Sex and Age Differences in Ketamine Efficacy and Safety in Chronic Pain Alleviation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Study Drug and Its Administration
2.4. Follow-Up Procedure
2.5. Study Objectives and Endpoints
2.6. Sample Size
2.7. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Sex and Age Influences in the Total Sample (n = 585)
3.3. Sex and Age Influences in the Cohort Given to Repeated Ketamine Administration (n = 329)
3.4. Sex and Age Influences in the Cohort with a Single Ketamine Administration (n = 256)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corriger, A.; Voute, M.; Lambert, C.; Pereira, B.; Pickering, G.; OKAPI Consortium. Ketamine for Refractory Chronic Pain: A 1-Year Follow-up Study. Pain 2022, 163, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Voute, M.; Riant, T.; Amodéo, J.-M.; André, G.; Barmaki, M.; Collard, O.; Colomb, C.; Créac’h, C.; Deleens, R.; Delorme, C.; et al. Ketamine in Chronic Pain: A Delphi Survey. Eur. J. Pain Lond. Engl. 2022, 26, 873–887. [Google Scholar] [CrossRef] [PubMed]
- Voute, M.; Lambert, C.; Pereira, B.; Pickering, G. Assessment of Initial Depressive State and Pain Relief With Ketamine in Patients With Chronic Refractory Pain. JAMA Netw. Open 2023, 6, e2314406. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.P.; Bhatia, A.; Buvanendran, A.; Schwenk, E.S.; Wasan, A.D.; Hurley, R.W.; Viscusi, E.R.; Narouze, S.; Davis, F.N.; Ritchie, E.C.; et al. Consensus Guidelines on the Use of Intravenous Ketamine Infusions for Chronic Pain From the American Society of Regional Anesthesia and Pain Medicine, the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg. Anesth. Pain Med. 2018, 43, 521–546. [Google Scholar] [CrossRef]
- Sheng, J.; Liu, S.; Wang, Y.; Cui, R.; Zhang, X. The Link between Depression and Chronic Pain: Neural Mechanisms in the Brain. Neural Plast. 2017, 2017, 9724371. [Google Scholar] [CrossRef]
- Benitah, K.; Siegel, A.N.; Lipsitz, O.; Rodrigues, N.B.; Meshkat, S.; Lee, Y.; Mansur, R.B.; Nasri, F.; Lui, L.M.W.; McIntyre, R.S.; et al. Sex Differences in Ketamine’s Therapeutic Effects for Mood Disorders: A Systematic Review. Psychiatry Res. 2022, 312, 114579. [Google Scholar] [CrossRef]
- Government of Canada, C.I. of H.R. Sex and Gender in Health Research—CIHR. Available online: https://cihr-irsc.gc.ca/e/50833.html (accessed on 4 March 2025).
- Bartley, E.J.; Fillingim, R.B. Sex Differences in Pain: A Brief Review of Clinical and Experimental Findings. Br. J. Anaesth. 2013, 111, 52–58. [Google Scholar] [CrossRef]
- Fillingim, R.B.; King, C.D.; Ribeiro-Dasilva, M.C.; Rahim-Williams, B.; Riley, J.L. Sex, Gender, and Pain: A Review of Recent Clinical and Experimental Findings. J. Pain 2009, 10, 447–485. [Google Scholar] [CrossRef]
- Racine, M.; Tousignant-Laflamme, Y.; Kloda, L.A.; Dion, D.; Dupuis, G.; Choinière, M. A Systematic Literature Review of 10 Years of Research on Sex/Gender and Experimental Pain Perception—Part 1: Are There Really Differences between Women and Men? Pain 2012, 153, 602–618. [Google Scholar] [CrossRef]
