Comparing Amniotic Membranes to Other Bioengineered Skin Substitutes in Wound Healing: A Propensity Score-Matched Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Injury | |
ICD-10 | Definition |
L89 | Pressure Ulcer |
L97 | Non-pressure chronic ulcer of lower limb, not elsewhere classified |
L98.4 | Non-pressure chronic ulcer of skin, not elsewhere classified |
T20 | Burn and corrosion of head, face, and neck |
T21 | Burn and corrosion of trunk |
T22 | Burn and corrosion of shoulder and upper limb, except wrist and hand |
T23 | Burn and corrosion of wrist and hand |
T24 | Burn and corrosion of lower limb, except ankle and foot |
T25 | Burn and corrosion of ankle and foot |
Skin Substitute | |
CPT | Definition |
15271 | Application of skin substitute graft to trunk, arms, and legs; total wound surface area up to 100 sq cm, with first 25 sq cm or less wound surface area |
15272 | Application of skin substitute graft to trunk, arms, and legs; total wound surface area up to 100 sq cm, with each additional 25 sq cm wound surface area or part thereof |
15273 | Application of skin substitute graft to trunk, arms, and legs; total wound surface area greater than or equal to 100 sq cm, with first 100 sq cm wound surface area, or 1% of body area of infants and children |
15274 | Application of skin substitute graft to trunk, arms, and legs; total wound surface area greater than or equal to 100 sq cm; each additional 100 sq cm wound surface area, or part thereof, or each additional 1% of body area of infants and children, or part thereof |
15275 | Application of skin substitute graft to face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits; total wound surface area up to 100 sq cm, with first 25 sq cm or less wound surface area |
15276 | Application of skin substitute graft to face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits; total wound surface area up to 100 sq cm, with each additional 25 sq cm wound surface area, or part thereof |
15277 | Application of skin substitute graft to face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits; total wound surface area greater than or equal to 100 sq cm; first 100 sq cm wound surface area, or 1% of body area of infants and children |
15278 | Application of skin substitute graft to face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits; total wound surface area greater than or equal to 100 sq cm; each additional 100 sq cm wound surface area, or part thereof, or each additional 1% of body area of infants and children, or part therof |
Amniotic Membrane | |
HCPCS | Definition |
V2790 | Amniotic membrane for surgical reconstruction, per procedure |
References
- Joseph, P.; Lanas, F.; Roth, G.; Lopez-Jaramillo, P.; Lonn, E.; Miller, V.; Mente, A.; Leong, D.P.; Schwalm, J.R.; Yusuf, S. Cardiovascular disease in the americas: The epidemiology of cardiovascular disease and its risk factors. Lancet Reg. Health Am. 2025, 42, 100960. [Google Scholar] [CrossRef]
- Padula, W.V.; Delarmente, B.A. The national cost of hospital-acquired pressure injuries in the United States. Int. World J. 2019, 16, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Richmond, N.A.; Maderal, A.D.; Vivas, A.C. Evidence-based management of common chronic lower extremity ulcers. Dermatol. Ther. 2013, 26, 187–196. [Google Scholar] [CrossRef]
