AI in Medical Imaging and Image Processing
Conflicts of Interest
References
- Obuchowicz, R.; Lasek, J.; Wodziński, M.; Piórkowski, A.; Strzelecki, M.; Nurzynska, K. Artificial Intelligence-Empowered Radiology—Current Status and Critical Review. Diagnostics 2025, 15, 282. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-T.; Wang, B.-C.; Chung, J.-Y. Identifying Acute Aortic Syndrome and Thoracic Aortic Aneurysm from Chest Radiography in the Emergency Department Using Convolutional Neural Network Models. Diagnostics 2024, 14, 1646. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Li, J.; Yang, L. Breast Cancer Diagnosis Method Based on Cross-Mammogram Four-View Interactive Learning. Tomography 2024, 10, 848–868. [Google Scholar] [CrossRef]
- Kolhar, M.; Al Rajeh, A.M.; Kazi, R.N.A. Augmenting Radiological Diagnostics with AI for Tuberculosis and COVID-19 Disease Detection: Deep Learning Detection of Chest Radiographs. Diagnostics 2024, 14, 1334. [Google Scholar] [CrossRef]
- Aamir, M.; Namoun, A.; Munir, S.; Aljohani, N.; Alanazi, M.H.; Alsahafi, Y.; Alotibi, F. Brain Tumor Detection and Classification Using an Optimized Convolutional Neural Network. Diagnostics 2024, 14, 1714. [Google Scholar] [CrossRef]
- Kiyuna, T.; Cosatto, E.; Hatanaka, K.C.; Yokose, T.; Tsuta, K.; Motoi, N.; Makita, K.; Shimizu, A.; Shinohara, T.; Suzuki, A.; et al. Evaluating Cellularity Estimation Methods: Comparing AI Counting with Pathologists’ Visual Estimates. Diagnostics 2024, 14, 1115. [Google Scholar] [CrossRef] [PubMed]
- Kufel, J.; Paszkiewicz, I.; Kocot, S.; Lis, A.; Dudek, P.; Czogalik, Ł.; Janik, M.; Bargieł-Łączek, K.; Bartnikowska, W.; Koźlik, M.; et al. Deep Learning in Cardiothoracic Ratio Calculation and Cardiomegaly Detection. J. Clin. Med. 2024, 13, 4180. [Google Scholar] [CrossRef]
- Baştuğ, B.T.; Güneri, G.; Yıldırım, M.S.; Çorbacı, K.; Dandıl, E. Fully Automated Detection of the Appendix Using U-Net Deep Learning Architecture in CT Scans. J. Clin. Med. 2024, 13, 5893. [Google Scholar] [CrossRef]
- Lasek, J.; Nurzynska, K.; Piórkowski, A.; Strzelecki, M.; Obuchowicz, R. Deep Learning for Ultrasonographic Assessment of Temporomandibular Joint Morphology. Tomography 2025, 11, 27. [Google Scholar] [CrossRef]
- Fufin, M.; Makarov, V.; Alfimov, V.I.; Ananev, V.V.; Ananeva, A. Pulmonary Fissure Segmentation in CT Images Using Image Filtering and Machine Learning. Tomography 2024, 10, 1645–1664. [Google Scholar] [CrossRef]
- Rashid, P.Q.; Türker, I. Lung Disease Detection Using U-Net Feature Extractor Cascaded by Graph Convolutional Network. Diagnostics 2024, 14, 1313. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, P.J.; Ladefoged, C.N.; Larsen, V.A.; Andersen, F.L.; Nielsen, M.B.; Poulsen, H.S.; Carlsen, J.F.; Hansen, A.E. Repurposing the Public BraTS Dataset for Postoperative Brain Tumour Treatment Response Monitoring. Tomography 2024, 10, 1397–1410. [Google Scholar] [CrossRef] [PubMed]
