Unsupervised Machine Learning in Identification of Septic Shock Phenotypes and Their In-Hospital Outcomes: A Multicenter Cohort Study
Abstract
1. Introduction
2. Methods
2.1. Study Variables and Outcomes
2.2. Statistical Analysis
3. Results
3.1. Principal Component Analysis
3.2. Demographics and Clinical Comorbidities, by Clusters
3.3. Admission Characteristics, by Clusters
3.4. In-Hospital Events and Outcomes
4. Discussion
4.1. Comparison with Prior Sepsis Phenotypes
4.2. Implications of Future Risk Stratifications and Treatment Strategies
4.3. Strength and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Komorowski, M.; Green, A.; Tatham, K.C.; Seymour, C.; Antcliffe, D. Sepsis biomarkers and diagnostic tools with a focus on machine learning. EBioMedicine 2022, 86, 104394. [Google Scholar] [CrossRef] [PubMed]
- Novosad, S.A.; Sapiano, M.R.; Grigg, C.; Lake, J.; Robyn, M.; Dumyati, G.; Felsen, C.; Blog, D.; Dufort, E.; Zansky, S.; et al. Vital Signs: Epidemiology of Sepsis: Prevalence of Health Care Factors and Opportunities for Prevention. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 864–869. [Google Scholar] [CrossRef]
- Ang, S.P.; Chia, J.E.; Gregory, B.; Iglesias, J. Sex differences in trends and outcomes among patients with septic shock in the United States. Am. J. Med. Sci. 2025. online ahead of print. [Google Scholar] [CrossRef]
- Espinal, C.; Cortés, E.; Pérez-Madrigal, A.; Saludes, P.; Gil, A.; Caballer, A.; Nogales, S.; Gruartmoner, G.; Mesquida, J. Evaluating tissue hypoxia and the response to fluid administration in septic shock patients: A metabolic cluster analysis. BMC Anesthesiol. 2024, 24, 273. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; McIntyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Peng, W.; Zheng, X. The prognostic value of the combined neutrophil-to-lymphocyte ratio (NLR) and neutrophil-to-platelet ratio (NPR) in sepsis. Sci. Rep. 2024, 14, 15075. [Google Scholar] [CrossRef]
- Ang, S.P.; Chia, J.E.; Jaiswal, V.; Hanif, M.; Iglesias, J. Prognostic Value of Neutrophil-to-Lymphocyte Ratio in Patients with Acute Decompensated Heart Failure: A Meta-Analysis. J. Clin. Med. 2024, 13, 1212. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, J.; Vassallo, A.; Ilagan, J.; Ang, S.P.; Udongwo, N.; Mararenko, A.; Alshami, A.; Patel, D.; Elbaga, Y.; Levine, J.S. Acute Kidney Injury Associated with Severe SARS-CoV-2 Infection: Risk Factors for Morbidity and Mortality and a Potential Benefit of Combined Therapy with Tocilizumab and Corticosteroids. Biomedicines 2023, 11, 845. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, J.; Okoh, N.; Ang, S.P.; Rodriguez, C.A.; Chia, J.E.; Levine, J.S. Short-Term Mortality in Hospitalized Patients with Congestive Heart Failure: Markers of Thrombo-Inflammation Are Independent Risk Factors and Only Weakly Associated with Renal Insufficiency and Co-Morbidity Burden. J. Cardiovasc. Dev. Dis. 2024, 11, 93. [Google Scholar] [CrossRef]