- Frykberg, R.G.; Banks, J. Challenges in the treatment of chronic wounds. Adv. Wound Care 2015, 4, 560–582. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Nuutila, K.; Kruse, C.; Robson, M.C.; Caterson, E.; Eriksson, E. Challenging the conventional therapy: Emerging skin graft techniques for wound healing. Plast. Reconstr. Surg. (1963) 2015, 136, 524e–530e. [Google Scholar] [CrossRef]
- Blume, P.A.; Walters, J.; Payne, W.; Ayala, J.; Lantis, J. Comparison of negative pressure wound therapy using vacuum-assisted closure with advanced moist wound therapy in the treatment of diabetic foot ulcers: A multicenter randomized controlled trial. Diabetes Care 2008, 31, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Madassery, S.; Patel, A. Limb Preservation for the Vascular Specialist, 1st ed.; Springer International Publishing AG: Cham, Switzerland, 2023. [Google Scholar]
- Mirhaj, M.; Labbaf, S.; Tavakoli, M.; Seifalian, A.M. Emerging treatment strategies in wound care. Int. Wound J. 2022, 19, 1934–1954. [Google Scholar] [CrossRef]
- Burke, J.F.; Yannas, I.V.; Quinby, W.C., Jr.; Bondoc, C.C.; Jung, W.K. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann. Surg. 1981, 194, 413–428. [Google Scholar] [CrossRef]
- Vecin, N.M.; Kirsner, R.S. Skin substitutes as treatment for chronic wounds: Current and future directions. Front. Med. 2023, 10, 1154567. [Google Scholar] [CrossRef]
- Malhotra, C.; Jain, A.K. Human amniotic membrane transplantation: Different modalities of its use in ophthalmology. World J. Transplant. 2014, 4, 111–121. [Google Scholar] [CrossRef]
- Walkden, A. Amniotic Membrane Transplantation in Ophthalmology: An Updated Perspective. Clin. Ophthalmol. 2020, 14, 2057–2072. [Google Scholar] [CrossRef] [PubMed]
- Cooke, M.; Tan, E.K.; Mandrycky, C.; He, H.; O’Connell, J.; Tseng, S.C. Comparison of cryopreserved amniotic membrane and umbilical cord tissue with dehydrated amniotic membrane/chorion tissue. J. Wound Care 2014, 23, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Ditmars, F.S.; Kay, K.E.; Broderick, T.C.; Fagg, W.S. Use of amniotic membrane in hard-to-heal wounds: A multicentre retrospective study. J. Wound Care 2024, 33 (Suppl. S3), S44–S50. [Google Scholar] [CrossRef] [PubMed]
- Morgan, K. Her Face Was Unrecognizable After an Explosion. A Placenta Restored It. The New York Times. 8 October 2024. Available online: https://www.nytimes.com/2024/10/08/well/placenta-donations-burns-wounds.html (accessed on 14 March 2025).
- Barr, S.M. Dehydrated Amniotic Membrane Allograft for Treatment of Chronic Leg Ulcers in Patients with Multiple Comorbidities: A Case Series. J. Am. Coll. Clin. Wound Spec. 2016, 6, 38–45. [Google Scholar] [CrossRef]
- Zelen, C.M.; Gould, L.; Serena, T.E.; Carter, M.J.; Keller, J.; Li, W.W. A prospective, randomised, controlled, multi-centre comparative effectiveness study of healing using dehydrated human amnion/chorion membrane allograft, bioengineered skin substitute or standard of care for treatment of chronic lower extremity diabetic ulcers. Int. Wound J. 2015, 12, 724–732. [Google Scholar] [CrossRef]
- Munoz-Torres, J.R.; Martínez-González, S.B.; Lozano-Luján, A.D.; Martinez-Vasquez, M.C.; Velacio-Elizondo, P.; Garza-Veloz, I.; Martinez-Fierro, M.L. Biological properties and surgical applications of the human amniotic membrane. Front. Bioeng. Biotechnol. 2023, 10, 1067480. [Google Scholar] [CrossRef]
- Litwiniuk, M.; Grzela, T. Amniotic membrane: New concepts for an old dressing. Wound Repair. Regen. 2014, 22, 451–456. [Google Scholar] [CrossRef]