- Richardson, J.; Holdcroft, A. Gender Differences and Pain Medication. Womens Health Lond. Engl. 2009, 5, 79–90. [Google Scholar] [CrossRef]
- Fauchon, C.; Meunier, D.; Rogachov, A.; Hemington, K.S.; Cheng, J.C.; Bosma, R.L.; Osborne, N.R.; Kim, J.A.; Hung, P.S.-P.; Inman, R.D.; et al. Sex Differences in Brain Modular Organization in Chronic Pain. Pain 2021, 162, 1188–1200. [Google Scholar] [CrossRef] [PubMed]
- Johnston, K.J.A.; Ward, J.; Ray, P.R.; Adams, M.J.; McIntosh, A.M.; Smith, B.H.; Strawbridge, R.J.; Price, T.J.; Smith, D.J.; Nicholl, B.I.; et al. Sex-Stratified Genome-Wide Association Study of Multisite Chronic Pain in UK Biobank. PLoS Genet. 2021, 17, e1009428. [Google Scholar] [CrossRef] [PubMed]
- Rosen, S.; Ham, B.; Mogil, J.S. Sex Differences in Neuroimmunity and Pain. J. Neurosci. Res. 2017, 95, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Sorge, R.E.; Totsch, S.K. Sex Differences in Pain. J. Neurosci. Res. 2017, 95, 1271–1281. [Google Scholar] [CrossRef]
- de Oliveira, A.M.B.; Teixeira, D.S.d.C.; Menezes, F.D.S.; Marques, A.P.; Duarte, Y.A.d.O.; Casarotto, R.A. Socioeconomic and Sex Inequalities in Chronic Pain: A Population-Based Cross-Sectional Study. PLoS ONE 2023, 18, e0285975. [Google Scholar] [CrossRef]
- Mogil, J.S.; Bailey, A.L. Sex and Gender Differences in Pain and Analgesia. Prog. Brain Res. 2010, 186, 141–157. [Google Scholar] [CrossRef]
- Kessler, R.C.; Berglund, P.; Demler, O.; Jin, R.; Merikangas, K.R.; Walters, E.E. Lifetime Prevalence and Age-of-Onset Distributions of DSM-IV Disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 2005, 62, 593–602. [Google Scholar] [CrossRef]
- Baca, E.; Garcia-Garcia, M.; Porras-Chavarino, A. Gender Differences in Treatment Response to Sertraline versus Imipramine in Patients with Nonmelancholic Depressive Disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2004, 28, 57–65. [Google Scholar] [CrossRef]
- Radford, K.D.; Berman, R.Y.; Zhang, M.; Wu, T.J.; Choi, K.H. Sex-Related Differences in Intravenous Ketamine Effects on Dissociative Stereotypy and Antinociception in Male and Female Rats. Pharmacol. Biochem. Behav. 2020, 199, 173042. [Google Scholar] [CrossRef]
- Spencer, H.F.; Berman, R.Y.; Boese, M.; Choi, K.H. Ketamine, a Trauma Analgesic with Sex-Specific Immunomodulatory Function. Neural Regen. Res. 2023, 18, 1263–1264. [Google Scholar] [CrossRef]
- Thelen, C.; Sens, J.; Mauch, J.; Pandit, R.; Pitychoutis, P.M. Repeated Ketamine Treatment Induces Sex-Specific Behavioral and Neurochemical Effects in Mice. Behav. Brain Res. 2016, 312, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, P.; Zanos, P.; Mou, T.-C.M.; An, X.; Gerhard, D.M.; Dryanovski, D.I.; Potter, L.E.; Highland, J.N.; Jenne, C.E.; Stewart, B.W.; et al. Experimenters’ Sex Modulates Mouse Behaviors and Neural Responses to Ketamine via Corticotropin Releasing Factor. Nat. Neurosci. 