Google Scholar] [CrossRef]
- Kubaloglu, A.; Coskun, E.; Sari, E.S.; Guneş, A.S.; Cinar, Y.; Piñero, D.P.; Kutluturk, I.; Ozerturk, Y. Comparison of astigmatic keratotomy results in deep anterior lamellar keratoplasty and penetrating keratoplasty in keratoconus. Am. J. Ophthalmol. 2011, 151, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Mimouni, M.; Kreimei, M.; Sorkin, N.; Trinh, T.; Santaella, G.; Cohen, E.; Chan, C.C.; Rootman, D.S. Factors Associated With Improvement in Vision Following Femtosecond Astigmatic Keratotomy in Post-Keratoplasty Keratoconus Patients. Am. J. Ophthalmol. 2020, 219, 59–65. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Pre-op Mean ± SD [Range] | Post-op Mean ± SD [Range] | p-Value (Paired Samples t-test) |
---|---|---|---|
UCVA LogMAR, Snellen equivalent | 0.92 ± 0.33 [0.48–2.00] 20/165 | 0.58 ± 0.39 [0.00–1.30] 20/76 | <0.001 * |
BSCVA LogMAR, Snellen equivalent | 0.32 ± 0.21 [0.00–0.88] 20/42 | 0.26 ± 0.22 [0.00–0.70] 20/36 | 0.158 |
M cylinder | −6.15 ± 2.75 [−12–−1] | −4.49 ± 2.92 [−12–−0.25] | 0.037 * |
Cylinder axis | 96.48 ± 54.8 [5–180] | 75.76 ± 64.25 [10–180] | 0.524 |
Manifest sphere | −1.13 ± 3.3 [−10–5] | −2.72 ± 4.05 [−11–1.75] | 0.040 * |
Tomographic Elements | Pre-Op | Post-op 1 Month | p | Post-Op 6 m | p | Last Visit 12 m ± 36 | p |
---|---|---|---|---|---|---|---|
K max | 48.31 ± 5.75 | 51.19 ± 7.96 | 0.003 | 50.88 ± 5.85 | <0.001 | 51.7 ± 6.44 | 0.001 |
Flat K | 41.21 ± 3.79 | 44.39 ± 4.61 | <0.001 | 45.13 ± 4.09 | <0.001 | 44.22 ± 2.78 | 0.001 |
Steep K | 50.36 ± 3.03 | 49.09 ± 4.21 | 0.008 | 49.92 ± 4.05 | 0.008 | 48.72 ± 3.173 | 0.007 |
Anterior corneal cylinder | 9.14 ± 3.1 | 5.05 ± 3.11 | <0.001 | 4.83 ± 2.42 | <0.001 | 4.86 ± 2.22 | <0.001 |
Anterior steep axis | 114.9 ± 47.01 | 123.7 ± 38.8 | 0.422 | 114.12 ± 51.4 | 0.954 | 117.93 ± 47.15 | 0.745 |
Posterior corneal astigmatism | 1.4 ± 0.53 | 1 ± 0.46 | 0.133 | 0.89 ± 0.44 | 0.116 | 0.89 ± 0.33 | 0.118 |
Tomographic Elements | Pre-Op | Post-Op 1 Month | p | Post-Op 6 m | p | Last Visit | p |
---|---|---|---|---|---|---|---|
K max | 50.38 ± 6.58 | 53.19 ± 9.41 | 0.02 | 52.15 ± 6.5 | <0.004 | 53.59 ± 6.81 | 0.002 |
Flat K | 40.98 ± 4.03 | 42.88 ± 4.58 | <0.002 | 43.78 ± 3.59 | <0.001 | 42.89 ± 2.52 | 0.007 |
