Genotoxicity Induced by Carcinogenic Agents or Occupational Exposure with Sufficient Evidence for Bladder Cancer
Abstract
1. Introduction
2. Materials and Methods: Search Strategy and Selection Criteria
3. Results
3.1. Occupational Exposure in Aluminum Manufacturing
3.2. Aromatic Amines: 4-Aminobiphenyl, 2-Naphthylamine, and Ortho-Toluidine
3.3. Auramine Production
3.4. Benzidine Exposure
3.5. Chlornaphazine Treatment
3.6. Cyclophosphamide Exposure
3.7. Occupational Exposure Among Firefighters
3.8. Magenta Production
3.9. Opium Use
3.10. Occupational Exposure as a Painter
3.11. Rubber Manufacturing Industry
3.12. Chronic Infection with Schistosoma haematobium
3.13. X- and Gamma-Radiation
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chhikara, B.S.; Parang, K. Global Cancer Statistics 2022: The trends projection analysis. Chem. Biol. Lett. 2023, 10, 4541. [Google Scholar]
- Jubber, I.; Ong, S.; Bukavina, L.; Black, P.C.; Compérat, E.; Kamat, A.M.; Kiemeney, L.; Lawrentschuk, N.; Lerner, S.P.; Meeks, J.J.; et al. Epidemiology of Bladder Cancer in 2023: A Systematic Review of Risk Factors. Eur. Urol. 2023, 84, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Compérat, E.; Amin, M.B.; Cathomas, R.; Choudhury, A.; De Santis, M.; Kamat, A.; Stenzl, A.; Thoeny, H.C.; Witjes, J.A. Current best practice for bladder cancer: A narrative review of diagnostics and treatments. Lancet 2022, 400, 1712–1721. [Google Scholar] [CrossRef] [PubMed]
- Hadkhale, K.; Martinsen, J.I.; Weiderpass, E.; Kjærheim, K.; Sparén, P.; Tryggvadóttir, L.; Lynge, E.; Pukkala, E. Occupational variation in bladder cancer in Nordic males adjusted with approximated smoking prevalence. Acta Oncol. 2019, 58, 29–37. [Google Scholar] [CrossRef]
- Alouini, S. Risk Factors Associated with Urothelial Bladder Cancer. Int. J. Environ. Res. Public. Health 2024, 21, 954. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Smith, M.T.; Guyton, K.Z.; Gibbons, C.F.; Fritz, J.M.; Portier, C.J.; Rusyn, I.; DeMarini, D.M.; Caldwell, J.C.; Kavlock, R.J.; Lambert, P.F.; et al. Key Characteristics of Carcinogens as a Basis for Organizing Data on Mechanisms of Carcinogenesis. Environ. Health Perspect. 2016, 124, 713–721. [Google Scholar] [CrossRef]
- Al-Zoughool, M.; Bird, M.; Rice, J.; Baan, R.A.; Billard, M.; Birkett, N.; Krewski, D.; Zielinski, J.M. Development of a database on key characteristics of human carcinogens. J. Toxicol. Environ. Health B Crit. Rev. 2019, 22, 264–287. [Google Scholar] [CrossRef]
- Krewski, D.; Bird, M.; Al-Zoughool, M.; Birkett, N.; Billard, M.; Milton, B.; Rice, J.M.; Grosse, Y.; Cogliano, V.J.; Hill, M.A.; et al. Key characteristics of 86 agents known to cause cancer in humans. J. Toxicol. Environ. Health B Crit. Rev. 2019, 22, 244–263. [Google Scholar] [CrossRef]
- IARC. Available online: https://publications.iarc.fr/19 (accessed on 15 May 2025).
- Cogliano, V.J.; Baan, R.; Straif, K.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; et al. Preventable exposures associated with human cancers. J. Natl. Cancer Inst. 2011, 103, 1827–1839. [Google Scholar] [CrossRef]
- IARC. Available online: https://monographs.iarc.who.int/wp-content/uploads/2019/07/Classifications_by_cancer_site.pdf (accessed on 15 May 2025).
- IARC. Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 15 May 2025).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Heussner, J.C.; Ward, J.B.; Legator, M.S. Genetic monitoring of aluminum workers exposed to coal tar pitch volatiles. Mutat. Res. 1985, 155, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Schoket, B.; Phillips, D.H.; Poirier, M.C.; Vincze, I. DNA adducts in peripheral blood lymphocytes from aluminum production plant workers determined by 32P-postlabeling and enzyme-linked immunosorbent assay. Environ. Health Perspect. 1993, 99, 307–309. [Google Scholar] [CrossRef]
- Schoket, B.; Poirier, M.C.; Vincze, I. Biomonitoring of genotoxic exposure in aluminium plant workers by determination of DNA adducts in human peripheral blood lymphocytes. Sci. Total Environ. 1995, 163, 153–163. [Google Scholar] [CrossRef]
- Schoket, B.; Poirier, M.C.; Mayer, G.; Török, G.; Kolozsi-Ringelhann, A.; Bognár, G.; Bigbee, W.L.; Vincze, I. Biomonitoring of human genotoxicity induced by complex occupational exposures. Mutat. Res. 1999, 445, 193–203. [Google Scholar] [CrossRef]
- Carstensen, U.; Yang, K.; Levin, J.O.; Ostman, C.; Nilsson, T.; Hemminki, K.; Hagmar, L. Genotoxic exposures of potroom workers. Scand. J. Work. Environ. Health 1999, 25, 24–32. [Google Scholar] [CrossRef]
- Carstensen, U.; Hou, S.M.; Alexandrie, A.K.; Högstedt, B.; Tagesson, C.; Warholm, M.; Rannug, A.; Lambert, B.; Axmon, A.; Hagmar, L. Influence of genetic polymorphisms of biotransformation enzymes on gene mutations, strand breaks of deoxyribonucleic acid, and micronuclei in mononuclear blood cells and urinary 8-hydroxydeoxyguanosine in potroom workers exposed to polyaromatic hydrocarbons. Scand. J. Work. Environ. Health 1999, 25, 351–360. [Google Scholar] [CrossRef]