- Haylaz, E.; Gumussoy, I.; Duman, S.B.; Kalabalik, F.; Eren, M.C.; Demirsoy, M.S.; Celik, O.; Bayrakdar, I.S. Automatic Segmentation of the Nasolacrimal Canal: Application of the nnU-Net v2 Model in CBCT Imaging. J. Clin. Med. 2025, 14, 778. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, R.; Zhu, Z.; Li, P.; Bai, Y.; Wang, M. Lightweight MRI Brain Tumor Segmentation Enhanced by Hierarchical Feature Fusion. Tomography 2024, 10, 1577–1590. [Google Scholar] [CrossRef]
- Hasei, J.; Nakahara, R.; Otsuka, Y.; Nakamura, Y.; Ikuta, K.; Osaki, S.; Hironari, T.; Miwa, S.; Ohshika, S.; Nishimura, S.; et al. The Three-Class Annotation Method Improves the AI Detection of Early-Stage Osteosarcoma on Plain Radiographs: A Novel Approach for Rare Cancer Diagnosis. Cancers 2025, 17, 29. [Google Scholar] [CrossRef]
- Dandıl, E.; Baştuğ, B.T.; Yıldırım, M.S.; Çorbacı, K.; Güneri, G. MaskAppendix: Backbone-Enriched Mask R-CNN Based on Grad-CAM for Automatic Appendix Segmentation. Diagnostics 2024, 14, 2346. [Google Scholar] [CrossRef]
- Lee, K.; Lee, S.; Kwak, J.S.; Park, H.; Oh, H.; Koh, J.C. Development and Validation of an Artificial Intelligence Model for Detecting Rib Fractures on Chest Radiographs. J. Clin. Med. 2024, 13, 3850. [Google Scholar] [CrossRef]
- Tiosano, L.; Abutbul, R.; Lender, R.; Shwartz, Y.; Chowers, I.; Hoshen, Y.; Levy, J. Anomaly Detection and Biomarkers Localization in Retinal Images. J. Clin. Med. 2024, 13, 3093. [Google Scholar] [CrossRef] [PubMed]
- Gohmann, R.F.; Schug, A.; Krieghoff, C.; Seitz, P.; Majunke, N.; Buske, M.; Kaiser, F.; Schaudt, S.; Renatus, K.; Desch, S.; et al. Interrater Variability of ML-Based CT-FFR in Patients without Obstructive CAD before TAVR: Influence of Image Quality, Coronary Artery Calcifications, and Location of Measurement. J. Clin. Med. 2024, 13, 5247. [Google Scholar] [CrossRef]
- Drews, M.A.; Demircioğlu, A.; Neuhoff, J.; Haubold, J.; Zensen, S.; Opitz, M.K.; Forsting, M.; Nassenstein, K.; Bos, D. Impact of AI-Based Post-Processing on Image Quality o Non-Contrast Computed Tomography of the Chest and Abdomen. Diagnostics 2024, 14, 612. [Google Scholar] [CrossRef]
- Santos, L.; Hsu, H.-Y.; Nelson, R.R.; Sullivan, B.; Shin, J.; Fung, M.; Lebel, M.R.; Jambawalikar, S.; Jaramillo, D. Impact of Deep Learning Denoising Algorithm on Diffusion Tensor Imaging of the Growth Plate on Different Spatial Resolutions. Tomography 2024, 10, 504–519. [Google Scholar] [CrossRef] [PubMed]
- Aromiwura, A.A.; Kalra, D.K. Artificial Intelligence in Coronary Artery Calcium Scoring. J. Clin. Med. 2024, 13, 3453. [Google Scholar] [CrossRef]
- da Rocha, J.L.D.; Lai, J.; Pandey, P.; Myat, P.S.M.; Loschinskey, Z.; Bag, A.K.; Sitaram, R. Artificial Intelligence for Neuroimaging in Pediatric Cancer. Cancers 2025, 17, 622. [Google Scholar] [CrossRef]
- Li, X.; Hong, Y.; Xu, Y.; Hu, M. VerFormer: Vertebrae-Aware Transformer for Automatic Spine Segmentation from CT Images. Diagnostics 2024, 14, 1859. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, W.; Joshi, T.; Zhang, X.; Loh, P.-L.; Jog, V.; Bruce, R.J.; Garrett, J.W.; McMillan, A.B. BAE-ViT: An Efficient Multimodal Vision Transformer for Bone Age Estimation. Tomography 2024, 10, 2058–2072. [Google Scholar] [CrossRef] [PubMed]