- Ruiz-Cañada, C.; Bernabé-García, Á.; Liarte, S.; Rodríguez-Valiente, M.; Nicolás, F.J. Chronic Wound Healing by Amniotic Membrane: TGF-β and EGF Signaling Modulation in Re-epithelialization. Front. Bioeng. Biotechnol. 2021, 9, 689328. [Google Scholar] [CrossRef]
- Mrugala, A.; Sui, A.; Plummer, M.; Altman, I.; Papineau, E.; Frandsen, D.; Hill, D.; Ennis, W.J. Amniotic membrane is a potential regenerative option for chronic non-healing wounds: A report of five cases receiving dehydrated human amnion/chorion membrane allograft. Int. Wound J. 2016, 13, 485–492. [Google Scholar] [CrossRef]
- Ilic, D.; Vicovac, L.; Nikolic, M.; Lazic Ilic, E. Human amniotic membrane grafts in therapy of chronic non-healing wounds. Br. Med. Bull. 2016, 117, 59–67. [Google Scholar] [CrossRef]
- Sørensen, L.T. Wound healing and infection in surgery: The pathophysiological impact of smoking, smoking cessation, and nicotine replacement therapy: A systematic review. Ann. Surg. 2012, 255, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, P. Smoking and wound healing. Am. J. Med. 1992, 93, 22S–24S. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, K.A.; Mills, J.L.; Armstrong, D.G.; Conte, M.S.; Kirsner, R.S.; Minc, S.D.; Plutzky, J.; Southerland, K.W.; Tomic-Canic, M. Current Status and Principles for the Treatment and Prevention of Diabetic Foot Ulcers in the Cardiovascular Patient Population: A Scientific Statement from the American Heart Association. Circulation 2024, 149, e232–e253. [Google Scholar] [CrossRef] [PubMed]
- Swoboda, L.; Held, J. Impaired wound healing in diabetes. J. Wound Care 2022, 31, 882–885. [Google Scholar] [CrossRef]
- Ramalho, T.; Filgueiras, L.; Silva, I.A., Jr.; Pessoa, A.F.M.; Jancar, S. Impaired wound healing in type 1 diabetes is dependent on 5-lipoxygenase products. Sci. Rep. 2018, 8, 14164. [Google Scholar] [CrossRef]
- Wong, S.L.; Demers, M.; Martinod, K.; Gallant, M.; Wang, Y.; Goldfine, A.B.; Kahn, C.R.; Wagner, D.D. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat. Med. 2015, 21, 815–819. [Google Scholar] [CrossRef]
- den Dekker, A.; Davis, F.M.; Kunkel, S.L.; Gallagher, K.A. Targeting epigenetic mechanisms in diabetic wound healing. Transl. Res. 2019, 204, 39–50. [Google Scholar] [CrossRef]
- Gallagher, K.A.; Joshi, A.; Carson, W.F.; Schaller, M.; Allen, R.; Mukerjee, S.; Kittan, N.; Feldman, E.L.; Henke, P.K.; Hogaboam, C.; et al. Epigenetic changes in bone marrow progenitor cells influence the inflammatory phenotype and alter wound healing in type 2 diabetes. Diabetes 2015, 64, 1420–1430. [Google Scholar] [CrossRef]
- Part 1271—Human Cells, Tissues, and Cellular and Tissue-Based Products. Code of Federal Regulations. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-L/part-1271 (accessed on 12 May 2025).
- Marsit, N.M.; Sidney, L.E.; Britchford, E.R.; McIntosh, O.D.; Allen, C.L.; Ashraf, W.; Bayston, R.; Hopkinson, A. Validation and assessment of an antibiotic-based, aseptic decontamination manufacturing protocol for therapeutic, vacuum-dried human amniotic membrane. Sci. Rep. 2019, 9, 12854. [Google Scholar] [CrossRef]
- Wehmeyer, J.L.; Natesan, S.; Christy, R.J. Development of a Sterile Amniotic Membrane Tissue Graft Using Supercritical Carbon Dioxide. Tissue Eng. Part C Methods 2015, 21, 649–659. [Google Scholar] [CrossRef]