- Schoket, B.; Papp, G.; Lévay, K.; Mracková, G.; Kadlubar, F.F.; Vincze, I. Impact of metabolic genotypes on levels of biomarkers of genotoxic exposure. Mutat. Res. 2001, 482, 57–69. [Google Scholar] [CrossRef]
- Iarmarcovai, G.; Sari-Minodier, I.; Chaspoul, F.; Botta, C.; De Méo, M.; Orsière, T.; Bergé-Lefranc, J.L.; Gallice, P.; Botta, A. Risk assessment of welders using analysis of eight metals by ICP-MS in blood and urine and DNA damage evaluation by the comet and micronucleus assays; influence of XRCC1 and XRCC3 polymorphisms. Mutagenesis 2005, 20, 425–432. [Google Scholar] [CrossRef]
- Souza, M.C.O.; González, N.; Rovira, J.; Herrero, M.; Marquès, M.; Nadal, M.; Barbosa, F.; Domingo, J.L. Assessment of urinary aromatic amines in Brazilian pregnant women and association with DNA damage: Influence of genetic diversity, lifestyle, and environmental and socioeconomic factors. Environ. Pollut. 2023, 335, 122366. [Google Scholar] [CrossRef]
- Rothman, N.; Bhatnagar, V.K.; Hayes, R.B.; Zenser, T.V.; Kashyap, S.K.; Butler, M.A.; Bell, D.A.; Lakshmi, V.; Jaeger, M.; Kashyap, R.; et al. The impact of interindividual variation in NAT2 activity on benzidine urinary metabolites and urothelial DNA adducts in exposed workers. Proc. Natl. Acad. Sci. USA 1996, 93, 5084–5089. [Google Scholar] [CrossRef] [PubMed]
- Rothman, N.; Talaska, G.; Hayes, R.B.; Bhatnagar, V.K.; Bell, D.A.; Lakshmi, V.M.; Kashyap, S.K.; Dosemeci, M.; Kashyap, R.; Hsu, F.F.; et al. Acidic urine pH is associated with elevated levels of free urinary benzidine and N-acetylbenzidine and urothelial cell DNA adducts in exposed workers. Cancer Epidemiol. Biomark. Prev. 1997, 6, 1039–1042. [Google Scholar] [PubMed]
- DeMarini, D.M.; Brooks, L.R.; Bhatnagar, V.K.; Hayes, R.B.; Eischen, B.T.; Shelton, M.L.; Zenser, T.V.; Talaska, G.; Kashyap, S.K.; Dosemeci, M.; et al. Urinary mutagenicity as a biomarker in workers exposed to benzidine: Correlation with urinary metabolites and urothelial DNA adducts. Carcinogenesis 1997, 18, 981–988. [Google Scholar] [CrossRef]
- Burgaz, S.; Karahalil, B.; Canhi, Z.; Terzioglu, F.; Ançel, G.; Anzion, R.B.; Bos, R.P.; Hüttner, E. Assessment of genotoxic damage in nurses occupationally exposed to antineoplastics by the analysis of chromosomal aberrations. Hum. Exp. Toxicol. 2002, 21, 129–135. [Google Scholar] [CrossRef]
- Cavallo, D.; Ursini, C.L.; Perniconi, B.; Francesco, A.D.; Giglio, M.; Rubino, F.M.; Marinaccio, A.; Iavicoli, S. Evaluation of genotoxic effects induced by exposure to antineoplastic drugs in lymphocytes and exfoliated buccal cells of oncology nurses and pharmacy employees. Mutat. Res. 2005, 587, 45–51. [Google Scholar] [CrossRef]
- Ursini, C.L.; Cavallo, D.; Colombi, A.; Giglio, M.; Marinaccio, A.; Iavicoli, S. Evaluation of early DNA damage in healthcare workers handling antineoplastic drugs. Int. Arch. Occup. Environ. Health 2006, 80, 134–140. [Google Scholar] [CrossRef]
- Rekhadevi, P.V.; Sailaja, N.; Chandrasekhar, M.; Mahboob, M.; Rahman, M.F.; Grover, P. Genotoxicity assessment in oncology nurses handling anti-neoplastic drugs. Mutagenesis 2007, 22, 395–401. [Google Scholar] [CrossRef]
- Maksoud, N.A.; Aal, K.A.; Ghandour, N.; Mona, E.-B.; Eman, S. Assessment of Hematotoxicity and Genotoxicity among paint Workers in Assiut Governorate: A case control study. Egypt. J. Forensic Sci. 2018, 8, 6. [Google Scholar] [CrossRef]
- Testa, A.; Festa, F.; Ranaldi, R.; Giachelia, M.; Tirindelli, D.; De Marco, A.; Owczarek, M.; Guidotti, M.; Cozzi, R. A multi-biomarker analysis of DNA damage in automobile painters. Environ. Mol. Mutagen. 2005, 46, 182–188. [Google Scholar] [CrossRef]
- Pinto, D.; Ceballos, J.M.; García, G.; Guzmán, P.; Del Razo, L.M.; Vera, E.; Gómez, H.; García, A.; Gonsebatt, M.E. Increased cytogenetic damage in outdoor painters. Mutat. Res. 2000, 467, 105–111. [Google Scholar] [CrossRef]
- Madhavi, D.; Devi, K.R.; Sowjanya, B.L. Increased frequency of chromosomal aberrations in industrial painters exposed to lead-based paints. J. Environ. Pathol. Toxicol. Oncol. 2008, 27, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Siebel, A.M.; Basso da Silva, L. Genotoxic damage in auto body shop workers. Toxicol. Ind. Health 2010, 26, 619–623. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, H.M.; Dagostim, G.P.; da Silva, A.M.; Tavares, P.; da Rosa, L.A.; de Andrade, V.M. Occupational risk assessment of paint industry workers. Indian. J. Occup. Environ. Med. 2011, 15, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Londoño-Velasco, E.; Martínez-Perafán, F.; Carvajal-Varona, S.; García-Vallejo, F.; Hoyos-Giraldo, L.S. Assessment of DNA damage in car spray painters exposed to organic solvents by the high-throughput comet assay. Toxicol. Mech. Methods 2016, 26, 238–242. [Google Scholar] [CrossRef]