- Sinha, P.; Kerchberger, V.E.; Willmore, A.; Chambers, J.; Zhuo, H.; Abbott, J.; Jones, C.; Wickersham, N.; Wu, N.; Neyton, L.; et al. Identifying molecular phenotypes in sepsis: An analysis of two prospective observational cohorts and secondary analysis of two randomised controlled trials. Lancet Respir. Med. 2023, 11, 965–974. [Google Scholar] [CrossRef]
- Chia, J.E.; Ang, S.P. Elevated C-reactive protein and cardiovascular risk. Curr. Opin. Cardiol. 2025, 40, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, V.M.; Thompson, B.T.; Barie, P.S.; Dhainaut, J.F.; Douglas, I.S.; Finfer, S.; Gårdlund, B.; Marshall, J.C.; Rhodes, A.; Artigas, A.; et al. Drotrecogin alfa (activated) in adults with septic shock. N. Engl. J. Med. 2012, 366, 2055–2064. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.L.; Fitzgerald, J.C. Pediatric Sepsis Diagnosis, Management, and Sub-phenotypes. Pediatrics 2024, 153, e2023062967. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.R.; Sweeney, T.E.; Lindsell, C.J. Simplification of a Septic Shock Endotyping Strategy for Clinical Application. Am. J. Respir. Crit. Care Med. 2017, 195, 263–265. [Google Scholar] [CrossRef]
- Hu, C.; Li, Y.; Wang, F.; Peng, Z. Application of Machine Learning for Clinical Subphenotype Identification in Sepsis. Infect. Dis. Ther. 2022, 11, 1949–1964. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.J.H.; Bednarski, B.P.; Pieszko, K.; Kwiecinski, J.; Williams, M.C.; Shanbhag, A.; Liang, J.X.; Huang, C.; Sharir, T.; Hauser, M.T.; et al. Clinical phenotypes among patients with normal cardiac perfusion using unsupervised learning: A retrospective observational study. EBioMedicine 2024, 99, 104930. [Google Scholar] [CrossRef] [PubMed]
- Pollard, T.J.; Johnson, A.E.W.; Raffa, J.D.; Celi, L.A.; Mark, R.G.; Badawi, O. The eICU Collaborative Research Database, a freely available multi-center database for critical care research. Scientific Data 2018, 5, 180178. [Google Scholar] [CrossRef]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Benassi, M.; Garofalo, S.; Ambrosini, F.; Sant’Angelo, R.P.; Raggini, R.; De Paoli, G.; Ravani, C.; Giovagnoli, S.; Orsoni, M.; Piraccini, G. Using Two-Step Cluster Analysis and Latent Class Cluster Analysis to Classify the Cognitive Heterogeneity of Cross-Diagnostic Psychiatric Inpatients. Front. Psychol. 2020, 11, 1085. [Google Scholar] [CrossRef]
- Papathanakos, G.; Andrianopoulos, I.; Xenikakis, M.; Papathanasiou, A.; Koulenti, D.; Blot, S.; Koulouras, V. Clinical Sepsis Phenotypes in Critically Ill Patients. Microorganisms 2023, 11, 2165. [Google Scholar] [CrossRef]
- Knox, D.B.; Lanspa, M.J.; Kuttler, K.G.; Brewer, S.C.; Brown, S.M. Phenotypic clusters within sepsis-associated multiple organ dysfunction syndrome. Intensive Care Med. 2015, 41, 814–822. [Google Scholar] [CrossRef]
