Visualization of the Glymphatic System Through Brain Magnetic Resonance in Human Subjects with Neurodegenerative Disorders: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Methods
2.1. Literature Search and Data Extraction
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Assessment of Risk of Bias and Quality
2.5. Data Synthesis
3. Results
3.1. Literature Search
3.2. Synthesis of Included Studies
3.2.1. Characteristics of the Included Studies
3.2.2. MRI Sequence for Glymphatic Assessment
3.2.3. Outcome Measures Used to Assess Clinical Characteristics
3.3. Assessment of Study Quality
3.4. Continuous Analysis Outlining Descriptive Statistics of Included Studies
3.5. Subgroup Analysis Using MRI Indices and Parameters’ Correlation with Outcome Measures
3.5.1. ALPS Index and Outcome Measures
3.5.2. PVS and Outcome Measures
3.5.3. MRI Parameters and Disease Progression
3.6. Random Effects Model Across Subgroups
3.7. Forest Plot Analyses Based on Pathology
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 2012, 4, 147ra111. [Google Scholar] [CrossRef] [PubMed]
- Nedergaard, M.; Goldman, S.A. Brain drain. Sci. Am. 2016, 314, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Taoka, T.; Naganawa, S. Glymphatic imaging using MRI. J. Magn. Reson. Imaging JMRI 2020, 51, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Nedergaard, M.; Goldman, S.A. Glymphatic failure as a final common pathway to dementia. Science 2020, 370, 50–56. [Google Scholar] [CrossRef]
- Ray, L.; Iliff, J.J.; Heys, J.J. Analysis of convective and diffusive transport in the brain interstitium. Fluids Barriers CNS 2019, 16, 6. [Google Scholar] [CrossRef]
- Samardzic, D.; Thamburaj, K. Magnetic Resonance Characteristics and Susceptibility Weighted Imaging of the Brain in Gadolinium Encephalopathy. J. Neuroimaging 2015, 25, 136–139. [Google Scholar] [CrossRef]
- Siebner, H.R.; Willoch, F.; Peller, M.; Auer, C.; Boecker, H.; Conrad, B.; Bartenstein, P. Imaging brain activation induced by long trains of repetitive transcranial magnetic stimulation. Neuro Rep. 1998, 9, 943–948. [Google Scholar] [CrossRef]
- Ringstad, G.; Vatnehol, S.A.S.; Eide, P.K. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain A J. Neurol. 2017, 140, 2691–2705. [Google Scholar] [CrossRef]
- Absinta, M.; Ha, S.-K.; Nair, G.; Sati, P.; Luciano, N.J.; Palisoc, M.; Louveau, A.; Zaghloul, K.A.; Pittaluga, S.; Kipnis, J.; et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife 2017, 6, e29738. [Google Scholar] [CrossRef]
- Yamashita, S.; Isoda, H.; Hirano, M.; Takeda, H.; Inagawa, S.; Takehara, Y.; Alley, M.T.; Markl, M.; Pelc, N.J.; Sakahara, H. Visualization of hemodynamics in intracranial arteries using time-resolved three-dimensional phase-contrast MRI. J. Magn. Reson. Imaging 2007, 25, 473–478. [Google Scholar] [CrossRef]
- Shao, M.; Yin, J.; Lu, F.; Zheng, C.; Wang, H.; Jiang, J. The Quantitative Assessment of Imaging Features for the Study of Hirayama Disease Progression. BioMed Res. Int. 2015, 2015, 803148. [Google Scholar] [CrossRef] [PubMed]