- Kianmehr, M.; Amiri, M.; Ebrahimzadeh-Bideskan, A.; Hajavi, J. DNA damage assessment in the lymphocytes of construction painters by comet assay. Toxicol. Ind. Health 2016, 32, 1902–1909. [Google Scholar] [CrossRef]
- Pereira da Silva, V.H.; Gomes de Moura, C.F.; Spadari-Bratfisch, R.C.; Araki Ribeiro, D. Cytogenetic biomonitoring of peripheral blood and oral mucosa cells from car painters. Toxicol. Mech. Methods 2012, 22, 497–501. [Google Scholar] [CrossRef]
- Londoño-Velasco, E.; Martínez-Perafán, F.; Carvajal, S.; García-Vallejo, F.; Hoyos-Giraldo, L.S. Evaluation of oxidative and methylating DNA damage in painters occupationally exposed to organic solvents and paints. Biomedica 2019, 39, 464–477. [Google Scholar] [CrossRef]
- Cetintepe, S.P.; Hazar, M.; Bilinmiş, I.; Aydin Dilsiz, S.; Basaran, N. Evaluation of genotoxicity, oxidative stress and immune parameters of auto-paint workers. Environ. Res. 2023, 237 Pt 1, 116970. [Google Scholar] [CrossRef]
- Sisto, R.; Cavallo, D.; Ursini, C.L.; Fresegna, A.M.; Ciervo, A.; Maiello, R.; Paci, E.; Pigini, D.; Gherardi, M.; Gordiani, A.; et al. Direct and Oxidative DNA Damage in a Group of Painters Exposed to VOCs: Dose—Response Relationship. Front. Public. Health 2020, 8, 445. [Google Scholar] [CrossRef]
- KanuPriya; Kumar, S.; Gupta, R.; Aggarwal, N.; Yadav, A. Association of glutathione-S-transferase polymorphism with genetic damage in paint workers. Mol. Biol. Rep. 2023, 50, 4899–4905. [Google Scholar] [CrossRef]
- Hoyos-Giraldo, L.S.; Escobar-Hoyos, L.F.; Saavedra-Trujillo, D.; Reyes-Carvajal, I.; Muñoz, A.; Londoño-Velasco, E.; Tello, A.; Cajas-Salazar, N.; Ruíz, M.; Carvajal, S.; et al. Gene-specific promoter methylation is associated with micronuclei frequency in urothelial cells from individuals exposed to organic solvents and paints. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.K.; Mao, I.F.; Chen, M.L.; Cheng, S.F. Urinary 8-hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to ethylbenzene. Ann. Occup. Hyg. 2011, 55, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Cassini, C.; Calloni, C.; Bortolini, G.; Garcia, S.C.; Dornelles, M.A.; Henriques, J.A.; Erdtmann, B.; Salvador, M. Occupational risk assessment of oxidative stress and genotoxicity in workers exposed to paints during a working week. Int. J. Occup. Med. Environ. Health 2011, 24, 308–319. [Google Scholar] [CrossRef]
- Moro, A.M.; Brucker, N.; Charão, M.; Bulcão, R.; Freitas, F.; Baierle, M.; Nascimento, S.; Valentini, J.; Cassini, C.; Salvador, M.; et al. Evaluation of genotoxicity and oxidative damage in painters exposed to low levels of toluene. Mutat. Res. 2012, 746, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Villalba-Campos, M.; Ramírez-Clavijo, S.R.; Sánchez-Corredor, M.C.; Rondón-Lagos, M.; Ibáñez-Pinilla, M.; Palma, R.M.; Varona-Uribe, M.E.; Chuaire-Noack, L. Quantification of cell-free DNA for evaluating genotoxic damage from occupational exposure to car paints. J. Occup. Med. Toxicol. 2016, 11, 33. [Google Scholar] [CrossRef]
- Dos Reis Filho, A.P.; Silveira, M.A.D.; Demarco, N.R.; D’Arce, L.P.G. Increased DNA Damage, Instability and Cytokinesis Defects in Occupationally Exposed Car Painters. Vivo 2019, 33, 1807–1811. [Google Scholar] [CrossRef]
- Brum, E.D.S.; da Silva, L.M.; Teixeira, T.P.; Moreira, L.D.R.; Kober, H.; Lavall, M.C.; Silva, J.P.; Piana, M.; Lenz, L.S.; da Cruz, I.B.M.; et al. DNA damage and inflammatory response in workers exposed to fuels and paints. Arch. Environ. Occup. Health 2021, 76, 152–162. [Google Scholar] [CrossRef]
- Cavallo, D.; Ursini, C.L.; Fresegna, A.M.; Ciervo, A.; Maiello, R.; Buresti, G.; Paci, E.; Pigini, D.; Gherardi, M.; Carbonari, D.; et al. Occupational Exposure in Industrial Painters: Sensitive and Noninvasive Biomarkers to Evaluate Early Cytotoxicity, Genotoxicity and Oxidative Stress. Int. J. Environ. Res. Public. Health 2021, 18. [Google Scholar] [CrossRef]
- Varona-Uribe, M.; Ibáñez-Pinilla, M.; Briceno-Ayala, L.; Herrera, D.; Chuaire-Noack, L.; Martínez-Agüero, M.; Sánchez Corredor, M.C.; Palma-Parra, R.; Narvaez, D.; Groot de Restrepo, H. Biomarkers of susceptibility and effect in car painters exposed to organic solvents. Colomb. Med. (Cali) 2020, 51, e3646. [Google Scholar] [CrossRef]
- Khan, M.I.; Ahmad, I.; Mahdi, A.A.; Akhtar, M.J.; Islam, N.; Ashquin, M.; Venkatesh, T. Elevated blood lead levels and cytogenetic markers in buccal epithelial cells of painters in India: Genotoxicity in painters exposed to lead containing paints. Environ. Sci. Pollut. Res. Int. 2010, 17, 1347–1354. [Google Scholar] [CrossRef]
- Sorsa, M.; Falck, K.; Mäki-Paakkanen, J.; Vainio, H. Genotoxic hazards in the rubber industry. Scand. J. Work. Environ. Health 1983, 9, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Sasiadek, M. Cytogenetic studies of workers from the rubber industry. Mutat. Res. 1992, 279, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Sasiadek, M. Sister-chromatid exchanges and cell-cycle kinetics in the lymphocytes of workers occupationally exposed to a chemical mixture in the tyre industry. Mutat. Res. 1993, 302, 197–200. [Google Scholar] [CrossRef]