Steep K | 50.16 ± 2.61 | 50.93 ± 4.52 | 0.001 | 48.14 ± 2.24 | 0.01 | 46.85 ± 3.07 | 0.007 |
Anterior corneal cylinder | 9.16 ± 3.26 | 5.68 ± 3.31 | <0.001 | 4.43 ± 2.09 | <0.001 | 4.54 ± 2.8 | <0.001 |
Anterior steep axis | 112.39 ± 44.79 | 118.08 ± 46.79 | 0.422 | 98.93 ± 64.8 | 0.954 | 108.81 ± 59.08 | 0.745 |
Posterior corneal astigmatism | 1.48 ± 0.52 | 1.06 ± 0.47 | 0.003 | 0.7 ± 0.44 | >0.05 | 0.87 ± 0.37 | >0.05 |
Tomographic Elements | Pre-Op | Post-Op 1 Month | p | Post-Op 6 m | p | Last Visit | p |
---|---|---|---|---|---|---|---|
K max | 45.8 ± 3.36 | 49.61 ± 5.9 | 0.003 | 49.72 ± 5.16 | <0.001 | 49.52 ± 5.43 | 0.001 |
Flat K | 41.59 ± 3.77 | 46.23 ± 4.25 | <0.001 | 46.37 ± 4.26 | <0.001 | 45.65 ± 2.37 | 0.005 |
Steep K | 51.1 ± 3.23 | 50.93 ± 4.52 | >0.05 | 51.55 ± 4.71 | >0.05 | 50.87 ± 1.52 | >0.05 |
Anterior corneal cylinder | 9.53 ± 2.76 | 4.69 ± 2.82 | <0.001 | 5.18 ± 2.71 | <0.001 | 5.22 ± 1.3 | <0.001 |
Anterior steep axis | 119.17 ± 53.38 | 130.23 ± 30.48 | 0.422 | 128.15 ± 31.48 | 0.954 | 128.46 ± 26.57 | 0.745 |
Posterior corneal astigmatism | 1.35 ± 0.53 | 0.98 ± 0.47 | 0.02 | 1.06 ± 0.37 | 0.01 | 0.92 ± 0.3 | 0.006 |
Characteristic | Success (72%) Mean ± SD | Non-Success (28%) Mean ± SD | Odds Ratio [95% CI] | p-Value |
---|---|---|---|---|
Age (years) | 34.86 ± 7.52 | 39.00 ± 7.91 | 0.93 [0.83–1.04] | 0.187 |
Gender, male % | 70.6 | 29.4 | 1.07 [0.22–5.15] | 0.936 |
Surgery, LKP % | 53.8 | 46.2 | 0.26 [0.05–1.42] | 0.122 |
UCVA LogMAR | 0.97 ± 0.34 | 0.81 ± 0.31 | 5.99 [0.29–125.52] | 0.249 |
BSCVA LogMAR | 0.32 ± 0.22 | 0.32 ± 0.2 | 1.07 [0.02–47.61] | 0.974 |
M cylinder | −6.39 ± 2.41 | −5.56 ± 3.56 | 0.89 [0.65–1.22] | 0.468 |
Cylinder axis | 86.32 ± 56.76 | 120.63 ± 43.87 | 0.99 [0.97–1.00] | 0.144 |
Manifest sphere | −0.62 ± 2.80 | −2.34 ± 4.23 | 1.19 [0.90–1.57] | 0.225 |
K max | 48.72 ± 5.77 | 47.94 ± 6.17 | 1.03 [0.89–1.18] | 0.738 |
Flat K | 41.85 ± 3.48 | 40.44 ± 4.53 | 1.11 [0.88–1.40] | 0.361 |
Steep K | 50.01 ± 3.35 | 50.57 ± 2.93 | 0.94 [0.73–1.22] | 0.657 |
Anterior corneal cylinder | 8.15 ± 2.58 | 10.13 ± 3.95 | 0.80 [0.60–1.07] | 0.130 |
Anterior steep axis | 121.16 ± 48.57 | 102.22 ± 64.43 | 1.01 [0.99–1.02] | 0.380 |
Posterior corneal astigmatism | 1.35 ± 0.51 | 1.44 ± 0.65 | 0.73 [0.16–3.23] | 0.674 |
Posterior steep axis | 120.19 ± 48.82 | 98.82 ± 60.83 | 1.01 [0.99–1.02] | 0.316 |
