Stand-Alone Lateral Lumbar Interbody Fusion at L3-L4 with 3D-Printed Porous Titanium Cages: A Safe and Effective Alternative in the Treatment of Degenerative Disc Disease (DDD)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Compliance
2.2. Patient Selection
2.3. Surgical Technique
2.4. Outcome Assessment
2.5. Statistical Analysis
3. Results
3.1. Patient Cohort
3.2. Surgical Data and Complications
3.3. Clinical and Functional Outcomes
3.4. Radiographic Results
4. Discussion
4.1. Background and Rationale
4.2. Analysis of Results and Clinical Implications
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DDD | Degenerative disc disease |
XLIF | Extreme lateral interbody fusion |
LLIF | Lateral lumbar interbody fusion |
VAS | Visual Analogue Scale |
ODI | Oswestry Disability Index |
References
- Ghezelbash, F.; Schmidt, H.; Shirazi-Adl, A.; El-Rich, M. Internal load-sharing in the human passive lumbar spine: Review of in vitro and finite element model studies. J. Biomech. 2020, 102, 109441. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Song, Y.; Yu, B. GPNMB Suppresses Inflammation and Extracellular Matrix Degradation in Nucleus Pulposus Cells by Inhibiting Pro-Inflammatory Cytokine Production and Activation of the NF-κB Signaling Pathway. J Interferon Cytokine Res. 2025, 45, 238–246. [Google Scholar] [CrossRef]
- Schmidt, H.; Reitmaier, S.; Yang, D.; Duda, G.; Pumberger, M. Degenerative relationships in lumbar intervertebral discs and facet joints: An MRI-based comparative study of asymptomatic individuals and patients with chronic and intermittent low back pain. Front. Bioeng. Biotechnol. 2025, 13, 1502082. [Google Scholar] [CrossRef] [PubMed]
- Pfirrmann, C.W.; Metzdorf, A.; Zanetti, M.; Hodler, J.; Boos, N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 2001, 26, 1873–1878. [Google Scholar] [CrossRef] [PubMed]
- Genitiempo, M.; Perna, A.; Santagada, D.A.; Meluzio, M.C.; Proietti, L.; Bocchi, M.B.; Logroscino, C.A.; Tamburrelli, F.C. Single-level Bryan cervical disc arthroplasty: Evaluation of radiological and clinical outcomes after 18 years of follow-up. Eur. Spine J. 2020, 29, 2823–2830. [Google Scholar] [CrossRef]
- Hashimoto, K.; Aizawa, T.; Kanno, H.; Itoi, E. Adjacent segment degeneration after fusion spinal surgery—A systematic review. Int. Orthop. 2019, 43, 987–993. [Google Scholar] [CrossRef]
- Miscusi, M.; Trungu, S.; Ricciardi, L.; Forcato, S.; Ramieri, A.; Raco, A. The anterior-to-psoas approach for interbody fusion at the L5-S1 segment: Clinical and radiological outcomes. Neurosurg. Focus. 2020, 49, E14. [Google Scholar] [CrossRef]
- Proietti, L.; Perna, A.; Ricciardi, L.; Fumo, C.; Santagada, D.A.; Giannelli, I.; Tamburrelli, F.C.; Leone, A. Radiological evaluation of fusion patterns after lateral lumbar interbody fusion: Institutional case series. Radiol. Med. (Torino) 2021, 126, 250–257. [Google Scholar] [CrossRef]
- Hiyama, A.; Katoh, H.; Sakai, D.; Sato, M.; Tanaka, M.; Nukaga, T.; Watanabe, M. Changes in Spinal Alignment following eXtreme Lateral Interbody Fusion Alone in Patients with Adult Spinal Deformity using Computed Tomography. Sci. Rep. 2019, 9, 12039. [Google Scholar] [CrossRef]
- Gagnier, J.J.; Kienle, G.; Altman, D.G.; Moher, D.; Sox, H.; Riley, D.; CARE Group. The CARE guidelines: Consensus-based clinical case reporting guideline development. J. Med. Case Rep. 2013, 7, 223. [Google Scholar] [CrossRef]
- Koslosky, E.; Gendelberg, D. Classification in Brief: The Meyerding Classification System of Spondylolisthesis. Clin. Orthop. Relat. Res. 2020, 478, 1125–1130. [Google Scholar] [CrossRef] [PubMed]