- Ogliari, K.S.; Grudzinski, P.B.; da Silva, C.G.; Immig, M.L.; Halon, M.L.; Loth, F.B.; Ogliari, A.S.; Tovo, M.B.; Beckenkamp, L.R. A novel method to pack cryopreserved amniotic membrane for wound dressing-the pathway through validation of a new biological product. Biomed. Mater. 2023, 18, 045004. [Google Scholar] [CrossRef] [PubMed]
- Niknejad, H.; Peirovi, H.; Jorjani, M.; Ahmadiani, A.; Ghanavi, J.; Seifalian, A.M. Properties of the amniotic membrane for potential use in tissue engineering. Eur. Cell Mater. 2008, 15, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Magatti, M.; Vertua, E.; De Munari, S.; Caro, M.; Caruso, M.; Silini, A.; Delgado, M.; Parolini, O. Human amnion favours tissue repair by inducing the M1-to-M2 switch and enhancing M2 macrophage features. J. Tissue Eng. Regen. Med. 2017, 11, 2895–2911. [Google Scholar] [CrossRef]
- Koob, T.J.; Rennert, R.; Zabek, N.; Massee, M.; Lim, J.J.; Temenoff, J.S.; Li, W.W.; Gurtner, G. Biological properties of dehydrated human amnion/chorion composite graft: Implications for chronic wound healing. Int. Wound J. 2013, 10, 493–500. [Google Scholar] [CrossRef]
- Dietrich-Ntoukas, T.; Hofmann-Rummelt, C.; Kruse, F.E.; Schlötzer-Schrehardt, U. Comparative analysis of the basement membrane composition of the human limbus epithelium and amniotic membrane epithelium. Cornea 2012, 31, 564–569. [Google Scholar] [CrossRef]
- Tehrani, F.A.; Modaresifar, K.; Azizian, S.; Niknejad, H. Induction of antimicrobial peptides secretion by IL-1β enhances human amniotic membrane for regenerative medicine. Sci. Rep. 2017, 7, 17022. [Google Scholar] [CrossRef] [PubMed]
- King, A.E.; Paltoo, A.; Kelly, R.W.; Sallenave, J.M.; Bocking, A.D.; Challis, J.R. Expression of natural antimicrobials by human placenta and fetal membranes. Placenta 2007, 28, 161–169. [Google Scholar] [CrossRef]
- Zare-Bidaki, M.; Sadrinia, S.; Erfani, S.; Afkar, E.; Ghanbarzade, N. Antimicrobial Properties of Amniotic and Chorionic Membranes: A Comparative Study of Two Human Fetal Sacs. J. Reprod. Infertil. 2017, 18, 218–224. [Google Scholar]
- Dua, H.S.; Gomes, J.A.; King, A.J.; Maharajan, V.S. The amniotic membrane in ophthalmology. Surv. Ophthalmol. 2004, 49, 51–77. [Google Scholar] [CrossRef]
- Azuara-Blanco, A.; Pillai, C.T.; Dua, H.S. Amniotic membrane transplantation for ocular surface reconstruction. Br. J. Ophthalmol. 1999, 83, 399–402. [Google Scholar] [CrossRef]
- Dino, B.R.; Eufemio, G.G.; De Villa, M.S. Human amnion: The establishment of an amnion bank and its practical applications in surgery. J. Philipp. Med. Assoc. 1966, 42, 357–366. [Google Scholar] [PubMed]
- Subrahmanyam, M. Honey-impregnated gauze versus amniotic membrane in the treatment of burns. Burns 1994, 20, 331–333. [Google Scholar] [CrossRef] [PubMed]
- Ley-Chávez, E.; Martínez-Pardo, M.E.; Roman, R.; Oliveros-Lozano Fde, J.; Canchola-Martínez, E. Application of biological dressings from radiosterilized amnios with cobalt 60 and serologic studies on the handling of burns in pediatric patients. Ann. Transplant. 2003, 8, 46–49. [Google Scholar]
- Insausti, C.L.; Alcaraz, A.; García-Vizcaíno, E.M.; Mrowiec, A.; López-Martínez, M.C.; Blanquer, M.; Piñero, A.; Majado, M.J.; Moraleda, J.M.; Castellanos, G.; et al. Amniotic membrane induces epithelialization in massive posttraumatic wounds. Wound Repair. Regen. 2010, 18, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Raziyeva, K.; Kim, Y.; Zharkinbekov, Z.; Kassymbek, K.; Jimi, S.; Saparov, A. Immunology of Acute and Chronic Wound Healing. Biomolecules 2021, 11, 700. [Google Scholar] [CrossRef]