- Moretti, M.; Villarini, M.; Scassellati-Sforzolini, G.; Monarca, S.; Libraro, M.; Fatigoni, C.; Donato, F.; Leonardis, C.; Perego, L. Biological monitoring of genotoxic hazard in workers of the rubber industry. Environ. Health Perspect. 1996, 104 (Suppl. 3), 543–545. [Google Scholar] [CrossRef]
- Major, J.; Jakab, M.G.; Tompa, A. The frequency of induced premature centromere division in human populations occupationally exposed to genotoxic chemicals. Mutat. Res. 1999, 445, 241–249. [Google Scholar] [CrossRef]
- Somorovská, M.; Szabová, E.; Vodicka, P.; Tulinská, J.; Barancoková, M.; Fábry, R.; Lísková, A.; Riegerová, Z.; Petrovská, H.; Kubová, J.; et al. Biomonitoring of genotoxic risk in workers in a rubber factory: Comparison of the Comet assay with cytogenetic methods and immunology. Mutat. Res. 1999, 445, 181–192. [Google Scholar] [CrossRef]
- Ward, J.B.; Abdel-Rahman, S.Z.; Henderson, R.F.; Stock, T.H.; Morandi, M.; Rosenblatt, J.I.; Ammenheuser, M.M. Assessment of butadiene exposure in synthetic rubber manufacturing workers in Texas using frequencies of hprt mutant lymphocytes as a biomarker. Chem. Biol. Interact. 2001, 135–136, 465–483. [Google Scholar] [CrossRef]
- Ammenheuser, M.M.; Bechtold, W.E.; Abdel-Rahman, S.Z.; Rosenblatt, J.I.; Hastings-Smith, D.A.; Ward, J.B. Assessment of 1,3-butadiene exposure in polymer production workers using HPRT mutations in lymphocytes as a biomarker. Environ. Health Perspect. 2001, 109, 1249–1255. [Google Scholar] [CrossRef]
- Vermeulen, R.; Talaska, G.; Schumann, B.; Bos, R.P.; Rothman, N.; Kromhout, H. Urothelial cell DNA adducts in rubber workers. Environ. Mol. Mutagen. 2002, 39, 306–313. [Google Scholar] [CrossRef]
- Vermeulen, R.; Bos, R.P.; Pertijs, J.; Kromhout, H. Exposure related mutagens in urine of rubber workers associated with inhalable particulate and dermal exposure. Occup. Environ. Med. 2003, 60, 97–103. [Google Scholar] [CrossRef]
- Peters, S.; Talaska, G.; Jönsson, B.A.; Kromhout, H.; Vermeulen, R. Polycyclic aromatic hydrocarbon exposure, urinary mutagenicity, and DNA adducts in rubber manufacturing workers. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 1452–1459. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.P.; Gaspar, J.; Coelho, P.; Costa, C.; Pinho-Silva, S.; Costa, S.; Da Silva, S.; Laffon, B.; Pásaro, E.; Rueff, J.; et al. Cytogenetic and DNA damage on workers exposed to styrene. Mutagenesis 2010, 25, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Talaska, G.; Gaultney, B.; Peters, S.; Succop, P.; Vermeulen, R. 2-Naphthol levels and genotoxicity in rubber workers. Toxicol. Lett. 2012, 213, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.; Gouveia, M.J.; Vale, N.; Delgado, M.e.L.; Gonçalves, A.; da Silva, J.M.; Oliveira, C.; Xavier, P.; Gomes, P.; Santos, L.L.; et al. Urinary estrogen metabolites and self-reported infertility in women infected with Schistosoma haematobium. PLoS ONE 2014, 9, e96774. [Google Scholar] [CrossRef]
- Aka, P.; Mateuca, R.; Buchet, J.P.; Thierens, H.; Kirsch-Volders, M. Are genetic polymorphisms in OGG1, XRCC1 and XRCC3 genes predictive for the DNA strand break repair phenotype and genotoxicity in workers exposed to low dose ionising radiations? Mutat. Res. 2004, 556, 169–181. [Google Scholar] [CrossRef]
- Engin, A.B.; Ergun, M.A.; Yurtcu, E.; Kan, D.; Sahin, G. Effect of ionizing radiation on the pteridine metabolic pathway and evaluation of its cytotoxicity in exposed hospital staff. Mutat. Res. 2005, 585, 184–192. [Google Scholar] [CrossRef]
- Lalic, H. Cytogenetic monitoring of medical staff professionally exposed to Gamma and X radiation. Neoplasma 2005, 52, 307–313. [Google Scholar]
- Visweswaran, S.; Joseph, S.; Hegde, V.; Jose, M.T.; Perumal, V. DNA damage and gene expression changes in patients exposed to low-dose X-radiation during neuro-interventional radiology procedures. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 844, 54–61. [Google Scholar] [CrossRef]
- Visweswaran, S.; Joseph, S.; Dhanasekaran, J.; Paneerselvam, S.; Annalakshmi, O.; Jose, M.T.; Perumal, V. Exposure of patients to low doses of X-radiation during neuro-interventional imaging and procedures: Dose estimation and analysis of γ-H2AX foci and gene expression in blood lymphocytes. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2020, 856–857, 503237. [Google Scholar] [CrossRef]
- Saini, D.; Jain, V.; Das, B. Evaluation of natural chronic low dose radiation exposure on telomere length and transcriptional response of shelterin complex in individuals residing in Kerala coast, India. Mutat. Res. 2022, 825, 111797. [Google Scholar] [CrossRef]
