Effect of COVID-19 Disease on Serum Vitamin D Status in Children with Asthma—A Retrospective Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants’ Selection
- (a)
- Children with asthma who are less than 18 years old whose parents or legal tutors agreed to their participation in this study;
- (b)
- Children with known asthma under treatment;
- (c)
- Children with asthma who have measured serum vitamin D levels.
- (a)
- Children with asthma who present other chronic pathologies that may intervene in the results of the present study;
- (b)
- Children with asthma who did not have measured serum vitamin D levels.
2.2. Statistical Analysis
3. Results
3.1. Vitamin D Analysis
3.2. Acute Respiratory Infections Analysis
3.3. COVID-19 Analysis
4. Discussion
4.1. Limitations of the Study
4.2. Recommendations for Further Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FeNO | Fraction of Exhaled Nitric Oxide |
FVC | Forced Vital Capacity |
FEV1 | Forced Expiratory Volume in the First Second |
PEF | Peak Expiratory Flow |
FEF25–75 | Forced Mid Expiratory Flow |
References
- Szefler, S.J.; Fitzgerald, D.A.; Adachi, Y.; Doull, I.J.; Fischer, G.B.; Fletcher, M.; Hong, J.; García-Marcos, L.; Pedersen, S.; Østrem, A.; et al. A worldwide charter for all children with asthma. Pediatr. Pulmonol. 2020, 55, 1282–1292. [Google Scholar] [CrossRef] [PubMed]
- Asher, M.I.; García-Marcos, L.; Pearce, N.E.; Strachan, D.P. Trends in worldwide asthma prevalence. Eur. Respir. J. 2020, 56, 2002094. [Google Scholar] [CrossRef] [PubMed]
- van Meel, E.R.; Mensink-Bout, S.M.; den Dekker, H.T.; Ahluwalia, T.S.; Annesi-Maesano, I.; Arshad, S.H.; Baïz, N.; Barros, H.; von Berg, A.; Bisgaard, H.; et al. Early-life respiratory tract infections and the risk of school-age lower lung function and asthma: A meta-analysis of 150 000 European children. Eur. Respir. J. 2022, 60, 2102395. [Google Scholar] [CrossRef]
- Hammad, H.; Lambrecht, B.N. The basic immunology of asthma. Cell 2021, 184, 1468–1485. [Google Scholar] [CrossRef]
- Bush, A. Pathophysiological mechanisms of asthma. Front. Pediatr. 2019, 7, 68. [Google Scholar] [CrossRef]
- Bouillon, R.; Marcocci, C.; Carmeliet, G.; Bikle, D.; White, J.H.; Dawson-Hughes, B.; Lips, P.; Munns, C.F.; Lazaretti-Castro, M.; Giustina, A.; et al. Skeletal and Extraskeletal Actions of Vitamin D: Current Evidence and Outstanding Questions. Endocr. Rev. 2019, 40, 1109–1151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Leung, D.Y.; Richers, B.N.; Liu, Y.; Remigio, L.K.; Riches, D.W.; Goleva, E. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J. Immunol. 2012, 188, 2127–2135. [Google Scholar] [CrossRef]
- Jolliffe, D.A.; Greenberg, L.; Hooper, R.L.; Griffiths, C.J.; Camargo, C.A., Jr.; Kerley, C.P.; Jensen, M.E.; Mauger, D.; Stelmach, I.; Urashima, M.; et al. Vitamin D supplementation to prevent asthma exacerbations: A systematic review and meta-analysis of individual participant data. Lancet Respir. Med. 2017, 5, 881–890. [Google Scholar] [CrossRef]
- Jolliffe, D.A.; Camargo, C.A., Jr.; Sluyter, J.D.; Aglipay, M.; Aloia, J.F.; Ganmaa, D.; Bergman, P.; Bischoff-Ferrari, P.H.A.; Borzutzky, A.; Damsgaard, C.T.; et al. Vitamin D supplementation to prevent acute respiratory infections: A systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021, 9, 276–292. [Google Scholar] [CrossRef]
- Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ 2017, 356, i6583. [Google Scholar] [CrossRef]
- Martineau, A.R.; Jolliffe, D.A.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; Goodall, E.C.; et al. Vitamin D supplementation to prevent acute respiratory infections: Individual participant data meta-analysis. Health Technol. Assess. 2019, 23, 1–44. [Google Scholar] [CrossRef] [PubMed]