- Taoka, T.; Masutani, Y.; Kawai, H.; Nakane, T.; Matsuoka, K.; Yasuno, F.; Kishimoto, T.; Naganawa, S. Evaluation of glymphatic system activity with the diffusion MR technique: Diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases. Jpn. J. Radiol. 2017, 35, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Shokri-Kojori, E.; Wang, G.-J.; Wiers, C.E.; Demiral, S.B.; Guo, M.; Kim, S.W.; Lindgren, E.; Ramirez, V.; Zehra, A.; Freeman, C.; et al. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc. Natl. Acad. Sci. USA 2018, 115, 4483–4488. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.D.; Kim, S.H.; McKinstry, R.C.; Gu, H.; Hazlett, H.C.; Nordahl, C.W.; Emerson, R.W.; Shaw, D.; Elison, J.T.; Swanson, M.R.; et al. Increased Extra-axial Cerebrospinal Fluid in High-Risk Infants Who Later Develop Autism. Biol. Psychiatry 2017, 82, 186–193. [Google Scholar] [CrossRef]
- Gaberel, T.; Gakuba, C.; Goulay, R.; De Lizarrondo, S.M.; Hanouz, J.-L.; Emery, E.; Touze, E.; Vivien, D.; Gauberti, M. Impaired Glymphatic Perfusion After Strokes Revealed by Contrast-Enhanced MRI: A New Target for Fibrinolysis? Stroke 2014, 45, 3092–3096. [Google Scholar] [CrossRef]
- Kamagata, K.; Andica, C.; Takabayashi, K.; Saito, Y.; Taoka, T.; Nozaki, H.; Kikuta, J.; Fujita, S.; Hagiwara, A.; Kamiya, K.; et al. Association of MRI Indices of Glymphatic System with Amyloid Deposition and Cognition in Mild Cognitive Impairment and Alzheimer Disease. Neurology 2022, 99, e2648–e2660. [Google Scholar] [CrossRef]
- Hsu, J.-L.; Wei, Y.-C.; Toh, C.H.; Hsiao, I.-T.; Lin, K.-J.; Yen, T.-C.; Liao, M.-F.; Ro, L.-S. Magnetic Resonance Images Implicate That Glymphatic Alterations Mediate Cognitive Dysfunction in Alzheimer Disease. Ann. Neurol. 2023, 93, 164–174. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, J.; Xing, C.; Xu, X.; Yin, X.; Wu, Y.; Chen, X.; Chen, Y.C. Evaluation of glymphatic system activity by diffusion tensor image analysis along the perivascular space in presbycusis. CNS Neurosci. Ther. 2024, 30, e14458. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ruan, X.; Huang, X.; Li, Y.; Li, E.; Li, M.; Wei, X. Diffusion tensor imaging analysis along the perivascular space index in primary Parkinson’s disease patients with and without freezing of gait. Neuroscience 2022, 506, 51–57. [Google Scholar] [CrossRef]
- Cai, X.; Chen, Z.; He, C.; Zhang, P.; Nie, K.; Qiu, Y.; Wang, L.; Wang, L.; Jing, P.; Zhang, Y. Diffusion along perivascular spaces provides evidence interlinking compromised glymphatic function with aging in Parkinson’s disease. CNS Neurosci. Ther. 2023, 29, 111–121. [Google Scholar] [CrossRef]
- Matsushita, S.; Tatekawa, H.; Ueda, D.; Takita, H.; Horiuchi, D.; Tsukamoto, T.; Shimono, T.; Miki, Y. The Association of Metabolic Brain MRI, Amyloid PET, and Clinical Factors: A Study of Alzheimer’s Disease and Normal Controls from the Open Access Series of Imaging Studies Dataset. J. Magn. Reson. Imaging JMRI 2024, 59, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Donahue, E.K.; Foreman, R.P.; Duran, J.J.; Jakowec, M.W.; O’Neill, J.; Petkus, A.J.; Holschneider, D.P.; Choupan, J.; Van Horn, J.D.; Venkadesh, S.; et al. Increased perivascular space volume in white matter and basal ganglia is associated with cognition in Parkinson’s Disease. Brain Imaging Behav. 