- Kuchi Bhotla, H.; Balasubramanian, B.; Rengasamy, K.R.R.; Arumugam, V.A.; Alagamuthu, K.K.; Chithravel, V.; Chaudhary, A.; Alanazi, A.M.; Pappuswamy, M.; Meyyazhagan, A. Genotoxic repercussion of high-intensity radiation (x-rays) on hospital radiographers. Environ. Mol. Mutagen. 2023, 64, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Svobodova-Sedlackova, A.; Calderón, A.; Fernandez, A.; Chimenos, J.; Berlanga, C.; Yücel, O.; Barreneche, C.; Rodriguez, R. Mapping the research landscape of bauxite by-products (red mud): An evolutionary perspective from 1995 to 2022. Heliyon 2024, 10, Article. [Google Scholar] [CrossRef] [PubMed]
- Silveira, N.; Martins, M.; Bezerra, A.; Araujo, F. Red Mud from the Aluminium Industry: Production, Characteristics, and Alternative Applications in Construction Materials—A Review. Sustainability 2021, 13, Review. [Google Scholar] [CrossRef]
- Berlinger, B.; Ellingsen, D.; Romanova, N.; Friisk, G.; Daae, H.; Weinbruch, S.; Skaugset, N.; Thomassen, Y. Elemental Carbon and Nitrogen Dioxide as Markers of Exposure to Diesel Exhaust in Selected Norwegian Industries. Ann. Work Expo. Health 2019, 63, 349–358. [Google Scholar] [CrossRef]
- Danford, N. The genetic toxicology of ortho-toluidine. Mutat. Res. 1991, 258, 207–236. [Google Scholar] [CrossRef]
- Suzuki, S.; Gi, M.; Komiya, M.; Obikane, A.; Vachiraarunwong, A.; Fujioka, M.; Kakehashi, A.; Totsuka, Y.; Wanibuchi, H. Evaluation of the Mechanisms Involved in the Development of Bladder Toxicity following Exposure to Occupational Bladder Cancer Causative Chemicals Using DNA Adductome Analysis. Biomolecules 2023, 14. [Google Scholar] [CrossRef]
- Birkett, N.; Al-Zoughool, M.; Bird, M.; Baan, R.; Zielinski, J.; Krewski, D. Overview of biological mechanisms of human carcinogens. J. Toxicol. Environ. Health-Part B-Crit. Rev. 2019, 22, 288–359. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Chemical agents and related occupations. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100, 9–562. [Google Scholar]
- Sassa, A.; Fukuda, T.; Ukai, A.; Nakamura, M.; Sato, R.; Fujiwara, S.; Hirota, K.; Takeda, S.; Sugiyama, K.I.; Honma, M.; et al. Follow-up genotoxicity assessment of Ames-positive/equivocal chemicals using the improved thymidine kinase gene mutation assay in DNA repair-deficient human TK6 cells. Mutagenesis 2021, 36, 331–338. [Google Scholar] [CrossRef]
- Millerick-May, M.L.; Wang, L.; Rice, C.; Rosenman, K.D. Ongoing risk of bladder cancer among former workers at the last benzidine manufacturing facility in the USA. Occup. Environ. Med. 2021, 78, 625–631. [Google Scholar] [CrossRef]
- Mirkova, E.T.; Lalchev, S.G. The genetic toxicity of the human carcinogens benzidine and benzidine-based dyes: Chromosomal analysis in exposed workers. Prog. Clin. Biol. Res. 1990, 340C, 397–405. [Google Scholar] [PubMed]
- Uziel, M.; Munro, N.B.; Katz, D.S.; Vo-Dinh, T.; Zeighami, E.A.; Waters, M.D.; Griffith, J.D. DNA adduct formation by 12 chemicals with populations potentially suitable for molecular epidemiological studies. Mutat. Res. 1992, 277, 35–90. [Google Scholar] [CrossRef] [PubMed]
- Murta-Nascimento, C.; Schmitz-Dräger, B.J.; Zeegers, M.P.; Steineck, G.; Kogevinas, M.; Real, F.X.; Malats, N. Epidemiology of urinary bladder cancer: From tumor development to patient’s death. World J. Urol. 2007, 25, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Thiede, T.; Christensen, B.C. Bladder tumours induced by chlornaphazine. A five-year follow-up study of chlornaphazine-treated patients with polycythaemia. Acta Med. Scand. 1969, 185, 133–137. [Google Scholar] [CrossRef]
- Laursen, B. Cancer of the bladder in patients treated with chlornaphazine. Br. Med. J. 1970, 3, 684–685. [Google Scholar] [CrossRef]
- Ndaw, S.; Remy, A. Occupational Exposure to Antineoplastic Drugs in Twelve French Health Care Setting: Biological Monitoring and Surface Contamination. Int. J. Environ. Res. Public. Health 2023, 20, 4952. [Google Scholar] [CrossRef]
- Gajski, G.; Ladeira, C.; Gerić, M.; Garaj-Vrhovac, V.; Viegas, S. Genotoxicity assessment of a selected cytostatic drug mixture in human lymphocytes: A study based on concentrations relevant for occupational exposure. Environ. Res. 2018, 161, 26–34. [Google Scholar] [CrossRef]
- IARC. IARC Publications Website—Occupational Exposure as a Firefighter; IARC: Lyon, France, 2023. [Google Scholar]
- Case, R.A.; Hosker, M.E.; McDonald, D.B.; Pearson, J.T. Tumours of the urinary bladder in workmen engaged in the manufacture and use of certain dyestuff intermediates in the British chemical industry. Part I. The role of aniline, benzidine, alpha-naphthylamine, and beta-naphthylamine. 1954. Br. J. Ind. Med. 1993, 50, 389–411. [Google Scholar] [CrossRef]
- Rashidian, H.; Hadji, M.; Gholipour, M.; Naghibzadeh-Tahami, A.; Marzban, M.; Mohebbi, E.; Safari-Faramani, R.; Bakhshi, M.; Sadat Seyyedsalehi, M.; Hosseini, B.; et al. Opium use and risk of lung cancer: A multicenter case-control study in Iran. Int. J. Cancer 2023, 152, 203–213. [Google Scholar] [CrossRef]