- Nurzyńska, K.; Piórkowski, A.; Strzelecki, M.; Kociołek, M.; Banyś, R.P.; Obuchowicz, R. Differentiating age and sex in vertebral body CT scans—Texture analysis versus deep learning approach. Biocybern. Biomed. Eng. 2024, 44, 20–30. [Google Scholar] [CrossRef]
- Song, J.H.; Kim, E.R.; Hong, Y.; Sohn, I.; Ahn, S.; Kim, S.-H.; Jang, K.-T. Prediction of Lymph Node Metastasis in T1 Colorectal Cancer Using Artificial Intelligence with Hematoxylin and Eosin-Stained Whole-Slide-Images of Endoscopic and Surgical Resection Specimens. Cancers 2024, 16, 1900. [Google Scholar] [CrossRef]
- Aldakhil, L.A.; Alhasson, H.F.; Alharbi, S.S. Attention-Based Deep Learning Approach for Breast Cancer Histopathological Image Multi-Classification. Diagnostics 2024, 14, 1402. [Google Scholar] [CrossRef]
- Yalcinbas, M.F.; Ozturk, C.; Ozyurt, O.; Emir, U.E.; Bagci, U. Rosette Trajectory MRI Reconstruction with Vision Transformers. Tomography 2025, 11, 41. [Google Scholar] [CrossRef]
- Park, M.J.; Choi, Y.J.; Shim, M.; Cho, Y.; Park, J.; Choi, J.; Kim, J.; Lee, E.; Kim, S.-Y. Performance of ECG-Derived Digital Biomarker for Screening Coronary Occlusion in Resuscitated Out-of-Hospital Cardiac Arrest Patients: A Comparative Study between Artificial Intelligence and a Group of Experts. J. Clin. Med. 2024, 13, 1354. [Google Scholar] [CrossRef]
- Boldt, J.; Schuster, M.; Krastl, G.; Schmitter, M.; Pfundt, J.; Stellzig-Eisenhauer, A.; Kunz, F. Developing the Benchmark: Establishing a Gold Standard for the Evaluation of AI Caries Diagnostics. J. Clin. Med. 2024, 13, 3846. [Google Scholar] [CrossRef] [PubMed]
- Herpe, G.; Nelken, H.; Vendeuvre, T.; Guenezan, J.; Giraud, C.; Mimoz, O.; Feydy, A.; Tasu, J.-P.; Guillevin, R. Effectiveness of an Artificial Intelligence Software for Limb Radiographic Fracture Recognition in an Emergency Department. J. Clin. Med. 2024, 13, 5575. [Google Scholar] [CrossRef] [PubMed]
- Welsner, M.; Navel, H.; Hosch, R.; Rathsmann, P.; Stehling, F.; Mathew, A.; Sutharsan, S.; Strassburg, S.; Westhölter, D.; Taube, C.; et al. Opportunistic Screening for Low Bone Mineral Density in Adults with Cystic Fibrosis Using Low-Dose Computed Tomography of the Chest with Artificial Intelligence. J. Clin. Med. 2024, 13, 5961. [Google Scholar] [CrossRef]
- Barca, I.C.; Potop, V.; Arama, S.S. Monitoring Progression in Hypertensive Patients with Dyslipidemia Using Optical Coherence Tomography Angiography: Can A.I. Be Improved? J. Clin. Med. 2024, 13, 7584. [Google Scholar] [CrossRef] [PubMed]
- Eom, Y.; Park, Y.-J.; Lee, S.; Lee, S.-J.; An, Y.-S.; Park, B.-N.; Yoon, J.-K. Automated Measurement of Effective Radiation Dose by 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography. Tomography 2024, 10, 2144–2157. [Google Scholar] [CrossRef]
- Craus-Miguel, A.; Munar, M.; Moyà-Alcover, G.; Contreras-Nogales, A.M.; González-Hidalgo, M.; Segura-Sampedro, J.J. Enhancing Surgical Wound Monitoring: A Paired Cohort Study Evaluating a New AI-Based Application for Automatic Detection of Potential Infections. J. Clin. Med. 2024, 13, 7863. [Google Scholar] [CrossRef]