2024, 18, 57–65. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fang, Y.; Gu, L.-Y.; Tian, J.; Dai, S.-B.; Chen, Y.; Zheng, R.; Si, X.-L.; Jin, C.-Y.; Song, Z.; Yan, Y.-P.; et al. MRI-visible perivascular spaces are associated with cerebrospinal fluid biomarkers in Parkinson’s disease. Aging 2020, 12, 25805–25818. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.; Holmes, M.F.; Berezuk, C.; Kwan, D.; Tan, B.; Beaton, D.; Scott, C.J.M.; Ozzoude, M.; Gao, F.; Yu, D.; et al. MRI-visible perivascular space volumes, sleep duration and daytime dysfunction in adults with cerebrovascular disease. Sleep Med. 2021, 83, 83–88. [Google Scholar] [CrossRef]
- Shen, T.; Yue, Y.; Ba, F.; He, T.; Tang, X.; Hu, X.; Pu, J.; Huang, C.; Lv, W.; Zhang, B.; et al. Diffusion along perivascular spaces as marker for impairment of glymphatic system in Parkinson’s disease. NPJ Parkinsons Dis. 2022, 8, 174. [Google Scholar] [CrossRef]
- Han, F.; Brown, G.L.; Zhu, Y.; Belkin-Rosen, A.E.; Lewis, M.M.; Du, G.; Gu, Y.; Eslinger, P.J.; Mailman, R.B.; Huang, X.; et al. Decoupling of Global Brain Activity and Cerebrospinal Fluid Flow in Parkinson’s Disease Cognitive Decline. Mov. Disord. 2021, 36, 2066–2076. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, H.-L.; Chen, P.-C.; Lu, C.-H.; Tsai, N.-W.; Yu, C.-C.; Chou, K.-H.; Lai, Y.-R.; Taoka, T.; Lin, W.-C. Associations among Cognitive Functions, Plasma DNA, and Diffusion Tensor Image along the Perivascular Space (DTI-ALPS) in Patients with Parkinson’s Disease. Oxidative Med. Cell. Longev. 2021, 2021, 4034509. [Google Scholar] [CrossRef]
- Rodriguez, L.F.; Toro, A.R.; Pinheiro, A.; Demissie, S.; Ekenze, O.; Martinez, O.; Parva, P.; Charidimou, A.; Ghosh, S.; DeCarli, C.; et al. Relation of MRI-Visible Perivascular Spaces and Other MRI Markers of Cerebral Small Vessel Disease. Brain Sci. 2023, 13, 1323. [Google Scholar] [CrossRef]
- Roalf, D.R.; Moore, T.M.; Mechanic-Hamilton, D.; Wolk, D.A.; Arnold, S.E.; Weintraub, D.A.; Moberg, P.J. Bridging cognitive screening tests in neurologic disorders: A crosswalk between the short Montreal Cognitive Assessment and Mini-Mental State Examination. Alzheimer’s Dement. 2017, 13, 947–952. [Google Scholar] [CrossRef]
- Hendricks, R.M.; Khasawneh, M.T. An Investigation into the Use and Meaning of Parkinson’s Disease Clinical Scale Scores. Park. Dis. 2021, 2021, 1765220. [Google Scholar] [CrossRef]
- Trevaskis, N.L.; Kaminskas, L.M.; Porter, C.J.H. From sewer to saviour-targeting the lymphatic system to promote drug exposure and activity. Nature Reviews. Drug Discov. 2015, 14, 781–803. [Google Scholar] [CrossRef] [PubMed]
- Plog, B.A.; Nedergaard, M. The Glymphatic System in Central Nervous System Health and Disease: Past, Present, and Future. Annu. Rev. Pathol. 2018, 13, 379–394. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, H.H.; Ringstad, G.; Jørstad, Ø.K.; Moe, M.C.; Sandell, T.; Eide, P.K. The human visual pathway communicates directly with the subarachnoid space. Investig. Ophthalmol. Vis. Sci. 2019, 60, 2773–2780. [Google Scholar] [CrossRef] [PubMed]