- Moreira, H.R.; Marques, A.P. Vascularization in skin wound healing: Where do we stand and where do we go? Curr. Opin. Biotechnol. 2022, 73, 253–262. [Google Scholar] [CrossRef]
- Mamede, A.C.; Carvalho, M.J.; Abrantes, A.M.; Laranjo, M.; Maia, C.J.; Botelho, M.F. Amniotic membrane: From structure and functions to clinical applications. Cell Tissue Res. 2012, 349, 447–458. [Google Scholar] [CrossRef]
- Piednoir, E.; Robert-Yap, J.; Baillet, P.; Lermite, E.; Christou, N. The Socioeconomic Impact of Surgical Site Infections. Front. Public Health 2021, 9, 712461. [Google Scholar] [CrossRef]
Variable | Before Matching | After Matching | ||||
---|---|---|---|---|---|---|
Amniotic Membrane (n = 593) | All Skin Substitutes (n = 43,583) | p-Value | Amniotic Membrane (n = 593) | All skin substitutes (n = 593) | p-Value | |
Age at Index Mean (SD) | 61.3 (17.8) | 58.8 (17.8) | 0.001 | 61.3 (17.8) | 61.8 (17.0) | 0.591 |
White n (%) | 400 (67.5) | 29,547 (67.8) | 0.859 | 400 (67.5) | 400 (67.5) | 1 |
Not Hispanic or Latino n (%) | 340 (57.3) | 31,752 (72.9) | <0.001 | 340 (57.3) | 343 (57.8) | 0.86 |
Male n (%) | 349 (58.9) | 26,672 (61.2) | 0.244 | 349 (58.9) | 352 (59.4) | 0.859 |
Tobacco use (%) | 5.1% (30) | 7.1% (3107) | 0.051 | 5.1% (30) | 3.9% (23) | 0.325 |
Peripheral vascular disease, unspecified (%) | 19.4% (115) | 29.0% (12,622) | <0.001 | 19.4% (115) | 20.7% (123) | 0.562 |
Type 1 diabetes mellitus (%) | 9.8% (58) | 11.8% (5124) | 0.137 | 9.8% (58) | 8.9% (53) | 0.618 |
Type 2 diabetes mellitus (%) | 38.4% (228) | 44.7% (19,470) | 0.002 | 38.4% (228) | 39.3% (233) | 0.766 |
Amniotic Membrane (n = 593) | Skin Substitutes for wound areas < 25 cm2 (n = 23,510) | p-Value | Amniotic Membrane (n = 590) | Skin Substitutes for wound areas < 25 cm2 (n = 590) | p-Value | |
Age at Index Mean (SD) | 61.3 (17.8) | 63.9 (15.3) | <0.0001 | 61.5 (17.7) | 62.1 (16.2) | 0.541 |
White n (%) | 400 (67.5) | 16,823 (71.6) | 0.029 | 400 (67.8) | 399 (67.6) | 0.950 |
Not Hispanic or Latino n (%) | 340 (57.3) | 17,760 (75.5) | <0.001 | 340 (57.6) | 344 (58.3) | 0.814 |
Male n (%) | 349 (58.9) | 14,120 (60.1) | 0.554 | 346 (58.6) | 349 (59.2) | 0.859 |
Tobacco use (%) | 5.1% (30) | 7.7% (1805) | 0.018 | 5.1% (30) | 4.6% (27) | 0.684 |
Peripheral vascular disease, unspecified (%) | 19.4% (115) | 38.7% (9093) | <0.0001 | 19.5% (115) | 20.5% (121) | 0.662 |
Type 1 diabetes mellitus (%) | 9.8% (58) | 15.7% (3701) | <0.0001 | 9.8% (58) | 8.1% (48) | 0.309 |
Type 2 diabetes mellitus (%) | 38.4% (228) | 56.4% (13,269) | <0.0001 | 38.6% (228) | 37.8% (223) | 0.765 |
Amniotic Membrane (n = 593) | Skin Substitutes for wound areas > 100 cm2 (n = 12,440) | p-Value | Amniotic Membrane (n = 591) | Skin Substitutes for wound areas > 100 cm2 (n = 591) | p-Value | |
Age at Index Mean (SD) | 61.3 (17.8) | 49.4 (18.6) | <0.0001 | 61.2 (17.8) | 61.5 (17.8) | 0.819 |
White n (%) | 400 (67.5) | 7718 (62.04) | 0.008 | 398 (67.3) | 398 (67.3) | 1 |
Not Hispanic or Latino n (%) | 340 (57.3) | 8436 (67.8) | <0.0001 | 340 (57.5) | 355 (60.1) | 0.375 |
Male n (%) | 349 (58.9) | 8017 (64.4) | <0.0001 | 348 (58.9) | 367 (62.1) | 0.258 |
Tobacco use (%) | 5.1% (30) | 5.4% (674) | 0.71 | 5.1% (30) | 4.9% (29) | 0.894 |
Peripheral vascular disease, unspecified (%) | 19.4% (115) | 9.0% (1115) | <0.0001 | 19.3% (114) | 18.6% (110) | 0.767 |
Type 1 diabetes mellitus (%) | 9.8% (58) | 3.9% (485) | <0.0001 | 9.6% (57) | 8.1% (48) | 0.358 |
