Larger Vertical Ridge Augmentation: A Retrospective Multicenter Comparative Analysis of Seven Surgical Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Surgical Techniques
- ICG—Autogenous bone block harvested from the iliac crest and fixed with titanium screws (Figure 1).
- IBB—Autogenous bone block harvested intraorally from the mandibular angle and fixed with titanium screws (Figure 2).
- ABB—Prefabricated, processed allogeneic cancellous bone block (maxgraft® blocks; botiss biomaterials GmbH, Zossen, Germany), intraoperatively shaped to fit the defect and fixed with titanium screws (Figure 3).
- CAD/CAM ABB—Customized, patient-specific CAD/CAM-manufactured allogeneic cancellous bone block (maxgraft® bonebuilder; botiss), designed from Cone-beam computed tomography (CBCT) data and fixed with titanium screws (Figure 4).
- CAD/CAM TM—Customized CAD/CAM-manufactured titanium mesh (Yxoss CBR®; ReOss GmbH, Filderstadt, Germany), designed from CBCT data and filled with autogenous bone chips, allogeneic granules (maxgraft® granules; botiss), and/or bovine BS (±hyaluronic acid), and fixed with titanium screws (Figure 5).
- MS—Biodegradable magnesium scaffold (NOVAMag®; botiss), filled with autogenous bone chips, allogeneic granules, and/or bovine BS (±hyaluronic acid), and fixed with biodegradable magnesium screws (Figure 6).
- ST—Prefabricated, processed allogeneic cortical bone plates (maxgraft® cortico; botiss), intraoperatively customized to fit the defect, filled with autogenous bone chips, allogeneic granules, and/or bovine BS (±hyaluronic acid), and fixed with titanium screws (Figure 7).
2.3. Postoperative Care and Follow-Up
2.4. Data Collection and Outcome Measures
2.5. Statistics
3. Results
3.1. Statistical Analysis of Primary Parameters
3.1.1. Harvesting and Insertion Time
3.1.2. Vertical and Horizontal Bone Gain
3.1.3. Graft Resorption
3.2. Descriptive Analysis of Secondary Parameters
3.2.1. Donor Site Morbidity
3.2.2. Dehiscence Rate
3.2.3. Removals
3.2.4. Biological and General Financial Costs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gurbanov, S.; Plugmann, P. Dental Implants Placed in Grafted and Non-Grafted Sites: A Systematic Review. Oral. Health Prev. Dent. 2024, 22, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Elboraey, M.O.; Alqutaibi, A.Y.; Aboalrejal, A.N.; Borzangy, S.; Zafar, M.S.; Al-Gabri, R.; Alghauli, M.A.; Ramalingam, S. Regenerative approaches in alveolar bone augmentation for dental implant placement: Techniques, biomaterials, and clinical decision-making: A comprehensive review. J. Dent. 2025, 154, 105612. [Google Scholar] [CrossRef] [PubMed]
- Checchi, V.; Gasparro, R.; Pistilli, R.; Canullo, L.; Felice, P. Clinical Classification of Bone Augmentation Procedure Failures in the Atrophic Anterior Maxillae: Esthetic Consequences and Treatment Options. Biomed. Res. Int. 2019, 2019, 4386709. [Google Scholar] [CrossRef]
- Tunkel, J.; de Stavola, L.; Kloss-Brandstätter, A. Alveolar ridge augmentation using the shell technique with allogeneic and autogenous bone plates in a split-mouth design-A retrospective case report from five patients. Clin. Case Rep. 2021, 9, 947–959. [Google Scholar] [CrossRef]
- Kloss, F.R.; Kämmerer, P.W.; Kloss-Brandstätter, A. Risk Factors for Complications Following Staged Alveolar Ridge Augmentation and Dental Implantation: A Retrospective Evaluation of 151 Cases with Allogeneic and 70 Cases with Autogenous Bone Blocks. J. Clin. Med. 2023, 12, 6. [Google Scholar] [CrossRef] [PubMed]