2022, 25, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Ponton, E.; Turecki, G.; Nagy, C. Sex Differences in the Behavioral, Molecular, and Structural Effects of Ketamine Treatment in Depression. Int. J. Neuropsychopharmacol. 2022, 25, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.R.; Rockford, R.E. Low-Dose Ketamine Analgesia: Patient and Physician Experience in the ED. Am. J. Emerg. Med. 2013, 31, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Sigtermans, M.J.; van Hilten, J.J.; Bauer, M.C.R.; Arbous, S.M.; Marinus, J.; Sarton, E.Y.; Dahan, A. Ketamine Produces Effective and Long-Term Pain Relief in Patients with Complex Regional Pain Syndrome Type 1. Pain 2009, 145, 304–311. [Google Scholar] [CrossRef]
- Pickering, G.; Kotlińska-Lemieszek, A.; Krcevski Skvarc, N.; O’Mahony, D.; Monacelli, F.; Knaggs, R.; Morel, V.; Kocot-Kępska, M. Pharmacological Pain Treatment in Older Persons. Drugs Aging 2024, 41, 959–976. [Google Scholar] [CrossRef] [PubMed]
- Riley, J.L.; Cruz-Almeida, Y.; Glover, T.L.; King, C.D.; Goodin, B.R.; Sibille, K.T.; Bartley, E.J.; Herbert, M.S.; Sotolongo, A.; Fessler, B.J.; et al. Age and Race Effects on Pain Sensitivity and Modulation among Middle-Aged and Older Adults. J. Pain 2014, 15, 272–282. [Google Scholar] [CrossRef]
- Zanger, U.M.; Schwab, M. Cytochrome P450 Enzymes in Drug Metabolism: Regulation of Gene Expression, Enzyme Activities, and Impact of Genetic Variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Yanagihara, Y.; Kariya, S.; Ohtani, M.; Uchino, K.; Aoyama, T.; Yamamura, Y.; Iga, T. Involvement of CYP2B6 in N-Demethylation of Ketamine in Human Liver Microsomes. Drug Metab. Dispos. Biol. Fate Chem. 2001, 29, 887–890. [Google Scholar]
- Peltoniemi, M.A.; Hagelberg, N.M.; Olkkola, K.T.; Saari, T.I. Ketamine: A Review of Clinical Pharmacokinetics and Pharmacodynamics in Anesthesia and Pain Therapy. Clin. Pharmacokinet. 2016, 55, 1059–1077. [Google Scholar] [CrossRef]
- Niesters, M.; Martini, C.; Dahan, A. Ketamine for Chronic Pain: Risks and Benefits. Br. J. Clin. Pharmacol. 2014, 77, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Olofsen, E.; Sigtermans, M.; Noppers, I.; Niesters, M.; Mooren, R.; Bauer, M.; Aarts, L.; Sarton, E.; Dahan, A. The Dose-Dependent Effect of S(+)-Ketamine on Cardiac Output in Healthy Volunteers and Complex Regional Pain Syndrome Type 1 Chronic Pain Patients. Anesth. Analg. 2012, 115, 536. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 2013; ISBN 978-0-203-77158-7. [Google Scholar]
- Zarate, C.A.; Brutsche, N.; Laje, G.; Luckenbaugh, D.A.; Venkata, S.L.V.; Ramamoorthy, A.; Moaddel, R.; Wainer, I.W. Relationship of Ketamine’s Plasma Metabolites with Response, Diagnosis, and Side Effects in Major Depression. Biol. Psychiatry 2012, 72, 331–338. [Google Scholar] [CrossRef]
- Saland, S.K.; Kabbaj, M. Sex Differences in the Pharmacokinetics of Low-Dose Ketamine in Plasma and Brain of Male and Female Rats. J. Pharmacol. Exp. Ther. 2018, 367, 393–404. [Google Scholar] [CrossRef]