- IARC. IARC Publications Website—Painting, Firefighting, and Shiftwork; IARC: Lyon, France, 2010. [Google Scholar]
- Iavicoli, I.; Carelli, G. Evaluation of occupational exposure to N-nitrosamines in a rubber-manufacturing industry. J. Occup. Environ. Med. 2006, 48, 195–198. [Google Scholar] [CrossRef]
- IARC. IARC Publications Website—The Rubber Industry; IARC: Lyon, France, 1982. [Google Scholar]
- Gouveia, M.J.; Nogueira, V.; Araújo, B.; Gärtner, F.; Vale, N. Inhibition of the Formation In Vitro of Putatively Carcinogenic Metabolites Derived from. Molecules 2019, 24, 3842. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, M.J.; Santos, J.; Brindley, P.J.; Rinaldi, G.; Lopes, C.; Santos, L.L.; da Costa, J.M.; Vale, N. Estrogen-like metabolites and DNA-adducts in urogenital schistosomiasis-associated bladder cancer. Cancer Lett. 2015, 359, 226–232. [Google Scholar] [CrossRef]
- Wang, S.; Li, G.; Du, H.; Feng, J. Low-dose radiation from CT examination induces DNA double-strand breaks and detectable changes of DNA methylation in peripheral blood cells. Int. J. Radiat. Biol. 2024, 100, 197–208. [Google Scholar] [CrossRef]
- Isubakova, D.S.; Tsymbal, O.S.; Bronikovskaya, E.V.; Litviakov, N.V.; Milto, I.V.; Takhauov, R. Methylation of Promoters of Apoptosis-Related Genes in Blood Lymphocytes of Workers Exposed to Occupational External Irradiation. Bull. Exp. Biol. Med. 2021, 171, 357–361. [Google Scholar] [CrossRef]
- Hoeijmakers, J.H. DNA damage, aging, and cancer. N. Engl. J. Med. 2009, 361, 1475–1485. [Google Scholar] [CrossRef]
- Ding, L.; Getz, G.; Wheeler, D.A.; Mardis, E.R.; McLellan, M.D.; Cibulskis, K.; Sougnez, C.; Greulich, H.; Muzny, D.M.; Morgan, M.B.; et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008, 455, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Norppa, H. Cytogenetic biomarkers and genetic polymorphisms. Toxicol. Lett. 2004, 149, 309–334. [Google Scholar] [CrossRef]
- Poetsch, A.R. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput. Struct. Biotechnol. J. 2020, 18, 207–219. [Google Scholar] [CrossRef]
- OECD. Guidance Document on Revisions to OECD Genetic Toxicology Test Guidelines. Available online: https://web-archive.oecd.org/2015-09-02/370899-Genetic%20Toxicology%20Guidance%20Document%20Aug%2031%202015.pdf (accessed on 15 May 2025).
Agent or Occupational Exposure | Risk Factor | Volume | Evaluation Year/Volume Publication Year | Other Cancer Sites with Sufficient Evidence in Humans a |
---|---|---|---|---|
Aluminum production | Occupation | 34, Sup 7, 92, 100F | 2009/2012 | ND |
4-Aminobiphenyl | Occupational agents: dye and rubber manufacturing | 1, Sup 7, 99, 100F | 2009/2012 | ND |
Arsenic and inorganic arsenic compounds | Environmental factor | 23, Sup 7, 100C | 2009/2012 | Lung, skin (malignant non-melanoma) |
Auramine production | Occupation—dye industry | Sup 7, 99, 100F | 2009/2012 | ND |
Benzidine | Occupation—dye manufacturing | 29, Sup 7, 99, 100F | 2009/2012 | ND |
Chlornaphazine | Medications or drugs | 4, Sup 7, 100A | 2008/2012 | ND |
Cyclophosphamide | Medications or drugs | 26, Sup 7, 100A | 2008/2012 | Acute myeloid leukemia |
Firefighter | Occupation | 98, 132 | 2022/2023 online | Mesothelium (pleura, peritoneum, and other) |
Magenta production | Occupation—dye industry | Sup 7, 57, 99, 100F | 2009/2012 | ND |
2-Naphthylamine | Occupational agents: dye and rubber manufacturing | 4, Sup 7, 99, 100F | 2009/2012 | ND |
Opium consumption | Medications or drugs | 126 | 2020/2021 online | Larynx, lung |
Painter | Occupation | 47, 98, 100F | 2009/2012 | Lung, mesothelium (pleura, peritoneum, and other) |
Rubber manufacturing industry | Occupation | 28, Sup 7, 100F | 2009/2012 | Lung, leukemia: all combined; lymphoma: all combined, stomach |
Schistosoma haematobium infection | Disease | 61, 100B | 2009/2012 | ND |
Tobacco smoking | Smoking | 83, 100E | 2009/2012 | Oral cavity, pharynx: all combined, oesophagus, stomach, colon, rectum, liver, bile duct, pancreas, nasal cavity and paranasal sinus, larynx, lung, upper aerodigestive tract (oral cavity, pharynx, larynx, oesophagus), uterine cervix, ovary, kidney, renal pelvis and ureter, acute myeloid leukemia, chronic myeloid leukemia |
ortho-Toluidine | Occupational agents: dye and rubber manufacturing | Sup 7, 77, 99, 100F | 2009/2012 | ND |
X- and gamma-radiation | Environmental factor | 75, 100D | 2009/2012 | Salivary gland, oesophagus, stomach, colon, lung, bone, skin (malignant non-melanoma), breast, kidney, brain and central nervous system, thyroid, leukemia, multiple sites (unspecified) |
Agent or Occupational Exposure | References | Years | Exposed/Control Group | Exposed Population | Genotoxic Effect on Healthy Humans | Materials |
---|---|---|---|---|---|---|
Aluminum production/aluminum exposure | Heussner et al. [15] | 1985 | 50/50 | USA aluminum reduction plant | Chromosome aberration rates | Blood samples |