- Arora, M.; McAulay, N.; Farag, A.; Natto, Z.S.; Lu, J.; Albuquerque, R.; Lu, E.M. The Effectiveness of Platelet Rich Fibrin in Alveolar Ridge Reconstructive or Guided Bone Regenerative Procedures: A Systematic Review and Meta-Analysis. J. Dent. 2025, 153, 105548. [Google Scholar] [CrossRef]
- Suárez-López Del Amo, F.; Monje, A. Efficacy of biologics for alveolar ridge preservation/reconstruction and implant site development: An American Academy of Periodontology best evidence systematic review. J. Periodontol. 2022, 93, 1827–1847. [Google Scholar] [CrossRef]
- Jeong, S.; Strauss, F.J.; Shin, H.J.; Park, J.Y.; Cha, J.K.; Lee, J.S. Efficacy of collagenated bone substitutes for bone regeneration in two-wall-damaged extraction sockets without barrier membranes. Clin. Oral Investig. 2025, 29, 201. [Google Scholar] [CrossRef]
- Kloss, F.R.; Kau, T.; Heimes, D.; Kämmerer, P.W.; Kloss-Brandstätter, A. Enhanced alveolar ridge preservation with hyaluronic acid-enriched allografts: A comparative study of granular allografts with and without hyaluronic acid addition. Int. J. Implants Dent. 2024, 10, 42. [Google Scholar] [CrossRef]
- Zahedi, L.; Mohammadi, M.; Kalantari, M.; Arabsolghar, M.; Ranjbar, H. Horizontal ridge augmentation with particulate cortico-cancellous freeze-dried bone allograft alone or combined with injectable-platelet rich fibrin in a randomized clinical trial. Clin. Implant. Dent. Relat. Res. 2024, 26, 127–137. [Google Scholar] [CrossRef]
- Lin, X.; Deng, S.; Fu, T.; Lei, Y.; Wang, Y.; Yao, J.; Lu, Y.; Huang, Y.; Shang, J.; Chen, J.; et al. Hyaluronic acid-based hydrogel microspheres with multi-responsive properties for antibacterial therapy and bone regeneration in Staphylococcus aureus-infected skull defects. Mater. Today Bio 2025, 32, 101676. [Google Scholar] [CrossRef]
- Khoury, E.J.; Sagheb, K.; Al-Nawas, B.; König, J.; Schiegnitz, E. Does alveolar ridge preservation reduce the need for sinus floor elevation: A comparative study to spontaneous healing. Clin. Implant. Dent. Relat. Res. 2024, 26, 1325–1337. [Google Scholar] [CrossRef] [PubMed]
- Altaib, F.H.; Alqutaibi, A.Y.; Al-Fahd, A.; Eid, S. Short dental implant as alternative to long implant with bone augmentation of the atrophic posterior ridge: A systematic review and meta-analysis of RCTs. Quintessence Int. 2019, 50, 636–650. [Google Scholar] [CrossRef] [PubMed]
- Grunau, O.; Terheyden, H. Lateral augmentation of the sinus floor followed by regular implants versus short implants in the vertically deficient posterior maxilla: A systematic review and timewise meta-analysis of randomized studies. Int. J. Oral Maxillofac. Surg. 2023, 52, 813–824. [Google Scholar] [CrossRef]
- Mardas, N.; Macbeth, N.; Donos, N.; Jung, R.E.; Zuercher, A.N. Is alveolar ridge preservation an overtreatment? Periodontol. 2000 2023, 93, 289–308. [Google Scholar] [CrossRef]
- Seidel, A.; Leira, Y.; Batalla, P.; Caneiro, L.; Wichmann, M.; Blanco, J. Three-dimensional imaging analysis of CAD/CAM custom-milled versus prefabricated allogeneic block remodelling at 6 months and long-term follow-up of dental implants: A retrospective cohort study. J. Clin. Periodontol. 2024, 51, 1005–1016. [Google Scholar] [CrossRef] [PubMed]