- Demer, L.L.; Hsu, J.J.; Tintut, Y. Steroid Hormone Vitamin D: Implications for Cardiovascular Disease. Circ. Res. 2018, 122, 1576–1585. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.H.; Choe, H.J.; Holick, M.F.; Lim, S. Association of vitamin D status with COVID-19 and its severity: Vitamin D and COVID-19: A narrative review. Rev. Endocr. Metab. Disord. 2022, 23, 579–599. [Google Scholar] [CrossRef] [PubMed]
- Diaconu, I.D.; Gheorman, V.; Grigorie, G.A.; Gheonea, C.; Tenea-Cojan, T.-S.; Mahler, B.; Voropanov, I.A.; Firoiu, M.C.; Pîrvu, A.S.; Popescu, A.B.; et al. A Comprehensive Look at the Development of Asthma in Children. Children 2024, 11, 581. [Google Scholar] [CrossRef]
- Adam-Bonci, T.-I.; Cherecheș-Panța, P.; Bonci, E.-A.; Man, S.C.; Cutaș-Benedec, A.; Drugan, T.; Pop, R.M.; Irimie, A. Suboptimal Serum 25-Hydroxy-Vitamin D Is Associated with a History of Recent Disease Exacerbation in Pediatric Patients with Bronchial Asthma or Asthma-Suggestive Recurrent Wheezing. Int. J. Environ. Res. Public Health 2020, 17, 6545. [Google Scholar] [CrossRef]
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 outbreak in China. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Cheung, K.S.; Hung, I.F.; Chan, P.P.; Lung, K.C.; Tso, E.; Liu, R. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from the HongKong cohert and systematic review and metanalysis. Gastroeneterology 2020, 1, 81–95. [Google Scholar] [CrossRef]
- Diorio, C.; Henrickson, S.E.; Vella, L.A.; McNerney, K.O.; Chase, J.; Burudpakdee, C.; Lee, J.H.; Jasen, C.; Balamuth, F.; Barrett, D.M.; et al. Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS-CoV-2. J. Clin. Investig. 2020, 11, 5967–5975. [Google Scholar] [CrossRef]
- Kouris, E.C.; Mirea, S.I.; Covaci, S.; Luminos, M.L.; Miron, V.D. Unraveling Dysgeusia in SARS-CoV-2 Infection: Clinical and Laboratory Insights from Hospitalized COVID-19 Patients in Romania. Pathogens 2025, 14, 300. [Google Scholar] [CrossRef]
- Miron, V.D.; Raianu, R.-O.; Filimon, C.; Craiu, M. Clinical Differences between SARS-CoV-2 and RSV Infections in Infants: Findings from a Case–Control Study. Viruses 2024, 16, 63. [Google Scholar] [CrossRef]
- Petrelli, F.; Luciani, A.; Perego, G.; Dognini, G.; Colombelli, P.L.; Ghidini, A. Therapeutic and prognostic role of vitamin D for COVID-19 infection: A systematic review and meta-analysis of 43 observational studies. J Steroid Biochem Mol Biol. 2021, 211, 105883. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.J.; Liang, W.H.; Zhao, Y.; Liang, H.R.; Chen, Z.S.; Li, Y.M.; Liu, X.Q.; Chen, R.C.; Tang, C.L.; Wang, T.; et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: A nationwide analysis. Eur. Respir. J. 2020, 55, 2000547. [Google Scholar] [CrossRef] [PubMed]
- Chhiba, K.D.; Patel, G.B.; Vu, T.H.T.; Chen, M.M.; Guo, A.; Kudlaty, E.; Mai, Q.; Yeh, C.; Muhammad, L.N.; Harris, K.E.; et al. Prevalence and characterization of asthma in hospitalized and nonhospitalized patients with COVID-19. J. Allergy Clin. Immunol. 2020, 146, 307–314.e4. [Google Scholar] [CrossRef]
- Radujkovic, A.; Hippchen, T.; Tiwari-Heckler, S.; Dreher, S.; Boxberger, M.; Merle, U. Vitamin D Deficiency and Outcome of COVID-19 Patients. Nutrients 2020, 12, 2757. [Google Scholar] [CrossRef] [PubMed]
- Alvi, S.; Syed, J.G.; Nusrat, B.; Abbas Razvi, S.K.; Shah, Z.Z.; Shafaat Khan, Y.; Danish Khan, M.; Ali Khan, M. Frequency of Vitamin D Deficiency in Patients of Asthma. Cureus 2021, 13, e14828. [Google Scholar] [CrossRef]
- Islam, M.B.; Chowdhury, U.N.; Nashiry, M.A.; Moni, M.A. Severity of COVID-19 patients with coexistence of asthma and vitamin D deficiency. Inform. Med. Unlocked 2022, 34, 101116. [Google Scholar] [CrossRef]
- Global Strategy for Asthma Management and Prevention GINA. 2023. Available online: https://ginasthma.org/2023-gina-main-report/ (accessed on 1 November 2024).