- Seymour, C.W.; Kennedy, J.N.; Wang, S.; Chang, C.H.; Elliott, C.F.; Xu, Z.; Berry, S.; Clermont, G.; Cooper, G.; Gomez, H.; et al. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis. Jama 2019, 321, 2003–2017. [Google Scholar] [CrossRef]
- Wong, H.R.; Hart, K.W.; Lindsell, C.J.; Sweeney, T.E. External Corroboration That Corticosteroids May Be Harmful to Septic Shock Endotype A Patients. Crit. Care Med. 2021, 49, e98–e101. [Google Scholar] [CrossRef] [PubMed]
- Garduno, A.; Cusack, R.; Leone, M.; Einav, S.; Martin-Loeches, I. Multi-Omics Endotypes in ICU Sepsis-Induced Immunosuppression. Microorganisms 2023, 11, 1119. [Google Scholar] [CrossRef] [PubMed]
- Baghela, A.; Pena, O.M.; Lee, A.H.; Baquir, B.; Falsafi, R.; An, A.; Farmer, S.W.; Hurlburt, A.; Mondragon-Cardona, A.; Rivera, J.D.; et al. Predicting sepsis severity at first clinical presentation: The role of endotypes and mechanistic signatures. EBioMedicine 2022, 75, 103776. [Google Scholar] [CrossRef] [PubMed]
- Chenoweth, J.G.; Brandsma, J.; Striegel, D.A.; Genzor, P.; Chiyka, E.; Blair, P.W.; Krishnan, S.; Dogbe, E.; Boakye, I.; Fogel, G.B.; et al. Sepsis endotypes identified by host gene expression across global cohorts. Commun. Med. 2024, 4, 120. [Google Scholar] [CrossRef] [PubMed]
- Papin, G.; Bailly, S.; Dupuis, C.; Ruckly, S.; Gainnier, M.; Argaud, L.; Azoulay, E.; Adrie, C.; Souweine, B.; Goldgran-Toledano, D.; et al. Clinical and biological clusters of sepsis patients using hierarchical clustering. PLoS ONE 2021, 16, e0252793. [Google Scholar] [CrossRef] [PubMed]
- van Amstel, R.B.E.; Rademaker, E.; Kennedy, J.N.; Bos, L.D.J.; Peters-Sengers, H.; Butler, J.M.; Bruse, N.; Dongelmans, D.A.; Kox, M.; Vlaar, A.P.J.; et al. Clinical subtypes in critically ill patients with sepsis: Validation and parsimonious classifier model development. Crit. Care 2025, 29, 58. [Google Scholar] [CrossRef] [PubMed]
- Scherger, S.J.; Kalil, A.C. Sepsis phenotypes, subphenotypes, and endotypes: Are they ready for bedside care? Curr. Opin. Crit. Care 2024, 30, 406–413. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, W.; Zhang, H.; Liao, X. Sepsis subphenotypes: Bridging the gaps in sepsis treatment strategies. Front. Immunol. 2025, 16, 1546474. [Google Scholar] [CrossRef]
- Oquendo, M.A.; Baca-Garcia, E.; Artés-Rodríguez, A.; Perez-Cruz, F.; Galfalvy, H.C.; Blasco-Fontecilla, H.; Madigan, D.; Duan, N. Machine learning and data mining: Strategies for hypothesis generation. Mol. Psychiatry 2012, 17, 956–959. [Google Scholar] [CrossRef] [PubMed]
- Loftus, T.J.; Shickel, B.; Balch, J.A.; Tighe, P.J.; Abbott, K.L.; Fazzone, B.; Anderson, E.M.; Rozowsky, J.; Ozrazgat-Baslanti, T.; Ren, Y.; et al. Phenotype clustering in health care: A narrative review for clinicians. Front. Artif. Intell. 2022, 5, 842306. [Google Scholar] [CrossRef] [PubMed]