- Chan, V.; Marro, A.; Rempel, J.; Nataraj, A. Determination of dynamic instability in lumbar spondylolisthesis using flexion and extension standing radiographs versus neutral standing radiograph and supine MRI. J. Neurosurg. Spine 2019, 31, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, A.O.; Soliman, M.A.R.; Kuo, C.C.; Kassay, A.; Parmar, G.; Kruk, M.D.; Quiceno, E.; Khan, A.; Lim, J.; Hess, R.M.; et al. Defining cage subsidence in anterior, oblique, and lateral lumbar spine fusion approaches: A systematic review of the literature. Neurosurg. Rev. 2024, 47, 332. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, J.; Panjabi, M.; Chang, D.; Theiler, R.; Grob, D. Functional radiographic diagnosis of the lumbar spine. Flexion-extension and lateral bending. Spine 1991, 16, 562–571. [Google Scholar] [CrossRef]
- Staartjes, V.E.; Stumpo, V.; Ricciardi, L.; Maldaner, N.; Eversdijk, H.A.J.; Vieli, M.; Ciobanu-Caraus, O.; Raco, A.; Miscusi, M.; Perna, A.; et al. FUSE-ML: Development and external validation of a clinical prediction model for mid-term outcomes after lumbar spinal fusion for degenerative disease. Eur. Spine J. 2022, 31, 2629–2638. [Google Scholar] [CrossRef]
- Behrens, K.M.M.; Elgafy, H. Factors affecting outcomes of indirect decompression after oblique and lateral lumbar interbody fusions. World J. Orthop. 2025, 16, 100772. [Google Scholar] [CrossRef]
- Berjano, P.; Gautschi, O.P.; Schils, F.; Tessitore, E. Extreme lateral interbody fusion (XLIF®): How I do it. Acta Neurochir. 2015, 157, 547–551. [Google Scholar] [CrossRef]
- Chen, E.; Xu, J.; Yang, S.; Zhang, Q.; Yi, H.; Liang, D.; Lan, S.; Duan, M.; Wu, Z. Cage Subsidence and Fusion Rate in Extreme Lateral Interbody Fusion with and without Fixation. World Neurosurg. 2019, 122, e969–e977. [Google Scholar] [CrossRef]
- Velluto, C.; Mundis, G., Jr.; Scaramuzzo, L.; Perna, A.; Capece, G.; Cruciani, A.; Inverso, M.; Borruto, M.I.; Proietti, L. Radiological evaluation of fusion patterns after Lateral Lumbar Interbody fusion with 3D-printed porous titanium cages vs. conventional titanium cages. Front. Surg. 2024, 11, 1446792. [Google Scholar] [CrossRef]
- Ozgur, B.M.; Aryan, H.E.; Pimenta, L.; Taylor, W.R. Extreme Lateral Interbody Fusion (XLIF): A novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006, 6, 435–443. [Google Scholar] [CrossRef]
- Oliveira, L.; Marchi, L.; Coutinho, E.; Pimenta, L. A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine (Phila Pa 1976) 2010, 35 (Suppl. 26), S331–S337. [Google Scholar] [CrossRef] [PubMed]
- Galieri, G.; Orlando, V.; Altieri, R.; Barbarisi, M.; Olivi, A.; Sabatino, G.; La Rocca, G. Current Trends and Future Directions in Lumbar Spine Surgery: A Review of Emerging Techniques and Evolving Management Paradigms. J. Clin. Med. 2025, 14, 3390. [Google Scholar] [CrossRef] [PubMed]
- Levy, L.C.; Greisman, J.; Khan, A.; Soliman, M.A.; Aguirre, A.O.; Mullin, J.; Pollina, J.; Quiceno, E. Effect of Supplemental Fixation on Fusion and Subsidence After Lateral Lumbar Interbody Fusion. Cureus 2025, 17, e82844. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, L.; Marchi, L.; Oliveira, L.; Coutinho, E.; Amaral, R. A prospective, randomized, controlled trial comparing radiographic and clinical outcomes between stand-alone lateral interbody lumbar fusion with either silicate calcium phosphate or rh-BMP2. J. Neurol. Surg. A Cent. Eur. Neurosurg. 2013, 74, 343–350. [Google Scholar] [CrossRef]
- Bhatti, A.U.R.; Cesare, J.; Wahood, W.; Alvi, M.A.; Onyedimma, C.E.; Ghaith, A.K.; Akinnusotu, O.; El Sammak, S.; Freedman, B.A.; Sebastian, A.S.; et al. Assessing the differences in operative and patient-reported outcomes between lateral approaches for lumbar fusion: A systematic review and indirect meta-analysis. J. Neurosurg. Spine 2022, 37, 498–514. [Google Scholar] [CrossRef]
- Alvi, M.A.; Alkhataybeh, R.; Wahood, W.; Kerezoudis, P.; Goncalves, S.; Murad, M.H.; Bydon, M. The impact of adding posterior instrumentation to transpsoas lateral fusion: A systematic review and meta-analysis. J. Neurosurg. Spine 2018, 30, 211–221. [Google Scholar] [CrossRef]