Schoket et al. [16] | 1993 | 46/29 | Hungarian primary aluminum production plant workers | DNA adducts | Peripheral blood lymphocytes | |
Schoket et al. [17] | 1995 | 241/167 | Hungarian primary aluminum plants workers | DNA adducts | Peripheral blood lymphocytes | |
Schoket et al. [18] | 1999 | 172/127 | Hungarian aluminum plants workers | DNA adducts | Peripheral blood lymphocytes | |
Carstensen et al. [19] | 1999 | 98/55 | Sweden potroom workers | Aromatic DNA adducts | Blood samples | |
Carstensen et al. [20] | 1999 | 98/55 | Sweden potroom workers | DNA single-strand breaks | Blood samples | |
Schoket et al. [21] | 2001 | 161/- | Hungarian potroom workers in aluminum production | Carcinogen-DNA adducts/aromatic DNA adducts | Peripheral blood lymphocytes | |
Iarmarcovai et al. [22] | 2005 | 60/30 | France welders | DNA strand breaks | Blood samples | |
4-Aminobiphenyl | Souza et al. [23] | 2023 | 300/- | Brazilian pregnant women | DNA damage | Urine samples |
Auramine production | ND | ND | ND | ND | ND | ND |
Benzidine | Rothman et al. [24] | 1996 | 33/15 | Indian workers that manufactured benzidine dihydrochloride- and benzidine-based dyes | DNA adducts | Exfoliated urothelial cells |
Rothman et al. [25] | 1997 | 32/15 | Indian that manufactured benzidine dihydrochloride- and benzidine-based dyes | DNA adducts | Exfoliated urothelial cells | |
DeMarini et al. [26] | 1997 | 30/15 | Indian that manufactured benzidine dihydrochloride- and benzidine-based dyes | DNA adducts | Urine samples | |
Chlornaphazine | ND | ND | ND | ND | ND | ND |
Cyclophosphamide | Burgaz et al. [27] | 2002 | 20/18 | Turkish nurses, occupational exposure to antineoplastic drugs | Genetic damage | Peripheral blood lymphocytes |
Cavallo et al. [28] | 2005 | 30/30 | Italian healthcare workers regularly handling antineoplastic drugs | Micronucleus, chromosomal aberrations | Peripheral blood lymphocytes and exfoliated buccal cells | |
Ursini et al. [29] | 2006 | 30/30 | Italian healthcare workers: pharmacy technicians, nurses | DNA damage | Peripheral blood lymphocytes and exfoliated buccal cells | |
Rekhadevi et al. [30] | 2007 | 60/60 | Indian nurses from the oncology department | DNA damage, micronuclei | Blood samples, buccal epithelial cells | |
Firefighter | ND | ND | ND | ND | ND | ND |
Magenta production | ND | ND | ND | ND | ND | ND |
2-Naphthylamine | Souza et al. [23] | 2023 | 300/- | Brazilian pregnant women | DNA damage | Urine samples |
Opium consumption | ND | ND | ND | ND | ND | ND |
Painter | Maksoud et al. [31] | 2018 | 50/50 | Egyptian painters | Genotoxic properties | Venous blood samples |
Testa et al. [32] | 2005 | 25/37 | Italian car painters | DNA damage, chromosomal aberrations, sister chromatid exchange 1, and micronuclei | Peripheral blood | |
Pinto et al. [33] | 2000 | 25/25 | Mexican painters of public buildings | Chromosomal abnormalities, sister chromatid exchanges 1 | Peripheral blood lymphocyte cultures | |
Micronuclei | Buccal cells | |||||
Madhavi et al. [34] | 2008 | 102/50 | Indian industrial painters | Chromosomal aberrations | Peripheral blood lymphocytes | |
Siebel et al. [35] | 2010 | 34/10 | Brazilian car painters | DNA damage | Exfoliated buccal cells | |
Oliveira et al. [36] | 2012 | 58/30 | Brazilin paint industry workers | DNA damage | Blood lymphocytes and oral mucosa cells | |
Micronuclei | Oral mucosa cells | |||||
Londono-Velasco et al. [37] | 2016 | 52/52 | Colombian car spray painters | DNA damage | Blood samples | |
Kianmehr et al. [38] | 2016 | 14/14 | Iranian construction painters | DNA damage | Blood lymphocytes | |
Pereira da Silva et al. [39] | 2012 | 24/19 | Brazilin car painters | Micronuclei | Exfoliated oral mucosa cells | |
DNA damage | Peripheral blood | |||||
Londono-Velasco et al. [40] | 2019 | 62/62 | Colombian car spray painters | DNA damage | Peripheral blood lymphocyte | |
Cetintepe et al. [41] | 2023 | 110/60 | Turkish automotive paint workers | DNA damage | Peripheral blood lymphocyte | |
Sisto et al. [42] | 2020 | 17/- | Italian professional painters working in a naval industry | DNA damage | Whole venous blood samples | |
KanuPriya et al. [43] | 2023 | 30/30 | Indian skilled paint workers | DNA damage, chromosomal instability or damage | Peripheral blood lymphocyte | |
Hoyos-Giraldo et al. [44] | 2016 | 150/150 | Colombian car painters | Micronuclei | Exfoliated urothelial cells from voided urine | |
Chang et al. [45] | 2011 | 15/49 | Taiwanese spray painters | DNA damage | Urine samples | |
Cassini et al. [46] | 2011 | 33/29 | Brazilian painters from metal–mechanic industries | DNA damage | Peripheral blood and buccal cell samples | |
Moro et al. [47] | 2012 | 34/27 | Brazilian industrial painters | DNA damage | Whole blood | |
Villalba-Campos et al. [48] | 2016 | 33/33 | Colombian car painters | DNA damage | Peripheral blood | |
Dos Reis Filho et al. [49] | 2019 | 37/37 | Brazilin car painters | DNA damage | Buccal mucosa cells | |