- Iliff, J.J.; Chen, M.J.; Plog, B.A.; Zeppenfeld, D.M.; Soltero, M.; Yang, L.; Singh, I.; Deane, R.; Nedergaard, M. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J. Neurosci. 2014, 34, 16180–16193. [Google Scholar] [CrossRef]
- Kress, B.T.; Iliff, J.J.; Xia, M.; Wang, M.; Wei, H.S.; Zeppenfeld, D.; Xie, L.; Kang, H.; Xu, Q.; Liew, J.A.; et al. Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol. 2014, 76, 845–861. [Google Scholar] [CrossRef]
Author | Date | Type of Study | Participants | Outcome Measures | MRI Parameters | Results | |
---|---|---|---|---|---|---|---|
1 | Taoka et al. [12] | 2017 | Cross-sectional | 31 (AD, MCI, SCI) | DTI-MRI: FA, ALPS, MMSE | 3T, b = (0, 1000, 2000 s/m2), TR = 6600 ms, TE = 89 ms, FOV= 230 mm, slice thickness = 3 mm | b = 1000: Diffusivity PVS/MMSE: (r = 0.40, p = 0.026), (r = 0.50, p = 0.0042); Diffusivity Projection Fibers/MMSE: (r = −0.52, p = 0.002); Diffusivity association fibers/MMSE: (r = −0.55, p = 0.0013). b = 2000: Diffusivity Projection fibers/MMSE: (r = −0.48, p = 0.0067); ALPS/MMSE: (r = 0.46, p = 0.0084). |
2 | Kamagata et al. [16] | 2022 | Case-Control | 31 HC, 44 MCI, 36 AD | DTI-MRI: PVS, ALPS, FW. MMSE, MOCA, FAQ, FDG/ADAS/ CDR-SB/Aβ42 | DW, T1-weighted, FLAIR using 3T MRI | Higher PVS-BG/worse FAQ score (r = 0.42, p = 0.026) Higher FW-WM/lower CSF-Aβ42 (r = −0.47, p = 0.021), worse MMSE (r = −0.41, p = 0.021), worse FAQ (r = 0.36, p = 0.044) Lower ALPS/Lower CSF-Aβ42 (r = 0.41, p = 0.026), FDG-PET SUVR (r = 0.54, p < 0.001), worse MMSE (r = 0.41, p = 0.026), FAQ (r = −0.38, p = 0.016), CDR-SB (r = −0.47, p = 0.003), ADAS-11 (r = −0.40, p = 0.013). |
3 | Hsu et al. [17] | 2023 | Cross-sectional | 50 = 13 HC, 37 AD | PET-MRI: ALPS, FA, GMV. MMSE, CDR, CERAD-NAB | PET-MRI: TR = 6000 ms, TE = 392 ms, TI = 2100 ms. 3D T1: TR = 2000 ms, TE = 2.67 ms, T1 = 900 ms DTI = b = 1000 s/mm2. TR = 8800 ms, TE = 91 ms | ALPS/CERAS-NAB: (R2 = 0.35, p < 0.01), MMSE (R2 = 0.33, p < 0.01), and total GMV ratios (R2 = 0.27, p < 0.01). |
4 | Xu et al. [18] | 2023 | Cross-sectional | 100, 60 with presbycusis | DTI-MRI: ALPS, MOCA | 3T, TR = 10 s, TE = 95 ms, slice thickness = 2 mm, b value (0–1000 s/mm2) | ALPS/MOCA: (rho = 0.426, p = 0.026) |
5 | Ruan et al. [19] | 2022 | Case-control | 59 PD with/without FOG, 34 HC | DTI-MRI: ALPS. FOG-Q, UPDRS, MMSE, GFQ | 3T, TR = 8700 ms, TE = 102 ms, b (0–2000 s/mm2) | DTI-ALPS/illness duration (r = 0.511, p = 0.003), UPDRS-III total (r = 0.369, p = 0.038) Decreased ALPS in PDFOG and PD-nFOG (p < 0.05). |
6 | Cai et al. [20] | 2022 | Retrospective data | 93 PD, 42 HC | DTI-MRI: ALPS. MMSE, UPDRS, Hamilton Anxiety and Depression scores, PDSS | T1: TR/TE = 580/18 ms T2: TR/TE = 5100/130 ms. FLAIR: TR/TE = 9600/110 ms DTI = TR/TE = 8000/76 ms, b (0–1000 s/mm2) | Lower ALPS in PD (β = −0.143, p < 0.001), ALPS/UPDRSIII in PD patients of older age (r = −0.315, p < 0.05), ALPS/disease duration in PD patients of older age (r = −0.325, p < 0.05). |