- Highland, J.N.; Farmer, C.A.; Zanos, P.; Lovett, J.; Zarate, C.A.; Moaddel, R.; Gould, T.D. Sex-Dependent Metabolism of Ketamine and (2R,6R)-Hydroxynorketamine in Mice and Humans. J. Psychopharmacol. Oxf. Engl. 2022, 36, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Gerdin, E.; Rane, A. N-Demethylation of Ethylmorphine in Pregnant and Non-Pregnant Women and in Men: An Evaluation of the Effects of Sex Steroids. Br. J. Clin. Pharmacol. 1992, 34, 250–255. [Google Scholar] [CrossRef]
- Colic, L.; McDonnell, C.; Li, M.; Woelfer, M.; Liebe, T.; Kretzschmar, M.; Speck, O.; Schott, B.H.; Bianchi, M.; Walter, M. Neuronal Glutamatergic Changes and Peripheral Markers of Cytoskeleton Dynamics Change Synchronically 24 h after Sub-Anaesthetic Dose of Ketamine in Healthy Subjects. Behav. Brain Res. 2019, 359, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Liebe, T.; Li, S.; Lord, A.; Colic, L.; Krause, A.L.; Batra, A.; Kretzschmar, M.A.; Sweeney-Reed, C.M.; Behnisch, G.; Schott, B.H.; et al. Factors Influencing the Cardiovascular Response to Subanesthetic Ketamine: A Randomized, Placebo-Controlled Trial. Int. J. Neuropsychopharmacol. 2017, 20, 909–918. [Google Scholar] [CrossRef]
- Sigtermans, M.; Dahan, A.; Mooren, R.; Bauer, M.; Kest, B.; Sarton, E.; Olofsen, E. S(+)-Ketamine Effect on Experimental Pain and Cardiac Output: A Population Pharmacokinetic-Pharmacodynamic Modeling Study in Healthy Volunteers. Anesthesiology 2009, 111, 892–903. [Google Scholar] [CrossRef]
- Spencer, H.F.; Berman, R.Y.; Boese, M.; Zhang, M.; Kim, S.Y.; Radford, K.D.; Choi, K.H. Effects of an Intravenous Ketamine Infusion on Inflammatory Cytokine Levels in Male and Female Sprague-Dawley Rats. J. Neuroinflammation 2022, 19, 75. [Google Scholar] [CrossRef]
- Nguena Nguefack, H.L.; Gabrielle Pagé, M.; Guénette, L.; Blais, L.; Diallo, M.; Godbout-Parent, M.; Angarita-Fonseca, A.; Lacasse, A. Gender Differences in Medication Adverse Effects Experienced by People Living With Chronic Pain. Front. Pain Res. 2022, 3, 830153. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.J.A.; Perry, E.B.; Cho, H.-S.; Krystal, J.H.; D’Souza, D.C. Greater Vulnerability to the Amnestic Effects of Ketamine in Males. Psychopharmacology 2006, 187, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Derntl, B.; Hornung, J.; Sen, Z.D.; Colic, L.; Li, M.; Walter, M. Interaction of Sex and Age on the Dissociative Effects of Ketamine Action in Young Healthy Participants. Front. Neurosci. 2019, 13, 616. [Google Scholar] [CrossRef] [PubMed]
Total (n = 585) | Women (n = 443) | Men (n = 142) | p-Values | |
---|---|---|---|---|
Demographics | ||||
Age (years) | 51.1 ± 11.2 | 51.3 ± 11.1 | 50.5 ± 11.6 | NS |
Pain-Related | ||||
Pain etiology | ||||
Fibromyalgia | 287 (49.1) | 251 (56.7) | 36 (25.4) | <0.001 |
Peripheral neuropathic pain | 173 (29.6) | 107 (24.2) | 66 (46.5) | <0.001 |
DN4 a (0–10) (n = 260/168/92) | 5.4 ± 2.2 | 5.5 ± 2.3 | 5.3 ± 2.2 | NS |
DN4 a ≥4 | 217 (83.6) | 141 (83.9) | 76 (82.6) | NS |
Average pain intensity (0–10) (n = 555/422/133) | 6.8 ± 1.8 | 6.9 ± 1.8 | 6.4 ± 1.7 | 0.0051 |
<3 | 8 (1.4) | 6 (1.4) | 2 (1.5) | |