- Blume, O.; Back, M.; Dinya, E.; Palkovics, D.; Windisch, P. Efficacy and volume stability of a customized allogeneic bone block for the reconstruction of advanced alveolar ridge deficiencies at the anterior maxillary region: A retrospective radiographic evaluation. Clin. Oral Investig. 2023, 27, 3927–3935. [Google Scholar] [CrossRef]
- Cucchi, A.; Bettini, S.; Tedeschi, L.; Urban, I.; Franceschi, D.; Fiorino, A.; Corinaldesi, G. Complication, vertical bone gain, volumetric changes after vertical ridge augmentation using customized reinforced PTFE mesh or Ti-mesh. A non-inferiority randomized clinical trial. Clin. Oral Implants Res. 2024, 35, 1616–1639. [Google Scholar] [CrossRef]
- Cucchi, A.; Marchiori, G.; Sartori, M.; Fini, M.; Fiorino, A.; Donati, R.; Corinaldesi, G.; Maglio, M. A 3D micro-CT assessment of composition and structure of bone tissue after vertical and horizontal alveolar ridge augmentation using CAD/CAM-customized titanium mesh. Clin. Oral Implants Res. 2024, 35, 1546–1559. [Google Scholar] [CrossRef]
- Mertens, C.; Braun, S.; Krisam, J.; Hoffmann, J. The influence of wound closure on graft stability: An in vitro comparison of different bone grafting techniques for the treatment of one-wall horizontal bone defects. Clin. Implant. Dent. Relat. Res. 2019, 21, 284–291. [Google Scholar] [CrossRef]
- Blašković, M.; Butorac Prpić, I.; Blašković, D.; Rider, P.; Tomas, M.; Čandrlić, S.; Botond Hangyasi, D.; Čandrlić, M.; Perić Kačarević, Ž. Guided Bone Regeneration Using a Novel Magnesium Membrane: A Literature Review and a Report of Two Cases in Humans. J. Funct. Biomater. 2023, 14, 307. [Google Scholar] [CrossRef] [PubMed]
- Blašković, M.; Butorac Prpić, I.; Aslan, S.; Gabrić, D.; Blašković, D.; Cvijanović Peloza, O.; Čandrlić, M.; Perić Kačarević, Ž. Magnesium Membrane Shield Technique for Alveolar Ridge Preservation: Step-by-Step Representative Case Report of Buccal Bone Wall Dehiscence with Clinical and Histological Evaluations. Biomedicines 2024, 12, 2537. [Google Scholar] [CrossRef]
- Palkovics, D.; Rider, P.; Rogge, S.; Kačarević, Ž.P.; Windisch, P. Possible Applications for a Biodegradable Magnesium Membrane in Alveolar Ridge Augmentation-Retrospective Case Report with Two Years of Follow-Up. Medicina 2023, 59, 1698. [Google Scholar] [CrossRef]
- Troeltzsch, M.; Troeltzsch, M.; Kauffmann, P.; Gruber, R.; Brockmeyer, P.; Moser, N.; Rau, A.; Schliephake, H. Clinical efficacy of grafting materials in alveolar ridge augmentation: A systematic review. J. Craniomaxillofac. Surg. 2016, 44, 1618–1629. [Google Scholar] [CrossRef]
- Urban, I.A.; Montero, E.; Amerio, E.; Palombo, D.; Monje, A. Techniques on vertical ridge augmentation: Indications and effectiveness. Periodontol. 2000 2023, 93, 153–182. [Google Scholar] [CrossRef] [PubMed]
- Mertens, C.; Decker, C.; Seeberger, R.; Hoffmann, J.; Sander, A.; Freier, K. Early bone resorption after vertical bone augmentation—A comparison of calvarial and iliac grafts. Clin. Oral Implants Res. 2013, 24, 820–825. [Google Scholar] [CrossRef]
- Lai, Y.; Jiang, X.X.; Lu, M.; Mao, C.; Cai, Z.; Wang, C.; Liu, J.; Chen, W. A Comparative Evaluation of Iliac Crest Cortical-Cancellous Bone Blocks Graft With and Without Concentrated Growth Factors (CGFs) in Secondary Alveolar Bone Grafting: A Retrospective Study. J. Craniofacial Surg. 2023, 34, 1789–1794. [Google Scholar] [CrossRef] [PubMed]