Brum et al. [50] | 2020 | 34/19 | Brazilian painters and gasoline station attendants | DNA damage | Blood samples | |
Cavallo et al. [51] | 2021 | 17/18 | Italian shipyard painters | DNA damage | Blood samples | |
Varona-Uribe et al. [52] | 2020 | 62/60 | Brazilian car workshops with exposure to the organic solvents | Micronuclei | Peripheral blood lymphocyte | |
Khan et al. [53] | 2010 | 30/30 | Indian painters | Micronuclei | Buccal epithelial cells | |
Rubber manufacturing industry | Sorsa et al. [54] | 1983 | 55/35 | Finnish rubber workers | Chromosomal aberrations, sister chromatid exchanges 1 | Peripheral blood |
Sasiadek et al. [55] | 1992 | 21/14 | Polish vulcanizers form a tire factory | Chromosomal abnormalities, sister chromatid exchanges 1 | Blood samples | |
Sasiadek et al. [56] | 1993 | 26/25 | Polish vulcanizers form a tire factory | Sister chromatid exchanges, proliferation indices | Peripheral blood lymphocytes | |
Moretti et al. [57] | 1996 | 19/20 | Italian rubber workers | DNA damage, sister chromatid exchanges 1 and micronuclei frequency, and proliferative rate index | Blood samples | |
Major et al. [58] | 1999 | 212/188 | Hungarian rubber workers and other | Chromosomal aberration | Peripheral blood lymphocyte | |
Somorovská et al. [59] | 1999 | 29/22 | Slovak rubber tire factory | DNA damage, micronucleus formation, chromosomal aberrations | Whole blood, peripheral blood lymphocyte | |
Schoket et al. [18] | 1999 | 61/76 | Hungarian vulcanizing plant workers | DNA adducts | Peripheral lymphocytes | |
Ward et al. [60] | 2001 | 22/15 | Texas styrene–butadiene rubber plant workers | Mutations in a reporter gene, hprt | Peripheral blood lymphocyte | |
Ammenheuser et al. [61] | 2001 | 31/32 | Texas styrene–butadiene rubber plant workers | Mutations in a reporter gene, hprt | Peripheral blood lymphocyte | |
Vermeulen et al. [62] | 2002 | 52/- | Dutch rubber workers | DNA adducts and mutagenicity | Urine samples | |
Vermeulen et al. [63] | 2003 | 105/- | Dutch rubber workers | Mutagenic activity | Urine samples | |
Peters et al. [64] | 2008 | 116/- | Dutch rubber workers | DNA adducts and mutagenicity | Urine and blood samples | |
Teixeira et al. [65] | 2010 | 52/54 | Portuguese workers plants manufacturing fiberglass-reinforced plastics | DNA damage, sister chromatid exchanges 1, micronucleus | Whole blood | |
Talaska et al. [66] | 2012 | 43/- | Dutch rubber workers | DNA adducts | Exfoliated urothelial cells | |
Schistosoma haematobium infection | Santos et al. [67] | 2014 | 93/- | Angolan women | Catechol-estrogens/DNA adducts | Urine samples |
ortho-Toluidine | ND | ND | ND | ND | ND | ND |
X- and Gamma-radiation | Aka et al. [68] | 2004 | 32/31 | Belgian seasonal cleaners of the nuclear reactor | DNA damage, micronuclei | Whole blood, heparinized venous blood samples, peripheral blood lymphocyte |
Engin et al. [69] | 2005 | 53/22 | Radiology workers, gamma-radiation-exposed technicians, X-ray-exposed technicians | Sister chromatid exchange 1, DNA fragmentation | Peripheral blood lymphocyte | |
Lalic et al. [70] | 2005 | 47/20 | Medical staff members exposed to gamma-radiation, X-radiation | Chromosome aberrations, acentric fragments, chromatid breaks | Peripheral blood lymphocyte | |
Visweswaran et al. [71] | 2019 | 51/- | Indian patients who underwent neuro-interventional radiological procedures | DNA damage | Peripheral blood lymphocyte | |
Visweswaran et al. [72] | 2020 | 25/- | Indian patients who underwent neuro-interventional radiological procedures | DNA damage | Peripheral blood lymphocyte | |
Saini et al. [73] | 2022 | 71/- | Indian healthy volunteers | DNA damage response | Peripheral blood mononuclear cells | |
Bhotla et al. [74] | 2023 | 100/100 | Indian radiographers | Chromosomal aberrations, sister chromatid exchange 1, micronucleus assay | Peripheral blood lymphocyte |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasperczyk, E.; Tarhonska, K.; Jablonska, E. Genotoxicity Induced by Carcinogenic Agents or Occupational Exposure with Sufficient Evidence for Bladder Cancer. J. Clin. Med. 2025, 14, 4492. https://doi.org/10.3390/jcm14134492
Kasperczyk E, Tarhonska K, Jablonska E. Genotoxicity Induced by Carcinogenic Agents or Occupational Exposure with Sufficient Evidence for Bladder Cancer. Journal of Clinical Medicine. 2025; 14(13):4492. https://doi.org/10.3390/jcm14134492
Chicago/Turabian StyleKasperczyk, Edyta, Kateryna Tarhonska, and Ewa Jablonska. 2025. "Genotoxicity Induced by Carcinogenic Agents or Occupational Exposure with Sufficient Evidence for Bladder Cancer" Journal of Clinical Medicine 14, no. 13: 4492. https://doi.org/10.3390/jcm14134492
APA StyleKasperczyk, E., Tarhonska, K., & Jablonska, E. (2025). Genotoxicity Induced by Carcinogenic Agents or Occupational Exposure with Sufficient Evidence for Bladder Cancer. Journal of Clinical Medicine, 14(13), 4492. https://doi.org/10.3390/jcm14134492