- Enciu, B.G.; Tănase, A.A.; Drăgănescu, A.C.; Aramă, V.; Pițigoi, D.; Crăciun, M.-D. The COVID-19 Pandemic in Romania: A Comparative Description with Its Border Countries. Healthcare 2022, 10, 1223. [Google Scholar] [CrossRef]
- Barsoum, Z. Pediatric Asthma & Coronavirus (COVID-19)-Clinical Presentation in an Asthmatic Child—Case Report. SN Compr. Clin. Med. 2020, 2, 700–702. [Google Scholar]
- Kara, A.A.; Böncüoğlu, E.; Kıymet, E.; Arıkan, K.Ö.; Şahinkaya, Ş.; Düzgöl, M.; Cem, E.; Çelebi, M.; Ağın, H.; Bayram, S.N.; et al. Evaluation of predictors of severe-moderate COVID-19 infections at children: A review of 292 children. J. Med. Virol. 2021, 93, 6634–6640. [Google Scholar] [CrossRef]
- Bailey, L.C.; Razzaghi, H.; Burrows, E.K.; Bunnell, H.T.; Camacho, P.E.F.; Christakis, D.A.; Eckrich, D.; Kitzmiller, M.; Lin, S.M.; Magnusen, B.C.; et al. Assessment of 135 794 Pediatric Patients Tested for Severe Acute Respiratory Syndrome Coronavirus 2 across the United States. JAMA Pediatr. 2021, 175, 176–184. [Google Scholar] [CrossRef]
- Forno, E.; Bacharier, L.B.; Phipatanakul, W.; Guilbert, T.W.; Cabana, M.D.; Ross, K.; Covar, R.; E Gern, J.; Rosser, F.J.; Blatter, J.; et al. Effect of vitamin D3 supplementation on severe asthma exacerbations in children with asthma and low vitamin D levels: The VDKA randomized clinical trial. JAMA 2020, 324, 752–760. [Google Scholar] [CrossRef]
- Thakur, C.; Kumar, J.; Kumar, P.; Goyal, J.P.; Singh, K.; Gupta, A. Vitamin-D supplementation as an adjunct to standard treatment of asthma in children: A randomized controlled trial (ViDASTA Trial). Pediatr. Pulmonol. 2021, 56, 1427–1433. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ye, L.; She, J.; Song, Y.; Melani, A.S. Clinical differences between early-and late-oset asthma: A population-bases cross-sectional study. Can. Respor. J. 2021, 2021, 8886520. [Google Scholar]
- Liu, Q.H.; Kan, X.; Wang, Y.B.; Liu, K.-X.; Zeng, D.; Domagala-Kulawik, J. Differences in the clinical characteristics of early- and late-onset asthma in elderly patients. BioMed Res. Int. 2020, 2020, 2940296. [Google Scholar] [CrossRef]
- Fedora, K.; Setyoningrum, R.A.; Aina, Q.; Rosyidah, L.N.; Ni’mah, N.L.; Titiharja, F.F. Vitamin D supplementation decrease asthma exacerbations in children: A systematic review and meta-analysis of randomized controlled trials. Ann. Med. 2024, 56, 2400313. [Google Scholar] [CrossRef] [PubMed]
- Durá-Travé, T.; Gallinas-Victoriano, F. COVID-19 in Children and Vitamin D. Int. J. Mol. Sci. 2024, 25, 12205. [Google Scholar] [CrossRef] [PubMed]
- Koivisto, O.; Hanel, A.; Carlberg, C. Key vitamin D target genes with function s in the mmune system. Nutrients 2020, 12, 1140. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Bikle, D.; Hewison, M.; Lazaretti-Castro, M.; Formenti, A.M.; Gupta, A.; Madhavan, M.V.; Nair, N.; Babalyan, V.; Hutchings, N.; et al. Mechanisms in endocrinology: Vitamn D and COVID-19. Eur. J. Endocrinol. 2020, 183, R133–R147. [Google Scholar] [CrossRef]