- Steller, D.; Falougy, M.; Mirzaei, P.; Hakim, S.G. Retrospective analysis of time-related three-dimensional iliac bone graft resorption following sinus lift and vertical augmentation in the maxilla. Int. J. Oral. Maxillofac. Surg. 2022, 51, 545–551. [Google Scholar] [CrossRef]
- Wortmann, D.E.; Klein-Nulend, J.; van Ruijven, L.J.; Schortinghuis, J.; Vissink, A.; Raghoebar, G.M. Incorporation of anterior iliac crest or calvarial bone grafts in reconstructed atrophied maxillae: A randomized clinical trial with histomorphometric and micro-CT analyses. Clin. Implant. Dent. Relat. Res. 2021, 23, 492–502. [Google Scholar] [CrossRef]
- Kämmerer, P.W.; Al-Nawas, B. Bone reconstruction of extensive maxillomandibular defects in adults. Periodontol. 2000 2023, 93, 340–357. [Google Scholar] [CrossRef]
- Katz, M.S.; Ooms, M.; Heitzer, M.; Peters, F.; Winnand, P.; Kniha, K.; Möhlhenrich, S.C.; Hölzle, F.; Knobe, M.; Modabber, A. Postoperative Morbidity and Complications in Elderly Patients after Harvesting of Iliac Crest Bone Grafts. Medicina 2021, 57, 759. [Google Scholar] [CrossRef] [PubMed]
- Dimitriou, R.; Mataliotakis, G.I.; Angoules, A.G.; Kanakaris, N.K.; Giannoudis, P.V. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: A systematic review. Injury 2011, 42 (Suppl. S2), S3–S15. [Google Scholar] [CrossRef]
- Lim, G.; Lin, G.H.; Monje, A.; Chan, H.L.; Wang, H.L. Wound Healing Complications Following Guided Bone Regeneration for Ridge Augmentation: A Systematic Review and Meta-Analysis. Int. J. Oral Maxillofac. Implants 2018, 33, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Rhim, R.; Li, L.; Martha, J.; Swaim, B.H.; Banco, R.J.; Jenis, L.G.; Tromanhauser, S.G. Prospective study of iliac crest bone graft harvest site pain and morbidity. Spine J. 2009, 9, 886–892. [Google Scholar] [CrossRef]
- Khoury, F.; Hanser, T. 3D vertical alveolar crest augmentation in the posterior mandible using the tunnel technique: A 10-year clinical study. Int. J. Oral. Implantol. 2022, 15, 111–126. [Google Scholar]
- Khoury, F.; Hanser, T. Mandibular bone block harvesting from the retromolar region: A 10-year prospective clinical study. Int. J. Oral Maxillofac. Implants 2015, 30, 688–697. [Google Scholar] [CrossRef]
- Pereira, R.S.; Pavelski, M.D.; Griza, G.L.; Boos, F.; Hochuli-Vieira, E. Prospective evaluation of morbidity in patients who underwent autogenous bone-graft harvesting from the mandibular symphysis and retromolar regions. Clin. Implant. Dent. Relat. Res. 2019, 21, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Altiparmak, N.; Soydan, S.S.; Uckan, S. The effect of conventional surgery and piezoelectric surgery bone harvesting techniques on the donor site morbidity of the mandibular ramus and symphysis. Int. J. Oral Maxillofac. Surg. 2015, 44, 1131–1137. [Google Scholar] [CrossRef]
- Nogami, S.; Yamauchi, K.; Shiiba, S.; Kataoka, Y.; Hirayama, B.; Takahashi, T. Evaluation of the treatment modalities for neurosensory disturbances of the inferior alveolar nerve following retromolar bone harvesting for bone augmentation. Pain Med. 2015, 16, 501–512. [Google Scholar] [CrossRef]
- Heimes, D.; Pabst, A.; Becker, P.; Hartmann, A.; Kloss, F.; Tunkel, J.; Smeets, R.; Kämmerer, P.W. Comparison of morbidity-related parameters between autologous and allogeneic bone grafts for alveolar ridge augmentation from patients’ perspective-A questionnaire-based cohort study. Clin. Implant. Dent. Relat. Res. 2024, 26, 170–182. [Google Scholar] [CrossRef]