Type 2 diabetes mellitus (%) | 38.4% (228) | 22.1% (2744) | <0.0001 | 38.2% (226) | 35.4% (209) | 0.305 |
All Skin Substitutes (n = 593) | ||||
Amniotic membrane n (%) | Skin Substitute n (%) | Risk Ratio (95% CI) | p-Value | |
Hypertrophic Scarring | ≤10 (1.69) * | 37 (6.24) | 0.27 (0.14, 0.54) | <0.0001 |
Graft Complications | 13 (2.19) | 24 (4.05) | 0.54 (0.28, 1.05) | 0.06 |
Wound dehiscence | 29 (4.89) | 46 (7.76) | 0.63 (0.40, 0.99) | 0.04 |
Subsequent STSG | ≤10 (1.69) * | 78 (13.15) | 0.13 (0.07, 0.25) | <0.0001 |
Local Skin Infection | 103 (17.37) | 177 (29.85) | 0.58 (0.47, 0.72) | <0.0001 |
Graft Failure | ≤10 (1.69) * | 13 (2.19) | 0.77 (0.34, 1.74) | 0.53 |
Acute Postoperative Pain | 22 (3.71) | 46 (7.76) | 0.48 (0.29, 0.79) | 0.003 |
Skin Substitutes for wound areas < 25 cm2 (n = 590) | ||||
Amniotic membrane n (%) | Skin Substitute n (%) | Risk Ratio (95% CI) | p-Value | |
Hypertrophic Scarring | ≤10 (1.69) * | ≤10 (1.69) * | n/a | 1 |
Graft Complications | 13 (2.20) | 13 (2.20) | n/a | 1 |
Wound dehiscence | 29 (4.92) | 52 (8.81) | 0.56 (0.36, 0.87) | 0.008 |
Subsequent STSG | ≤10 (1.69) * | 26 (4.41) | 0.39 (0.19, 0.79) | 0.007 |
Local Skin Infection | 103 (17.46) | 207 (35.09) | 0.49 (0.41, 0.61) | <0.0001 |
Graft Failure | ≤10 (1.69) * | ≤10 (1.69) * | n/a | 1 |
Acute Postoperative Pain | 22 (3.73) | 30 (5.09) | 0.73 (0.43, 1.26) | 0.26 |
Skin Substitutes for wound areas > 100 cm2 (n = 591) | ||||
Amniotic membrane n (%) | Skin Substitute n (%) | Risk Ratio (95% CI) | p-Value | |
Hypertrophic Scarring | ≤10 (1.69) * | 81 (13.71) | 0.12 (0.07, 0.24) | <0.0001 |
Graft Complications | 13 (2.20) | 43 (7.28) | 0.3 (0.16, 0.56) | <0.0001 |
Wound dehiscence | 29 (4.91) | 41 (6.94) | 0.70 (0.45, 1.12) | 0.14 |
Subsequent STSG | ≤10 (1.69) * | 155 (26.23) | 0.07 (0.03, 0.12) | <0.0001 |
Local Skin Infection | 102 (17.26) | 133 (22.50) | 0.77 (0.61, 0.97) | 0.02 |
Graft Failure | ≤10 (1.69) * | 24 (4.06) | 0.42 (0.20, 0.86) | 0.01 |
Acute Postoperative Pain | 22 (3.72) | 79 (13.37) | 0.28 (0.18, 0.44) | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tobin, M.J.; Mustoe, A.K.; Nickman, S.; Raquepo, T.M.; Yamin, M.; Posso, A.N.; Karinja, S.J.; Lee, B.T.; Cauley, R.P. Comparing Amniotic Membranes to Other Bioengineered Skin Substitutes in Wound Healing: A Propensity Score-Matched Analysis. J. Clin. Med. 2025, 14, 4272. https://doi.org/10.3390/jcm14124272
Tobin MJ, Mustoe AK, Nickman S, Raquepo TM, Yamin M, Posso AN, Karinja SJ, Lee BT, Cauley RP. Comparing Amniotic Membranes to Other Bioengineered Skin Substitutes in Wound Healing: A Propensity Score-Matched Analysis. Journal of Clinical Medicine. 2025; 14(12):4272. https://doi.org/10.3390/jcm14124272
Chicago/Turabian StyleTobin, Micaela J., Audrey K. Mustoe, Sasha Nickman, Tricia Mae Raquepo, Mohammed Yamin, Agustin N. Posso, Sarah J. Karinja, Bernard T. Lee, and Ryan P. Cauley. 2025. "Comparing Amniotic Membranes to Other Bioengineered Skin Substitutes in Wound Healing: A Propensity Score-Matched Analysis" Journal of Clinical Medicine 14, no. 12: 4272. https://doi.org/10.3390/jcm14124272
APA StyleTobin, M. J., Mustoe, A. K., Nickman, S., Raquepo, T. M., Yamin, M., Posso, A. N., Karinja, S. J., Lee, B. T., & Cauley, R. P. (2025). Comparing Amniotic Membranes to Other Bioengineered Skin Substitutes in Wound Healing: A Propensity Score-Matched Analysis. Journal of Clinical Medicine, 14(12), 4272. https://doi.org/10.3390/jcm14124272