- Radu, I.A.; Ognean, M.L.; Ștef, L.; Giurgiu, D.I.; Cucerea, M.; Gheonea, C. Vitamin D: What We Know and What We Still Do Not Know About Vitamin D in Preterm Infants—A Literature Review. Children 2025, 12, 392. [Google Scholar] [CrossRef]
- Rhodes, J.M.; Subramanian, S.; Laird, E.; Griffin, G.; Kenny, R.A. Perspective: Vitamin D deficiency and COVID-19 severity—Plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2 and thrombosis. J. Intern. Med. 2021, 289, 97–115. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Sun, D.; Li, H.; Lu, X.-X.; Xiao, H.; Ren, J.; Zhang, F.-R.; Liu, Z.-S. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: A single center’s observational study. World J. Pediatr. 2020, 16, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Kalia, V.; Studzinski, G.P.; Sarkar, S. Role of vitamin D in regulating COVID-19 severity—An immunological perspective. J. Leukoc. Biol. 2021, 110, 809–819. [Google Scholar] [CrossRef]
- Feketea, G.; Vlacha, V.; Bocsan, I.C.; Vassilopoulou, E.; Stanciu, L.A.; Zdrenghea, M. Vitamin D in Corona Virus Disease 2019 (COVID-19) Related Multisystem Inflammatory Syndrome in Children (MIS-C). Front. Immunol. 2021, 12, 648546. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, K.; Şen, V. Is Vitamin D Deficiency a Risk Factor for COVID-19 in Children? Pediatr. Pulmonol. 2020, 55, 3595–3601. [Google Scholar] [CrossRef]
- Miraglia del Giudice, M.; Indolfi, C.; Dinardo, G.; Decimo, F.; Decimo, A.; Klain, A. Vitamin D status can affect COVID-19 outcomes also in pediatric population. PharmaNutrition 2022, 22, 100319. [Google Scholar] [CrossRef]
- Kourosh, A.; Luna, R.A.; Balderas, M.; Nance, C.; Anagnostou, A.; Devaraj, S.; Davis, C.M. Fecal Microbiome Signatures Are Different in Food-Allergic Children Compared to Siblings and Healthy Children. Pediatr. Allergy Immunol. 2018, 29, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, A.; Ali, A.; Zahedi, F.D.; Ismail, N.A.S. Immunomodulatory Role of Vitamin D on Gut Microbiome in Children. Biomedicines 2023, 11, 1441. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, X.; Dong, B.; Tan, H.; Li, Q.; Zhang, J.; Su, H.; Sun, X. Obesity-related asthma and its relationship with microbiota. Front. Cell Infect. Microbiol. 2024, 13, 1303899. [Google Scholar] [CrossRef]
- Krasowski, R.; Kamińska, K.; Głodek, K.; Ostrowska, J.; Zajda, K.; Pawliczak, R.; Kleniewska, P. The therapeutic potential of vitamin D supplementation in asthma. Pharmacol. Rep. 2025. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, S.; Chen, Y.; Lu, H.; Shi, D.; Guo, J.; Wu, W.R.; Yang, Y.; Li, Y.; Xu, K.J.; et al. Six-month follow-up of gut microbiota richness in patients with COVID-19. Gut 2022, 71, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Xiao, M.; Cao, S.; Sun, Y.; Zhao, L.; Mao, X.; Chen, P.; Tong, X.; Ou, Z.; Zhu, H.; et al. Distinct gut microbiota and health outcomes in asymptomatic infection, viral nucleic acid test re-positive, and convalescent COVID-19 cases. mLife 2022, 1, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Nasiri Kalmarzi, R.; Zamani, A.; Fathallahpour, A.; Ghaderi, E.; Rahehagh, R.; Kooti, W. The relationship between serum levels of vitamin D with asthma and its symptom severity: A case-control study. Allergol. Immunopathol. 2016, 44, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Alyasin, S.; Momen, T.; Kashef, S.; Alipour, A.; Amin, R. The relationship between serum 25 hydroxy vitamin D levels and asthma in children. Allergy Asthma Immunol. Res. 2011, 3, 251–255. [Google Scholar] [CrossRef]
- Wang, M.; Liu, M.; Wang, C.; Xiao, Y.; An, T.; Zou, M.; Cheng, G. Association between vitamin D status and asthma control: A meta-analysis of randomized trials. Respir. Med. 2019, 150, 85–94. [Google Scholar] [CrossRef]
- Ehlayel, M.; Bener, A.; Sabbah, A. Is high prevalence of vitamin D deficiency evidence for asthma and allergy risks? Eur. Ann. Allergy Clin. Immunol. 2011, 43, 81–88. [Google Scholar]
- El Aaty, H.E.A.; El Aziz, A.A.A.; El Habashy, M.M.; Saafan, M.A.; El Hamed, S.A.A. Assessment of serum vitamin D in patients with bronchial asthma. Egypt. J. Chest Dis. Tuberc. 2015, 64, 1–5. [Google Scholar] [CrossRef]
- Jung, J.Y.; Kim, Y.S.; Kim, S.K.; Kim, H.Y.; Oh, Y.M.; Lee, S.M.; Seo, J.B.; KOLD Study. Relationship of vitamin D status with lung function and exercise capacity in COPD. Respirology 2015, 20, 782–789. [Google Scholar] [CrossRef]
- Sansone, F.; Di Filippo, P.; Russo, D.; Sgrazzutti, L.; Di Pillo, S.; Chiarelli, F.; Attanasi, M. Lung functionassessment in children with Long-Covid syndrome. Pediatr. Pulmonol. 2024, 59, 472–481. [Google Scholar] [CrossRef]
- Barreto, M.; Evangelisti, M.; Montesano, M.; Martella, S.; Villa, M.P. Pulmonary Function Testing in Asthmatic Children. Tests to Assess Outpatients During the COVID-19 Pandemic. Front. Pediatr. 2020, 8, 571112. [Google Scholar] [CrossRef]
- Torres-Castro, R.; Vasconcello-Castillo, L.; Alsina-Restoy, X.; Solis-Navarro, L.; Burgos, F.; Puppo, H.; Vilaró, J. Respiratory function in patients post-infection by COVID-19: A systematic review and meta-analysis. Pulmonology 2021, 27, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Samaha, H.M.S.; Elsaid, A.R.; NasrEldin, E. Vitamin D and markers of airway inflammation in asthma. Egypt. J. Chest Dis. Tuberc. 2015, 64, 779–783. [Google Scholar] [CrossRef]
- Sung, M.; Jee, H.M.; Kim, J.H.; Ha, E.K.; Shin, Y.H.; Kim, J.H.; Lim, D.H.; Han, M.Y. Serum vitamin D level mitigates fractional exhaled nitric oxide linked to bisphenol-A in school-aged children. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 1640–1647. [Google Scholar]