- Sritharan, N.; Gutierrez, C.; Perez-Raya, I.; Gonzalez-Hernandez, J.-L.; Owens, A.; Dabydeen, D.; Medeiros, L.; Kandlikar, S.; Phatak, P. Breast Cancer Screening Using Inverse Modeling of Surface Temperatures and Steady-State Thermal Imaging. Cancers 2024, 16, 2264. [Google Scholar] [CrossRef]
- Nielsen, M.Ø.; Ljoki, A.; Zerahn, B.; Jensen, L.T.; Kristensen, B. Reproducibility and Repeatability in Focus: Evaluating LVEF Measurements with 3D Echocardiography by Medical Technologists. Diagnostics 2024, 14, 1729. [Google Scholar] [CrossRef]
- Watzenboeck, M.L.; Beer, L.; Kifjak, D.; Röhrich, S.; Heidinger, B.H.; Prayer, F.; Milos, R.-I.; Apfaltrer, P.; Langs, G.; Baltzer, P.A.T.; et al. Contrast Agent Dynamics Determine Radiomics Profiles in Oncologic Imaging. Cancers 2024, 16, 1519. [Google Scholar] [CrossRef]
- Gibała, S.; Obuchowicz, R.; Lasek, J.; Piórkowski, A.; Nurzynska, K. Textural Analysis Supports Prostate MR Diagnosis in PIRADS Protocol. Appl. Sci. 2023, 13, 9871. [Google Scholar] [CrossRef]
- Liu, J.-C.; Ruan, X.-H.; Chun, T.-T.; Yao, C.; Huang, D.; Wong, H.-L.; Lai, C.-T.; Tsang, C.-F.; Ho, S.-H.; Ng, T.-L.; et al. MRI T2w Radiomics-Based Machine Learning Models in Imaging Simulated Biopsy Add Diagnostic Value to PI-RADS in Predicting Prostate Cancer: A Retrospective Diagnostic Study. Cancers 2024, 16, 2944. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, L.A.P.; Lopes, D.L.G.; Gomes, J.P.P.; da Silveira, R.V.; Nozaki, D.V.A.; Santos, L.F.; Castellano, G.; Lopes, S.L.P.d.C.; Costa, A.L.F. Enhanced Diagnostic Precision: Assessing Tumor Differentiation in Head and Neck Squamous Cell Carcinoma Using Multi-Slice Spiral CT Texture Analysis. J. Clin. Med. 2024, 13, 4038. [Google Scholar] [CrossRef] [PubMed]
- Rippa, M.; Schulze, R.; Kenyon, G.; Himstedt, M.; Kwiatkowski, M.; Grobholz, R.; Wyler, S.; Cornelius, A.; Schindera, S.; Burn, F. Evaluation of Machine Learning Classification Models for False-Positive Reduction in Prostate Cancer Detection Using MRI Data. Diagnostics 2024, 14, 1677. [Google Scholar] [CrossRef] [PubMed]
- Mase, Y.; Matsui, Y.; Imai, K.; Imamura, K.; Irie-Ota, A.; Chujo, S.; Matsubara, H.; Kawanaka, H.; Kondo, M. Preoperative OCT Characteristics Contributing to Prediction of Postoperative Visual Acuity in Eyes with Macular Hole. J. Clin. Med. 2024, 13, 4826. [Google Scholar] [CrossRef]
- Solana-Lavalle, G.; Cusimano, M.D.; Steeves, T.; Rosas-Romero, R.; Tyrrell, P.N. Causal Forest Machine Learning Analysis of Parkinson’s Disease in Resting-State Functional Magnetic Resonance Imaging. Tomography 2024, 10, 894–911. [Google Scholar] [CrossRef]
- Yurtseven, A.; Janjic, A.; Cayoren, M.; Bugdayci, O.; Aribal, M.E.; Akduman, I. XGBoost Enhances the Performance of SAFE: A Novel Microwave Imaging System for Early Detection of Malignant Breast Cancer. Cancers 2025, 17, 214. [Google Scholar] [CrossRef]