Parameter | PKP Mean ± SD | LKP Mean ± SD | p-Value |
---|---|---|---|
Visual outcomes | |||
Safety index | 0.96 ± 1.08 | 1.35 ± 1.2 | 0.415 |
Efficacy index | 2.17 ± 2.22 | 3.00 ± 1.94 | 0.325 |
Vector analysis | |||
TIA (D) | 8.84 ± 3.38 | 8.56 ± 2.80 | 0.822 |
Overcorrection, n (%) | 4 (28.6) | 6 (54.5) | 0.241 |
Undercorrection, n (%) | 10 (71.4) | 5 (45.5) | |
SIA Magnitude (D) | 7.15 ± 4.59 | 8.65 ± 5.74 | 0.456 |
ME (D) | −2.26 ± 3.95 | −0.15 ± 4.40 | 0.222 |
AE (°) | −4.33 ± 12.68 | −13.84 ± 29.62 | 0.289 |
DV (D) | 5.65 ± 2.40 | 6.00 ± 2.65 | 0.747 |
SIA Axis (°) | 83.17 ± 53.27 | 64.93 ± 56.49 | 0.397 |
Flattening/Steepening Effect Magnitude (D) | 4.86 ± 4.97 | 7.37 ± 5.88 | 0.241 |
Flattening, n (%) | 8 (53.3) | 5 (41.7) | 0.547 |
Steepening, n (%) | 7 (46.7) | 7 (58.3) | |
Torque Effect Magnitude (D) | 3.85 ± 3.13 | 3.59 ± 2.59 | 0.818 |
CCW, n (%) | 10 (71.4) | 9 (75.0) | 0.998 |
CW, n (%) | 4 (28.6) | 3 (25.0) | |
FI | 0.75 ± 0.43 | 0.91 ± 0.56 | 0.413 |
CI | 0.45 ± 0.45 | 0.74 ± 0.56 | 0.157 |
IOS | 0.72 ± 0.31 | 0.76 ± 0.40 | 0.794 |
COA | 2.81 ± 4.56 | 2.30 ± 2.36 | 0.735 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkharashi, M.S.; Abusayf, M.M.; Alburayk, K.B.; Alkharashi, A.S. Outcomes of Femtosecond Laser-Assisted Arcuate Keratotomy in the Management of Keratoplasty-Related Astigmatism. J. Clin. Med. 2025, 14, 4526. https://doi.org/10.3390/jcm14134526
Alkharashi MS, Abusayf MM, Alburayk KB, Alkharashi AS. Outcomes of Femtosecond Laser-Assisted Arcuate Keratotomy in the Management of Keratoplasty-Related Astigmatism. Journal of Clinical Medicine. 2025; 14(13):4526. https://doi.org/10.3390/jcm14134526
Chicago/Turabian StyleAlkharashi, Majed S., Mohammed M. Abusayf, Khalid B. Alburayk, and Abdulmajeed S. Alkharashi. 2025. "Outcomes of Femtosecond Laser-Assisted Arcuate Keratotomy in the Management of Keratoplasty-Related Astigmatism" Journal of Clinical Medicine 14, no. 13: 4526. https://doi.org/10.3390/jcm14134526
APA StyleAlkharashi, M. S., Abusayf, M. M., Alburayk, K. B., & Alkharashi, A. S. (2025). Outcomes of Femtosecond Laser-Assisted Arcuate Keratotomy in the Management of Keratoplasty-Related Astigmatism. Journal of Clinical Medicine, 14(13), 4526. https://doi.org/10.3390/jcm14134526