- Kaur, N.; Kumar, V.; Singh, J.; Jain, H.; Paras, P.; Kaur, N.; Sareen, A.K. Assessment of the Relation Between Asthma Severity and Serum Vitamin D Levels: A Cross-Sectional Study. Cureus 2023, 15, e46826. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.M.; Khan, S.; Saleem, D.M.; Khan, F.; Abbas, U.; Siraj, S. Serum vitamin D status in children of bronchial asthma. Rawal Med. J. 2020, 45, 607–610. [Google Scholar]
- Sharif, A.; Haddad Kashani, H.; Sharif, M.R. Association of 25-hydroxy vitamin D with asthma and its severity in children: A case-control study. Clin. Mol. Allergy 2020, 18, 7. [Google Scholar] [CrossRef]
- Aziz, D.A.; Abbas, A.; Viquar, W.; Munawar Hussain, A. Association of vitamin D levels and asthma exacerbations in children and adolescents: Experience from a tertiary care center. Monaldi Arch. Chest. Dis. 2023, 93, 2230. [Google Scholar] [CrossRef]
- Raju, A.; Luthra, G.; Shahbaz, M.; Almatooq, H.; Foucambert, P.; Esbrand, F.D.; Zafar, S.; Panthangi, V.; Kurupp, A.R.C.; Khan, S. Role of Vitamin D Deficiency in Increased Susceptibility to Respiratory Infections Among Children: A Systematic Review. Cureus 2022, 14, e29205. [Google Scholar] [CrossRef] [PubMed]
- Crowe, F.L.; Mughal, M.Z.; Maroof, Z.; Berry, J.; Kaleem, M.; Abburu, S.; Walraven, G.; Masher, M.I.; Chandramohan, D.; Manaseki-Holland, S. Vitamin D for growth and rickets in stunted children: A randomized trial. Pediatrics 2021, 147, e20200815. [Google Scholar] [CrossRef]
- Griffin, G.; Hewison, M.; Hopkin, J.; Kenny, R.A.; Quinton, R.; Rhodes, J.; Subramanian, S.; Thickett, D. Preventing vitamin D deficiency during the COVID-19 pandemic: UK definitions of vitamin D sufficiency and recommended supplement dose are set too low. Clin. Med. 2021, 21, e48–e51. [Google Scholar] [CrossRef]
- Griffin, G.; Hewison, M.; Hopkin, J.; Kenny, R.; Quinton, R.; Rhodes, J.; Subramanian, S.; Thickett, D. Vitamin D and COVID-19: Evidence and recommendations for supplementation. R. Soc. Open Sci. 2020, 7, 201912. [Google Scholar] [CrossRef] [PubMed]
- Griffin, G.; Hewison, M.; Hopkin, J.; Kenny, R.A.; Quinton, R.; Rhodes, J.; Subramanian, S.; Thickett, D. Perspective: Vitamin D supplementation prevents rickets and acute respiratory infections when given as daily maintenance but not as intermittent bolus: Implications for COVID-19. Clin. Med. 2021, 21, e144–e149. [Google Scholar] [CrossRef] [PubMed]
- Batista, K.S.; Cintra, V.M.; Lucena, P.A.F.; Manhães-De-Castro, R.; E Toscano, A.; Costa, L.P.; Queiroz, M.E.B.S.; de Andrade, S.M.; Guzman-Quevedo, O.; de S Aquino, J. The role of vitamin B12 in viral infections: A comprehensive review of its relationship with the muscle-gut-brain axis and implications for SARS-CoV-2 infection. Nutr. Rev. 2022, 80, 561–578. [Google Scholar] [CrossRef] [PubMed]
Parameter | Category | 145 Children | Vitamin D | p * |
---|---|---|---|---|
Median Value (ng/mL) | ||||
Gender | Females | 55 (37.90%) | 27 | 0.217 |
Males | 90 (62.10%) | 28 | ||
Environment | Urban | 104 (71.72%) | 27 | 0.855 |
Rural | 41 (28.28%) | 28 | ||