3 to 6 | 217 (39.2) | 154 (36.5) | 63 (47.4) | 0.065 |
≥7 | 330 (59.7) | 262 (62.1) | 68 (51.1) | |
Number of pain paroxysms (n = 347/258/89) | 4 [2.5; 8] | 4 [2; 8] | 4 [3; 7] | NS |
Maximal pain intensity (0–10) (n = 557/423/134) | 8.3 ± 1.5 | 8.3 ± 1.6 | 8.3 ± 1.4 | NS |
<3 | 4 (0.7) | 4 (1.0) | 0 (0) | |
3 to 6 | 51 (9.2) | 37 (8.8) | 14 (10.5) | NS |
≥7 | 502 (90.1) | 382 (90.3) | 120 (89.6) | |
Ketamine | ||||
Ketamine naive | 224 (38.3) | 162 (36.6) | 62 (43.7) | NS |
IV route | 506 (86.5) | 379 (85.5) | 127 (89.4) | NS |
IV cumulative dose (mg) (n = 506/379/127) | 391.5 ± 320.4 | 395.1 ± 331.7 | 380.6 ± 284.8 | NS |
Emotional Aspects | ||||
HADS. anxiety score (0–21) (n = 554/416/138) | 10.4 ± 4.4 | 10.8 ± 4.3 | 8.9 ± 4.3 | <0.001 |
≤7 | 164 (29.6) | 106 (25.5) | 58 (42.0) | |
8 to 10 | 122 (22.0) | 91 (21.9) | 31 (22.5) | <0.001 |
≥11 | 268 (48.4) | 219 (52.6) | 49 (35.5) | |
HADS. depression score (0–21) (n = 549/416/133) | 9.0 ± 4.3 | 9.1 ± 4.4 | 8.7 ± 4.2 | NS |
≤7 | 213 (38.8) | 161 (38.7) | 52 (39.1) | |
8 to 10 | 128 (23.3) | 95 (22.8) | 33 (24.8) | NS |
≥11 | 208 (37.9) | 160 (38.5) | 48 (36.1) | |
Quality of Life | ||||
SF-12. physical score (n = 513/388/125) | 29.1 ± 8.1 | 28.9 ± 7.9 | 29.8 ± 8.6 | NS |
SF-12. mental score (n = 513/388/125) | 39.0 ± 10.8 | 38.7 ± 10.5 | 40.1 ± 11.5 | NS |
Concomitant Drugs | ||||
Number of treatments | 3.3 ± 1.9 | 3.3 ± 1.8 | 3.4 ± 2.1 | NS |
Paracetamol/NSAIDs | 244 (42.5) | 187 (42.8) | 57 (41.6) | NS |
Step 2 opioids b. nefopam | 289 (50.3) | 226 (51.7) | 63 (46.0) | NS |
Step 3 opioids c | 87 (15.2) | 56 (12.8) | 31 (22.6) | 0.005 |
Antidepressants | 373 (65.0) | 296 (67.7) | 77 (56.2) | 0.014 |
Antiepileptics | 213 (37.1) | 153 (35.0) | 60 (43.8) | NS |
Adjuvants | 117 (20.4) | 86 (19.7) | 31 (22.6) | NS |
Hypnotics/sedatives | 97 (16.9) | 67 (15.3) | 30 (21.9) | NS |
Anxiolytics | 165 (28.7) | 132 (30.2) | 33 (24.1) | NS |
Antipsychotics | 33 (5.7) | 26 (6.0) | 7 (5.1) | NS |
Others | 47 (8.2) | 37 (8.5) | 10 (7.3) | NS |
None | 32 (5.6) | 22 (5.0) | 10 (7.3) | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pickering, G.; Voute, M.; Sorel, M.; Pereira, B.; Riant, T. Sex and Age Differences in Ketamine Efficacy and Safety in Chronic Pain Alleviation. J. Clin. Med. 2025, 14, 4269. https://doi.org/10.3390/jcm14124269
Pickering G, Voute M, Sorel M, Pereira B, Riant T. Sex and Age Differences in Ketamine Efficacy and Safety in Chronic Pain Alleviation. Journal of Clinical Medicine. 2025; 14(12):4269. https://doi.org/10.3390/jcm14124269
Chicago/Turabian StylePickering, Gisèle, Marion Voute, Marc Sorel, Bruno Pereira, and Thibault Riant. 2025. "Sex and Age Differences in Ketamine Efficacy and Safety in Chronic Pain Alleviation" Journal of Clinical Medicine 14, no. 12: 4269. https://doi.org/10.3390/jcm14124269
APA StylePickering, G., Voute, M., Sorel, M., Pereira, B., & Riant, T. (2025). Sex and Age Differences in Ketamine Efficacy and Safety in Chronic Pain Alleviation. Journal of Clinical Medicine, 14(12), 4269. https://doi.org/10.3390/jcm14124269