- Hanser, T.; Doliveux, R. MicroSaw and Piezosurgery in Harvesting Mandibular Bone Blocks from the Retromolar Region: A Randomized Split-Mouth Prospective Clinical Trial. Int. J. Oral Maxillofac. Implants 2018, 33, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Blume, O.; Donkiewicz, P.; Palkovics, D.; Götz, W.; Windisch, P. Volumetric Changes of a Customized Allogeneic Bone Block Measured by Two Image Matching Tools: Introduction of a Novel Assessment Technique for Graft Resorption. Acta Stomatol. Croat. 2021, 55, 406–417. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Su, Z.; Mo, A. Clinical and radiographic outcomes of customized allogeneic bone block versus autogenous bone block for ridge augmentation: 6 Month results of a randomized controlled clinical trial. J. Clin. Periodontol. 2023, 50, 22–35. [Google Scholar] [CrossRef]
- Sagheb, K.; Schiegnitz, E.; Moergel, M.; Walter, C.; Al-Nawas, B.; Wagner, W. Clinical outcome of alveolar ridge augmentation with individualized CAD-CAM-produced titanium mesh. Int. J. Implants Dent. 2017, 3, 36. [Google Scholar] [CrossRef]
- Hartmann, A.; Hildebrandt, H.; Younan, Z.; Al-Nawas, B.; Kämmerer, P.W. Long-term results in three-dimensional, complex bone augmentation procedures with customized titanium meshes. Clin. Oral Implants Res. 2022, 33, 1171–1181. [Google Scholar] [CrossRef] [PubMed]
- Doliveux, R.; Doliveux, S. Guided and Prosthetically Driven Bone Augmentation Using the Shell Technique and Allogeneic Cortical Plate: A Prospective Case Series. Int. J. Oral Maxillofac. Implants 2024, 39, 263–270. [Google Scholar] [CrossRef]
- Kovac, Z.; Cabov, T.; Blaskovic, M.; Morelato, L. Regeneration of Horizontal Bone Defect in Edentulous Maxilla Using the Allogenic Bone-Plate Shell Technique and a Composite Bone Graft—A Case Report. Medicina 2023, 59, 494. [Google Scholar] [CrossRef] [PubMed]
- Houshmand, B.; Talebi Ardakani, M.; Amirinasab, O.; Amid, R.; Moscowchi, A.; Esfahrood, Z.R.; Ekhlasmand Kermani, M. In situ shell technique for edentulous ridge augmentation. Clin. Adv. Periodontics 2024, 14, 5–8. [Google Scholar] [CrossRef]
- Tunkel, J.; Hoffmann, F.; Schmelcher, Y.; Kloss-Brandstätter, A.; Kämmerer, P.W. Allogeneic versus autogenous shell technique augmentation procedures: A prospective-observational clinical trial comparing surgical time and complication rates. Int. J. Implants Dent. 2023, 9, 52. [Google Scholar] [CrossRef]
- Kämmerer, P.W.; Tunkel, J.; Götz, W.; Wurdinger, R.; Kloss, F.; Pabst, A. The allogeneic shell technique for alveolar ridge augmentation: A multicenter case series and experiences of more than 300 cases. Int. J. Implants Dent. 2022, 8, 48. [Google Scholar] [CrossRef]
Technique | Age (Years) | Sex Distribution | BMI | Smoking Status | Anatomical Location | Implant Placement |
---|---|---|---|---|---|---|
ICG | 55.2 ± 4.7 | 5 Male/5 Female | 25.4 ± 1.8 | 2 Smoker/8 Non-smoker | 6 Maxilla/4 Mandible; 4 anterior/6 posterior | Staged placement; 2–4 implants/defect |
IBB | 54.4 ± 2.7 | 5 Male/5 Female | 24.1 ± 1.6 | 1 Smoker/9 Non-smoker | 5 Maxilla/5 Mandible; 5 anterior/5 posterior | Staged placement; 1–4 implants/defect |