Age at asthma diagnosis | <6 years old | 64 (44.14%) | 27 | 0.074 |
6–11 years old | 74 (51.03%) | 28.50 | ||
12–17 years old | 7 (4.83%) | 23 | ||
Allergic rhinitis | Present | 90 (62.07%) | 28 | 0.626 |
Absent | 55 (37.93%) | 27 | ||
Atopic dermatitis | Present | 23 (16.08%) | 27 | 0.697 |
Absent | 120 (83.92%) | 28 | ||
Allergies regarding food | Present | 13 (8.97%) | 29 | 0.898 |
Absent | 132 (91.03%) | 27 | ||
Pollen | Present | 27 (18.62%) | 28 | 0.865 |
Absent | 118 (81.38%) | 27 | ||
House dust | Present | 32 (22.07%) | 24 | 0.101 |
Absent | 113 (77.93%) | 28 | ||
Animal hair | Present | 20 (13.79%) | 25.50 | 0.372 |
Absent | 125 (86.21%) | 28 | ||
Mold | Present | 23 (15.86%) | 24 | 0.105 |
Absent | 122 (84.14%) | 28 | ||
Tobacco | Present | 3 (2.07%) | 25 | 0.257 |
Absent | 142 (97.93%) | 27.50 |
Parameter | Category | 145 Children | Vitamin D | p |
---|---|---|---|---|
Median Value (ng/mL) | ||||
Treatment step | Step 1 | 5 (3.45%) | 28 | 0.415 * |
Step 2 | 88 (60.69%) | 28 | ||
Step 3 | 46 (31.72%) | 25.50 | ||
Step 4 | 5 (3.45%) | 45 | ||
Step 5 | 1 (0.69%) | 8 | ||
FEV1/FVC ratio | Normal | 48 (33.10%) | 36 | 0.004 ** |
Variable airflow limitation | 97 (66.90%) | 26 | ||
Exacerbations | 0/year | 51 (35.17%) | 46 | <0.0005 *,# |
1/year | 56 (38.62%) | 26 | ||
2/year | 30 (20.69%) | 21 | ||
3/year | 8 (5.52%) | 13.50 | ||
GINA asthma control levels | Well controlled | 71 (48.97%) | 37 | <0.0005 **,# |
Partially controlled | 74 (51.03%) | 24 | ||
Asthma Phenotype | Allergic | 89 (61.38%) | 28 | 0.572 ** |
Non-allergic | 56 (38.62%) | 27 | ||
Parents with predisposition to atopy | Yes | 34 (23.45%) | 28.50 | 0.437 ** |
No | 111 (76.55%) | 27 | ||
Acute respiratory infections/COVID-19 disease | Yes | 93 (64.14%) | 23 | <0.0005 **,# |
No | 52 (35.86%) | 46.50 |
Parameter | Vitamin D | |||
---|---|---|---|---|
COVID-19 (n = 79) | Study Group (n = 145) | |||
Correlation Coefficient | p * | Correlation Coefficient | p * | |
FeNO | −0.249 | 0.027 | −0.476 | <0.0005 # |
FVC | 0.046 | 0.690 | 0.032 | 0.701 |
FEV1 | −0.007 | 0.948 | 0.113 | 0.176 |
PEF | 0.027 | 0.811 | −0.043 | 0.610 |
FEF25–75 | 0.036 | 0.755 | 0.053 | 0.523 |
FEV1/FVC ratio | −0.190 | 0.094 | 0.105 | 0.210 |
Parameter | Category | Acute Respiratory Infections | p * | ||
Yes | No | Total | |||
93 (64.14%) | 52 (35.86%) | 145 (100%) | |||
Gender | Females | 37 (67.27%) | 18 (32.73%) | 55 (100%) | 0.538 |
39.78% | 34.62% | ||||
Males | 56 (62.22%) | 34 (37.78%) | 90 (100%) | ||
60.22% | 65.38% | ||||
Environment | Urban | 66 (63.46%) | 38 (36.54%) | 104 (100%) | 0.787 |
70.97% | 73.08% | ||||
Rural | 27 (65.85%) | 14 (34.15%) | 41 (100%) | ||
29.03% | 26.92% | ||||
Age at asthma diagnosis | <6 | 38 (56.72%) | 29 (43.28%) | 67 (100%) | 0.844 |
46.91% | 42.65% | ||||
6–11 | 39 (52%) | 36 (48%) | 75 (100%) | ||
48.15% | 52.94% | ||||
12–17 | 4 (57.14%) | 3 (42.86%) | 7 (100%) | ||
4.94% | 4.41% |
Parameter | Category | Acute Respiratory Infections | p * | ||