7 | Matsushita et al. [21] | 2023 | Retrospective data | 58 total, 29 with AD, 29 HCs | DTI-MRI: ALPS, SUVR, Diffusivity PVS. MMSE, brain temperature | T1-weighted: TR/TE = 2300/2.919 ms DTI: b (0–1000 s/mm2), TR/TE: 11,000/87 ms | ALPS/age: (r = −0.43, p < 0.05) in AD patients SUVR/MMSE: (r = −0.027, p < 0.001) |
8 | Donahue et al. [22] | 2024 | Cross-sectional | 50 PD | MRI: PVS MDUPDRS, MOCA, neuropsychological assessment | 3T, TR/TE/TI = 2400/2.22/1000 ms | Rostral middle frontal PVS volume/MOCA: (r = −0.524, p < 0.001), global cognition score: (r = −0.380, p = 0.007), visuospatial function (r = −0.49, p < 0.001) Basal ganglia PVS/MOCA: (r = −0.318, p = 0.029), global cognition score (r = −0311, p = 0.029), and memory (r = −0.308, p = 0.031) Centrum semi-ovale PVS/MOCA: (r = −0.358, p = 0.011), memory (r = −0.374, p = 0.007) |
9 | Fang et al. [23] | 2020 | Prospective data | 287 PD and 129 HC, 42 PD and 31 HC excluded | MRI: PVS, MDUPDRS, MOCA, Dopamine transporter imaging, CSF samples | T2 1.5 T or 3T, axial acquisition total time of 5 and 8 min | Centrum semi ovale PVS/CSF α-synuclein (estimate = 98.6, 95% CI (3.1–194), p < 0.05) Basal Ganglia PVS/CSF α-synuclein (estimate = 138.2, 95%CI (6.7, 269.7), p < 0.05) Centrum semi ovale PVS/CSF t-tau: (estimate = 10.5, 95% CI (1.5–19.5), p = 0.023) Basal Ganglia PVS/CSF t-tau: (estimate = 12.8, 95% CI (0.4–25.5), p = 0.045) |
10 | Ramirez et al. [24] | 2021 | Cross-sectional | n = 152 (CVD) | MRI: PVS, MOCA, PSQI | NA | PVS/PSQI: (r = 0.70, p = 0.04) BG PVS higher/Daytime Dysfunction higher: OR = 5.31, 95% CI: 1.38–22.26), p = 0.018) |
11 | Shen et al. [25] | 2022 | Cross-sectional | 76 PD, 48 HC | DTI-MRI: ALPS, PVS, WMH. MMSE, UPDRS, Hamilton Anxiety and Depression scores | 7T, TR = 5000 ms, T11/T12 = 900/2750 ms, TE = 2.3 ms. T2: TR = 7000 ms, TE = 66 ms DTI = TR = 6000 ms, TE = 71.8 ms, b (0–3000 s/mm2) | ALPS/UPDRSIII (r = −0.24, p = 0.04), and UPRDS total (r = −0.27, p = 0.02) ALPS/disease duration: (r = −0.30, p = 0.01) PVS/MMSE: (r = −0.4, p < 0.01) in basal ganglia. ALPS/PVS in R hemisphere: (r = −0.42, p = 0.0003). |
12 | Han et al. [26] | 2021 | Cross-sectional | 60 PD, 58 HC | FMRI: gBOLD and CSF flow, MOCA, UPDRS | ECHO flip angle = 90°, spatial resolution = 3 × 3 × 4 mm3, slice thickness = 3 mm, TR/TE = 2000/30 ms | Mean gBOLD correlation with positive peak at –4 s (r = 0.28, p < 0.0001) and negative peak at +4 s (r = 0.37, p < 0.0001) gBOLD/CSF correlation with MOCA (r = −0.36, p = 0.012) |
13 | Chen et al. [27] | 2021 | Prospective data | 88 PD, into groups PD without cognitive impairment, with mild cognitive impairment, and with dementia | MRI: ALPS, UPDRS, MMSE, Plasma readings | 3T, TR/TE: 15,800/77 ms, b = 1000 s/mm2. | PD-MCI and PD-D groups showed lower ALPS compared to PD wthout cognitive impairment (p = 0.012, p < 0.001). ALPS/MMSE: (r = 0.222, p = 0.013) ALPS/UPDRS total: (r = −0.307, p = 0.005) |