Factors | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Eigen value | 2.17 | 2 | 2 | 1.6 |
Percent variance | 15 | 13 | 12 | 10.6 |
Lactic acid/albumin | 0.707 | 0.073 | 0.1 | −0.017 |
Platelet/lymphocyte ratio | 0.548 | 0.04 | 0.039 | −0.066 |
Neutrophil/lymphocyte ratio | 0.514 | −0.044 | −0.043 | −0.02 |
Monocyte/lymphocyte ratio | 0.509 | 0.06 | −0.135 | −0.035 |
Serum sodium | 0.488 | −0.034 | 0.072 | 0.039 |
Serum potassium | −0.362 | 0.027 | 0.05 | −0.143 |
Hemoglobin | 0.358 | −0.007 | 0.023 | −0.109 |
Serum chloride | 0.01 | −0.865 | 0.005 | −0.037 |
Alanine aminotransferase | −0.074 | −0.797 | −0.022 | −0.01 |
Total bilirubin | 0.015 | −0.693 | −0.023 | −0.015 |
INR | −0.073 | 0.123 | 0.918 | −0.05 |
Aspartate aminotransferase | −0.013 | 0.129 | 0.911 | 0.006 |
SOFA score | 0.06 | −0.18 | 0.377 | 0.047 |
Serum creatinine | 0.006 | −0.037 | −0.016 | −0.966 |
Age | 0.064 | −0.033 | −0.015 | −0.956 |
Variables | Cluster 1 (N = 5355) | Cluster 2 (N = 5107) | p |
---|---|---|---|
Male gender | 5355 (100) | - | <0.001 |
Ethnicity | 0.001 | ||
African American | 563 (10.50) | 505 (9.90) | |
Asian | 83 (1.50) | 118 (2.30) | |
Caucasian | 4040 (75.40) | 3903 (76.40) | |
Hispanic | 286 (5.30) | 295 (5.80) | |
Native American | 32 (0.60) | 30 (0.60) | |
Other/Unknown | 350 (6.50) | 256 (5.00) | |
Comorbidities | |||
Cirrhosis | 141 (2.70) | 115 (2.30) | 0.209 |
Hypertension | 513 (9.60) | 442 (8.70) | 0.101 |
Diabetes | 128 (2.40) | 136 (2.70) | 0.374 |
COPD | 499 (9.30) | 451 (8.80) | 0.386 |
HLD | 140 (2.60) | 98 (1.90) | 0.017 |
Cerebrovascular diseases | 96 (1.80) | 95 (1.90) | 0.797 |
Malignancy | 300 (5.60) | 269 (5.30) | 0.45 |
CKD | 672 (12.50) | 576 (11.30) | 0.045 |
Heart failure | 523 (9.80) | 493 (9.70) | 0.845 |
Prior medication use | |||
Diuretics | 823 (15.40) | 899 (17.60) | 0.002 |
ACEI | 463 (8.60) | 399 (7.80) | 0.121 |
ARB | 115 (2.10) | 172 (3.40) | <0.001 |
Variables | Overall N | Overall Mean ± SD | Overall Median (IQR) | Cluster 1 N | Cluster 1 Mean ± SD | Cluster 1 Median (IQR) | Cluster 2 N | Cluster 2 Mean ± SD | Cluster 2 Median (IQR) | p |
---|---|---|---|---|---|---|---|---|---|---|
Age, y | 10,462 | 66.41 ± 16.26 | 68.00 (57.00–79.00) | 5355 | 66.32 ± 15.85 | 68.00 (57.00–79.00) | 5107 | 66.49 ± 16.68 | 68.00 (56.00–80.00) | 0.205 |
Highest HR, bpm | 9642 | 112.81 ± 27.82 | 111.00 (96.00–126.25) | 4946 | 112.08 ± 28.00 | 110.00 (96.00–126.00) | 4696 | 113.58 ± 27.62 | 112.00 (97.00–128.00) | 0.003 |
Lowest MAP, mm Hg | 1572 | 57.18 ± 15.01 | 58.00 (51.00–64.00) | 816 | 56.97 ± 14.50 | 58.00 (50.67–64.33) | 756 | 57.42 ± 15.56 | 57.67 (51.33–63.67) | 0.807 |
Lowest temp, °F | 10,019 | 97.22 ± 3.33 | 97.50 (96.80–98.10) | 5132 | 97.21 ± 2.88 | 97.50 (96.80–98.10) | 4887 | 97.22 ± 3.75 | 97.50 (96.80–98.10) | 0.339 |