- Palacios, P.; Palacios, I.; Palacios, A.; Gutiérrez, J.C.; Mariscal, G.; Lorente, A. Efficacy and Safety of the Extreme Lateral Interbody Fusion (XLIF) Technique in Spine Surgery: Meta-Analysis of 1409 Patients. J. Clin. Med. 2024, 13, 960. [Google Scholar] [CrossRef]
Characteristic | Value |
---|---|
Total Patients | 49 |
Sex | 26 Female/23 Male |
Mean Age (years) | 58.2 ± 10.7 |
Mean BMI (kg/m2) | 27.6 ± 3.4 |
Active Smokers | 34.6% |
Mean Symptom Duration (months) | 4.51 ± 1.31 |
Baseline VAS (back pain) | 6.53 ± 0.74 |
Baseline ODI (%) | 27.60% ± 7.27% |
Pfirrmann Grade III | 63% |
Pfirrmann Grade IV | 35% |
Pfirrmann Grade V | 2% |
Modic Type I Changes | 43% |
Parameter | Details/Value |
---|---|
Surgical Approach | Left-sided XLIF |
Implant Type | 3D-printed porous titanium cage (Modulus®, Globus Medical), 10° lordosis |
Graft Material | Attrax Putty |
Mean Psoas Retraction Time (min) | 22.7 ± 9.4 |
Mean Operative Time (min) | 48 ± 11.3 |
Estimated Intraoperative Blood Loss | <100 mL (all cases) |
Blood Transfusions Required | None |
Surgical Drain Removal Time | Within 24 h postoperatively |
Complications | |
Transient Paresthesia (L4 dermatome) | 7 patients (14%) |
Transient Quadriceps Weakness | 3 patients (6%) |
Persistent Neurological Deficit | 0 cases |
Postoperative Ileus | 0 cases |
Ureteral Injury | 0 cases |
Deep Infection | 0 cases |
Significant Cage Subsidence (>2 mm) | 1 case |
Predictors of Transient Neuro. Sx | No statistically significant associations found (p > 0.05) |
Outcome Measure | Baseline | 1 Month Post-Op | 6 Months Post-Op | 1 Year Post-Op | Overall Change (ANOVA) |
---|---|---|---|---|---|
Mean VAS (back pain) | 6.53 ± 0.74 | 1.74 ± 0.76 | 0.47 ± 0.78 | 0.29 ± 0.79 | p < 0.001 |
Mean ODI (%) | 27.60% ± 7.27% | 9.71% ± 3.54% | 4.90% ± 1.87% | 3.84% ± 2.27% | p < 0.001 |
Radiographic Measure | Baseline | 1 Month Post-Op | 6 Months Post-Op | 1 Year Post-Op | Change from Baseline at 1 Yr |
---|---|---|---|---|---|
Mean Disc Height (mm) | 6.37 ± 1.34 | 10.04 ± 1.34 ** | 9.65 ± 1.18 | 9.33 ± 1.21 | Significant * |
Mean Segmental Lordosis L3-L4 (°) | 6.67 ± 1.63 | 10.69 ± 1.79 ** | 10.04 ± 1.37 | 9.88 ± 1.36 | Significant * |
Mean Global Lumbar Lordosis (°) | 57.25 ± 7.31 | 60.27 ± 5.5 ^ | 61.31 ± 4.83 | 60.76 ± 4.63 | Significant * |
Fusion Rate (at 1 year) | N/A | N/A | N/A | 97.9% (48/49) | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricciardi, L.; Perna, A.; Trungu, S.; Miscusi, M.; Scerrati, A.; Narciso, A.; Cracchiolo, S.; Favarato, S.; Raco, A. Stand-Alone Lateral Lumbar Interbody Fusion at L3-L4 with 3D-Printed Porous Titanium Cages: A Safe and Effective Alternative in the Treatment of Degenerative Disc Disease (DDD). J. Clin. Med. 2025, 14, 4233. https://doi.org/10.3390/jcm14124233
Ricciardi L, Perna A, Trungu S, Miscusi M, Scerrati A, Narciso A, Cracchiolo S, Favarato S, Raco A. Stand-Alone Lateral Lumbar Interbody Fusion at L3-L4 with 3D-Printed Porous Titanium Cages: A Safe and Effective Alternative in the Treatment of Degenerative Disc Disease (DDD). Journal of Clinical Medicine. 2025; 14(12):4233. https://doi.org/10.3390/jcm14124233
Chicago/Turabian StyleRicciardi, Luca, Andrea Perna, Sokol Trungu, Massimo Miscusi, Alba Scerrati, Annamaria Narciso, Salvatore Cracchiolo, Sara Favarato, and Antonino Raco. 2025. "Stand-Alone Lateral Lumbar Interbody Fusion at L3-L4 with 3D-Printed Porous Titanium Cages: A Safe and Effective Alternative in the Treatment of Degenerative Disc Disease (DDD)" Journal of Clinical Medicine 14, no. 12: 4233. https://doi.org/10.3390/jcm14124233
APA StyleRicciardi, L., Perna, A., Trungu, S., Miscusi, M., Scerrati, A., Narciso, A., Cracchiolo, S., Favarato, S., & Raco, A. (2025). Stand-Alone Lateral Lumbar Interbody Fusion at L3-L4 with 3D-Printed Porous Titanium Cages: A Safe and Effective Alternative in the Treatment of Degenerative Disc Disease (DDD). Journal of Clinical Medicine, 14(12), 4233. https://doi.org/10.3390/jcm14124233