14 | Rodrigeuz Lara et al. [28] | 2023 | Prospective data | 2452 scans of patients with small vessel disease | MRI: PVS, brain volumes | 3D T1-weighted (2–3 FLAIR) | Inverse relationship between PVS burden and total brain volumes, inverse relationships between PVS burden and gray matter volume (p < 0.05) Higher odds of covert brain infarcts in grade III PVS compared to grade I in basal ganglia (OR = 5.27, 95% CI = 3.01, 9.22) and centrum semi ovale (OR = 1.99, 95%CI = (1.16, 3.43) |
Article | Selection | Comparability | Exposure | |||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 1 | 2 | 3 | |
Taoka et al. [12] | ✬ | ✬ | ✬ | |||||
Kamagata et al. [16] | ✬ | ✬ | ✬ | |||||
Hsu et al. [17] | ✬ | ✬ | ✬✬ | ✬ | ✬ | |||
Xu et al. [18] | ✬ | ✬ | ✬✬ | ✬ | ✬ | |||
Ruan et al. [19] | ✬ | ✬ | ✬✬ | ✬ | ✬ | |||
Cai et al. [20] | ✬ | ✬ | ✬✬ | ✬ | ✬ | |||
Matsushita et al. [21] | ✬ | ✬ | ✬✬ | ✬ | ✬ | |||
Donahue et al. [22] | ✬ | ✬ | ✬✬ | ✬ | ✬ | |||
Fang et al. [23] | ✬ | ✬ | ✬✬ | ✬ | ✬ | |||
Ramirez et al. [24] | ✬ | ✬ | ✬✬ | ✬ | ✬ | |||
Shen et al. [25] | ✬ | ✬ | ✬✬ | ✬ | ✬ | |||
Han et al. [26] | ✬ | ✬ | ✬✬ | ✬ | ✬ | |||
Chen et al. [27] | ✬ | ✬ | ✬✬ | ✬ | ✬ | |||
Rodriguez Lara et al. [28] | ✬ | ✬ | ✬✬ | ✬ | ✬ |
Subgroup | ALPS/Outcome Measures | p | PVS/Outcome Measures | p | MRI/Disease Progression | p |
---|---|---|---|---|---|---|
AD | 0.373 | 0.02 | −0.327 | 0.018 | 0.22575 | 0.008 |
PD | −0.2 | 0.017 | −0.02 | 0.02 | −0.42 | 0.0003 |
Other | 0.426 | 0.026 | 0.775 | 0.023 | - | - |
All | 0.213 | 0.021 | 0.0966 | 0.018 | −0.097 | 0.004 |
Random Effect Model | |||||||
---|---|---|---|---|---|---|---|
Effect Size | Variance | CI (95%) | p | Q | I2 | Tau2 | |
ALPS/outcome measures | 0.22 | 0.02 | [0.1–0.34] | 0.002 | 12.34 | 45% | 0.02 |
PVS/outcome measures | 0.28 | 0.02 | [0.16–0.40] | 0.0008 | 15.67 | 50% | 0.025 |
MRI/Disease Progression | 1.4 | 0.55 | [0.4–2.4] | 0.007 | 20.5 | 60% | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamzeh, J.; Harati, H.; Ayoubi, F.; Saab, M.-b.; Saab, L.; Al Ahmar, E.; Estephan, E. Visualization of the Glymphatic System Through Brain Magnetic Resonance in Human Subjects with Neurodegenerative Disorders: A Systematic Review and Meta-Analysis. J. Clin. Med. 2025, 14, 4387. https://doi.org/10.3390/jcm14124387
Hamzeh J, Harati H, Ayoubi F, Saab M-b, Saab L, Al Ahmar E, Estephan E. Visualization of the Glymphatic System Through Brain Magnetic Resonance in Human Subjects with Neurodegenerative Disorders: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2025; 14(12):4387. https://doi.org/10.3390/jcm14124387
Chicago/Turabian StyleHamzeh, Jana, Hayat Harati, Farah Ayoubi, Marie-belle Saab, Lea Saab, Elie Al Ahmar, and Elias Estephan. 2025. "Visualization of the Glymphatic System Through Brain Magnetic Resonance in Human Subjects with Neurodegenerative Disorders: A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 14, no. 12: 4387. https://doi.org/10.3390/jcm14124387
APA StyleHamzeh, J., Harati, H., Ayoubi, F., Saab, M.-b., Saab, L., Al Ahmar, E., & Estephan, E. (2025). Visualization of the Glymphatic System Through Brain Magnetic Resonance in Human Subjects with Neurodegenerative Disorders: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 14(12), 4387. https://doi.org/10.3390/jcm14124387