White blood cells, cells/µL | 10,462 | 14,929.12 ± 10,370.37 | 13,500.00 (8975.00–19,000.00) | 5355 | 14,683.10 ± 10,846.57 | 13,300.00 (8800.00–18,700.00) | 5107 | 15,187.09 ± 9840.81 | 13,800.00 (9100.00–19,300.00) | <0.001 |
Platelets, cells/µL | 10,462 | 234648.63 ± 125504.03 | 215,000.00 (152,000.00–296,000.00) | 5355 | 224190.10 ± 123206.06 | 202,000.00 (143,000.00–281,000.00) | 5107 | 245615.04 ± 126959.19 | 229,000.00 (161,000.00–309,000.00) | <0.001 |
Lymphocytes, cells/µL | 10,462 | 1415.26 ± 4668.02 | 952.55 (555.00–1576.00) | 5355 | 1447.62 ± 6253.00 | 900.90 (524.00–1497.60) | 5107 | 1381.33 ± 1908.45 | 1008.00 (592.00–1677.00) | <0.001 |
Neutrophils, cells/µL | 10,462 | 11,920.22 ± 7585.13 | 10,736.48 (6636.00–15,750.00) | 5355 | 11,645.92 ± 7279.65 | 10,530.00 (6532.00–15,471.00) | 5107 | 12,207.85 ± 7883.22 | 11,040.00 (6758.80–16,065.00) | 0.001 |
Monocytes, cells/µL | 10,462 | 895.92 ± 844.92 | 759.70 (420.00–1176.12) | 5355 | 907.28 ± 869.34 | 768.00 (424.00–1195.00) | 5107 | 884.01 ± 818.44 | 748.00 (420.00–1160.00) | 0.172 |
Neutrophil–lymphocyte ratio | 10,462 | 15.57 ± 15.73 | 10.73 (5.64–19.63) | 5355 | 15.94 ± 15.78 | 11.12 (5.86–21.00) | 5107 | 15.18 ± 15.67 | 10.38 (5.40–18.50) | <0.001 |
Platelet–lymphocyte ratio | 10,462 | 309.76 ± 297.46 | 222.91 (130.38–380.33) | 5355 | 312.49 ± 299.44 | 223.51 (130.64–386.29) | 5107 | 306.89 ± 295.36 | 221.69 (130.14–374.05) | 0.372 |
Monocyte–lymphocyte ratio | 10,462 | 0.98 ± 0.90 | 0.75 (0.40–1.25) | 5355 | 1.03 ± 0.91 | 0.80 (0.43–1.33) | 5107 | 0.93 ± 0.89 | 0.67 (0.38–1.17) | <0.001 |
Sodium, mEq/L | 10,462 | 136.16 ± 6.39 | 136.00 (133.00–139.80) | 5355 | 136.31 ± 6.43 | 136.00 (133.00–140.00) | 5107 | 135.99 ± 6.34 | 136.00 (133.00–139.00) | 0.016 |
Potassium, mEq/L | 10,436 | 4.25 ± 0.88 | 4.10 (3.70–4.70) | 5342 | 4.31 ± 0.85 | 4.20 (3.80–4.70) | 5094 | 4.20 ± 0.91 | 4.10 (3.60–4.60) | <0.001 |
Magnesium, mg/dL | 8438 | 1.81 ± 0.48 | 1.80 (1.50–2.10) | 4291 | 1.85 ± 0.45 | 1.80 (1.60–2.10) | 4147 | 1.78 ± 0.52 | 1.70 (1.50–2.00) | <0.001 |
Albumin, g/dL | 9342 | 3.07 ± 0.73 | 3.10 (2.60–3.60) | 4790 | 3.09 ± 0.73 | 3.10 (2.60–3.60) | 4552 | 3.06 ± 0.73 | 3.10 (2.60–3.60) | 0.047 |
Lactate, mmol/L | 8990 | 3.01 ± 2.49 | 2.30 (1.40–3.70) | 4611 | 3.10 ± 2.54 | 2.40 (1.50–3.80) | 4379 | 2.91 ± 2.43 | 2.20 (1.40–3.60) | <0.001 |
INR (ratio) | 8019 | 1.59 ± 1.16 | 1.20 (1.10–1.50) | 4218 | 1.60 ± 1.16 | 1.22 (1.10–1.50) | 3801 | 1.58 ± 1.17 | 1.20 (1.10–1.50) | <0.001 |
ALT, U/L | 10,462 | 47.23 ± 89.64 | 25.00 (16.00–43.00) | 5355 | 47.91 ± 88.70 | 26.00 (17.00–44.00) | 5107 | 46.52 ± 90.61 | 24.00 (15.00–42.00) | <0.001 |
AST, U/L | 10,462 | 64.49 ± 146.19 | 29.00 (19.00–53.00) | 5355 | 64.01 ± 141.73 | 30.00 (20.00–54.00) | 5107 | 65.00 ± 150.72 | 29.00 (19.00–52.00) | 0.203 |
Bicarbonate, mEq/L | 9689 | 23.85 ± 5.76 | 24.00 (21.00–27.00) | 4940 | 23.99 ± 5.68 | 24.00 (21.00–27.00) | 4749 | 23.71 ± 5.84 | 24.00 (20.00–27.00) | 0.006 |