Yes | No | Total | |||
93 (64.14%) | 52 (35.86%) | 145 (100%) | |||
Exacerbations | 0/year | 16 (31.37%) | 35 (68.63%) | 51 (100%) | 0.110 |
17.2% | 67.31% | ||||
1/year | 47 (83.93%) | 9 (16.07%) | 56 (100%) | ||
50.54% | 17.31% | ||||
2/year | 23 (76.67%) | 7 (23.33%) | 30 (100%) | ||
24.73% | 13.46% | ||||
3/year | 7 (87.5%) | 1 (12.5%) | 8 (100%) | ||
7.53% | 1.92% | ||||
FEV1/FVC ratio | Normal | 17 (35.42%) | 31 (64.58%) | 48 (100%) | <0.0005 # |
18.28% | 59.62% | ||||
Variable airflow limitation | 76 (78.35%) | 21 (21.65%) | 97 (100%) | ||
81.72% | 40.38% | ||||
GINA asthma control levels | Well controlled | 34 (47.89%) | 37 (52.11%) | 71 (100%) | <0.0005 # |
36.56% | 71.15% | ||||
Partially controlled | 59 (79.73%) | 15 (20.27%) | 74 (100%) | ||
63.44% | 28.85% | ||||
Asthma phenotype | Allergic | 51 (57.30%) | 38 (42.70%) | 89 (100%) | 0.031 # |
54.84% | 73.08% | ||||
Non-allergic | 42 (75%) | 14 (25%) | 56 (100%) | ||
45.16% | 26.92% | ||||
Parents with predisposition to atopy | Yes | 20 (58.82%) | 14 (41.18%) | 34 (100%) | 0.460 |
21.51% | 26.92% | ||||
No | 73 (65.77%) | 38 (34.23%) | 111 (100%) | ||
78.49% | 73.08% |
Parameter | Category | COVID-19 | p * | ||
Yes | No | Total | |||
79 (54.48%) | 66 (45.52%) | 145 (100%) | |||
Vitamin D | Median values (ng/mL) | 24 | 44 | - | <0.0005 *,# |
Acute respiratory infections | Yes | 79 (84.95%) | 14 (15.05%) | 93 (100%) | <0.0005 **,# |
100% | 21.21% | ||||
No | 0 (0%) | 52 (100%) | 52 (100%) | ||
0% | 78.79% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul-Razzak, J.; Ionescu, M.; Diaconu, R.; Popescu, A.D.; Niculescu, E.C.; Petrescu, I.O.; Singer, C.E.; Radu, L.; Anghelina, L.; Gheonea, C. Effect of COVID-19 Disease on Serum Vitamin D Status in Children with Asthma—A Retrospective Study. J. Clin. Med. 2025, 14, 4525. https://doi.org/10.3390/jcm14134525
Abdul-Razzak J, Ionescu M, Diaconu R, Popescu AD, Niculescu EC, Petrescu IO, Singer CE, Radu L, Anghelina L, Gheonea C. Effect of COVID-19 Disease on Serum Vitamin D Status in Children with Asthma—A Retrospective Study. Journal of Clinical Medicine. 2025; 14(13):4525. https://doi.org/10.3390/jcm14134525
Chicago/Turabian StyleAbdul-Razzak, Jaqueline, Mihaela Ionescu, Radu Diaconu, Alexandru Dan Popescu, Elena Carmen Niculescu, Ileana Octavia Petrescu, Cristina Elena Singer, Lucrețiu Radu, Liliana Anghelina, and Cristian Gheonea. 2025. "Effect of COVID-19 Disease on Serum Vitamin D Status in Children with Asthma—A Retrospective Study" Journal of Clinical Medicine 14, no. 13: 4525. https://doi.org/10.3390/jcm14134525
APA StyleAbdul-Razzak, J., Ionescu, M., Diaconu, R., Popescu, A. D., Niculescu, E. C., Petrescu, I. O., Singer, C. E., Radu, L., Anghelina, L., & Gheonea, C. (2025). Effect of COVID-19 Disease on Serum Vitamin D Status in Children with Asthma—A Retrospective Study. Journal of Clinical Medicine, 14(13), 4525. https://doi.org/10.3390/jcm14134525