ABB | 56.1 ± 3.6 | 5 Male/5 Female | 25.9 ± 1.4 | 2 Smoker/8 Non-smoker | 5 Maxilla/5 Mandible; 5 anterior/5 posterior | Staged placement; 1–3 implants/defect |
CAD/CAM ABB | 56.2 ± 2.6 | 5 Male/5 Female | 25.4 ± 1.6 | 2 Smoker/8 Non-smoker | 6 Maxilla/4 Mandible; 4 anterior/6 posterior | Staged placement; 1–5 implants/defect |
CAD/CAM TM | 52.0 ± 3.2 | 5 Male/5 Female | 25.4 ± 1.1 | 2 Smoker/8 Non-smoker | 4 Maxilla/6 Mandible; 4 anterior/6 posterior | Staged placement; 1–3 implants/defect |
MS | 55.5 ± 4.9 | 5 Male/5 Female | 24.8 ± 1.6 | 1 Smoker/9 Non-smoker | 6 Maxilla/4 Mandible; 6 anterior/4 posterior | Staged placement; 1–3 implants/defect |
ST | 54.7 ± 4.3 | 5 Male/5 Female | 25.1 ± 0.9 | 3 Smoker/7 Non-smoker | 5 Maxilla/5 Mandible; 4 anterior/6 posterior | Staged placement; 1–4 implants/defect |
Technique | Time Harvesting (min) | Time Insertion (min) | Vertical Gain (mm) | Horizontal Gain (mm) | Resorption (%) |
---|---|---|---|---|---|
ICG | 51.6 ± 5.8 (range: 41.3–60.1) | 45.3 ± 8.6 (range: 32.8–60.1) | 5.6 ± 0.4 (range: 5.0–6.3) | 5.6 ± 0.4 (range: 5.1–6.4) | 25.9 ± 3.9 (range: 18.9–32.4) |
IBB | 36.5 ± 10.8 (range: 18.5–55.3) | 50.1 ± 7.5 (range: 34.8–60.5) | 4.4 ± 0.2 (range: 4.2–4.9) | 5.2 ± 0.6 (range: 3.7–6.0) | 9.9 ± 3.7 (range: 4.3–16.3) |
ABB | None | 39.7 ± 5.9 (range: 30.7–49.2) | 3.0 ± 0.1 (range: 2.7–3.3) | 3.5 ± 0.2 (range: 3.2–3.9) | 9.7 ± 2.3 (range: 5.6–13.1) |
CAD/CAM ABB | None | 29.9 ± 5.6 (range: 18.8–39.1) | 3.0 ± 0.2 (range: 2.7–3.3) | 3.6 ± 0.3 (range: 3.2–4.2) | 18.2 ± 3.9 (range: 11.7–24.9) |
CAD/CAM TM | None | 28.5 ± 4.1 (range: 22.3–36.4) | 4.9 ± 1.0 (range: 3.2–6.2) | 4.6 ± 0.5 (range: 4.0–5.4) | 11.0 ± 3.0 (range: 4.3–15.5) |
MS | None | 29.3 ± 6.9 (range: 17.1–39.0) | 4.8 ± 0.6 (range: 3.8–6.0) | 5.2 ± 0.6 (range: 4.1–6.1) | 5.1 ± 1.5 (range: 1.8–6.7) |
ST | None | 47.3 ± 13.9 (range: 27.9–69.3) | 4.7 ± 0.6 (range: 3.9–5.8) | 4.9 ± 0.4 (range: 4.2–5.3) | 7.2 ± 1.8 (range: 3.7–9.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pabst, A.; Alshihri, A.; Becker, P.; Hartmann, A.; Heimes, D.; Kapogianni, E.; Kloss, F.; Sagheb, K.; Troeltzsch, M.; Tunkel, J.; et al. Larger Vertical Ridge Augmentation: A Retrospective Multicenter Comparative Analysis of Seven Surgical Techniques. J. Clin. Med. 2025, 14, 4284. https://doi.org/10.3390/jcm14124284
Pabst A, Alshihri A, Becker P, Hartmann A, Heimes D, Kapogianni E, Kloss F, Sagheb K, Troeltzsch M, Tunkel J, et al. Larger Vertical Ridge Augmentation: A Retrospective Multicenter Comparative Analysis of Seven Surgical Techniques. Journal of Clinical Medicine. 2025; 14(12):4284. https://doi.org/10.3390/jcm14124284
Chicago/Turabian StylePabst, Andreas, Abdulmonem Alshihri, Philipp Becker, Amely Hartmann, Diana Heimes, Eleni Kapogianni, Frank Kloss, Keyvan Sagheb, Markus Troeltzsch, Jochen Tunkel, and et al. 2025. "Larger Vertical Ridge Augmentation: A Retrospective Multicenter Comparative Analysis of Seven Surgical Techniques" Journal of Clinical Medicine 14, no. 12: 4284. https://doi.org/10.3390/jcm14124284
APA StylePabst, A., Alshihri, A., Becker, P., Hartmann, A., Heimes, D., Kapogianni, E., Kloss, F., Sagheb, K., Troeltzsch, M., Tunkel, J., Walter, C., & Kämmerer, P. W. (2025). Larger Vertical Ridge Augmentation: A Retrospective Multicenter Comparative Analysis of Seven Surgical Techniques. Journal of Clinical Medicine, 14(12), 4284. https://doi.org/10.3390/jcm14124284