Chloride, mEq/L | 10,462 | 100.11 ± 7.36 | 100.00 (96.00–104.00) | 5355 | 100.24 ± 7.31 | 100.00 (96.00–104.00) | 5107 | 99.98 ± 7.41 | 100.00 (96.00–104.00) | 0.156 |
BUN, mg/dL | 10,449 | 34.48 ± 26.10 | 27.00 (17.00–44.00) | 5350 | 35.75 ± 26.45 | 28.00 (18.00–45.00) | 5099 | 33.15 ± 25.66 | 25.00 (16.00–43.00) | <0.001 |
Lactate/albumin ratio | 8033 | 1.08 ± 1.08 | 0.76 (0.47–1.28) | 4116 | 1.10 ± 1.08 | 0.79 (0.49–1.30) | 3917 | 1.06 ± 1.09 | 0.75 (0.45–1.25) | <0.001 |
SOFA score (points) | 10,438 | 6.91 ± 3.86 | 7.00 (4.00–10.00) | 5346 | 7.05 ± 3.85 | 7.00 (4.00–10.00) | 5092 | 6.76 ± 3.87 | 7.00 (4.00–9.00) | <0.001 |
Serum creatinine, mg/dL | 10,438 | 1.90 ± 1.82 | 1.30 (0.87–2.20) | 5342 | 2.04 ± 1.95 | 1.39 (0.95–2.30) | 5096 | 1.75 ± 1.66 | 1.20 (0.79–2.07) | <0.001 |
Variables | Cluster 1 (N = 5355) | Cluster 2 (N = 5107) | p |
---|---|---|---|
Ventilation | 2470 (46.10) | 2154 (42.20) | <0.001 |
Vasopressor use | 2103 (39.30) | 2011 (39.40) | 0.912 |
Mortality | 825 (15.40) | 805 (15.8) | 0.615 |
AKI | 3111 (58.10) | 2837 (55.60) | 0.009 |
Stages of AKI * | <0.001 | ||
0 | 2244 (41.90) | 2270 (44.40) | |
1 | 1748 (32.60) | 1536 (30.10) | |
2 | 441 (8.20) | 526 (10.30) | |
3 | 922 (17.20) | 775 (15.20) | |
AKI requiring RRT | 351 (6.60) | 268 (5.20) | 0.005 |
Days on mechanical ventilation, days | 3.00 (2.00–6.00) | 3.00 (2.00–6.00) | 0.221 |
Hospital LOS, days | 6.63 (4.07–10.92) | 6.80 (4.01–11.43) | 0.251 |
ICU LOS, days | 2.18 (1.21–4.05) | 2.26 (1.21–4.21) | 0.254 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ang, S.P.; Chia, J.E.; Lee, E.; Lorenzo-Capps, M.J.; Laezzo, M.; Iglesias, J. Unsupervised Machine Learning in Identification of Septic Shock Phenotypes and Their In-Hospital Outcomes: A Multicenter Cohort Study. J. Clin. Med. 2025, 14, 4450. https://doi.org/10.3390/jcm14134450
Ang SP, Chia JE, Lee E, Lorenzo-Capps MJ, Laezzo M, Iglesias J. Unsupervised Machine Learning in Identification of Septic Shock Phenotypes and Their In-Hospital Outcomes: A Multicenter Cohort Study. Journal of Clinical Medicine. 2025; 14(13):4450. https://doi.org/10.3390/jcm14134450
Chicago/Turabian StyleAng, Song Peng, Jia Ee Chia, Eunseuk Lee, Maria Jose Lorenzo-Capps, Madison Laezzo, and Jose Iglesias. 2025. "Unsupervised Machine Learning in Identification of Septic Shock Phenotypes and Their In-Hospital Outcomes: A Multicenter Cohort Study" Journal of Clinical Medicine 14, no. 13: 4450. https://doi.org/10.3390/jcm14134450
APA StyleAng, S. P., Chia, J. E., Lee, E., Lorenzo-Capps, M. J., Laezzo, M., & Iglesias, J. (2025). Unsupervised Machine Learning in Identification of Septic Shock Phenotypes and Their In-Hospital Outcomes: A Multicenter Cohort Study. Journal of Clinical Medicine, 14(13), 4450. https://doi.org/10.3390/jcm14134450