- Ferrante, M.; De Marco, P.; Rampado, O.; Gianusso, L.; Origgi, D. Effective Dose Estimation in Computed Tomography by Machine Learning. Tomography 2025, 11, 2. [Google Scholar] [CrossRef]
- Assadi, H.; Sawh, N.; Bailey, C.; Matthews, G.; Li, R.; Grafton-Clarke, C.; Mehmood, Z.; Kasmai, B.; Swoboda, P.P.; Swift, A.J.; et al. Validation of Left Atrial Volume Correction for Single Plane Method on Four-Chamber Cine Cardiac MRI. Tomography 2024, 10, 459–470. [Google Scholar] [CrossRef]
- Taskent, I.; Ece, B.; Narsat, M.A. Are Preoperative CT Findings Useful in Predicting the Duration of Laparoscopic Appendectomy in Pediatric Patients? A Single Center Study. J. Clin. Med. 2024, 13, 5504. [Google Scholar] [CrossRef]
- Taçyıldız, A.E.; İnceoğlu, F. Classification of Osteophytes Occurring in the Lumbar Intervertebral Foramen. Tomography 2024, 10, 618–631. [Google Scholar] [CrossRef]
- Nollmann, C.; Moskorz, W.; Wimmenauer, C.; Jäger, P.S.; Cadeddu, R.P.; Timm, J.; Heinzel, T.; Haas, R. Characterization of CD34+ Cells from Patients with Acute Myeloid Leukemia (AML) and Myelodysplastic Syndromes (MDS) Using a t-Distributed Stochastic Neighbor Embedding (t-SNE) Protocol. Cancers 2024, 16, 1320. [Google Scholar] [CrossRef] [PubMed]
- Dev, H.; Hu, Z.; Blumenfeld, J.D.; Sharbatdaran, A.; Kim, Y.; Zhu, C.; Shimonov, D.; Chevalier, J.M.; Donahue, S.; Wu, A.; et al. The Role of Baseline Total Kidney Volume Growth Rate in Predicting Tolvaptan Efficacy for ADPKD Patients: A Feasibility Study. J. Clin. Med. 2025, 14, 1449. [Google Scholar] [CrossRef]
- Uwaeze, J.; Narayana, P.A.; Kamali, A.; Braverman, V.; Jacobs, M.A.; Akhbardeh, A. Automatic Active Lesion Tracking in Multiple Sclerosis Using Unsupervised Machine Learning. Diagnostics 2024, 14, 632. [Google Scholar] [CrossRef]
- Zamojski, D.; Gogler, A.; Scieglinska, D.; Marczyk, M. EpidermaQuant: Unsupervised Detection and Quantification of Epidermal Differentiation Markers on H-DAB-Stained Images of Reconstructed Human Epidermis. Diagnostics 2024, 14, 1904. [Google Scholar] [CrossRef] [PubMed]
- Jelassi, M.; Jemai, O.; Demongeot, J. Revolutionizing Radiological Analysis: The Future of French Language Automatic Speech Recognition in Healthcare. Diagnostics 2024, 14, 895. [Google Scholar] [CrossRef] [PubMed]
- Wada, A.; Akashi, T.; Shih, G.; Hagiwara, A.; Nishizawa, M.; Hayakawa, Y.; Kikuta, J.; Shimoji, K.; Sano, K.; Kamagata, K.; et al. Optimizing GPT-4 Turbo Diagnostic Accuracy in Neuroradiology through Prompt Engineering and Confidence Thresholds. Diagnostics 2024, 14, 1541. [Google Scholar] [CrossRef]
- Koyun, M.; Cevval, Z.K.; Reis, B.; Ece, B. Detection of Intracranial Hemorrhage from Computed Tomography Images: Diagnostic Role and Efficacy of ChatGPT-4o. Diagnostics 2025, 15, 143. [Google Scholar] [CrossRef]
- Koyun, M.; Taskent, I. Evaluation of Advanced Artificial Intelligence Algorithms’ Diagnostic Efficacy in Acute Ischemic Stroke: A Comparative Analysis of ChatGPT-4o and Claude 3.5 Sonnet Models. J. Clin. Med. 2025, 14, 571. [Google Scholar] [CrossRef]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. Mazda—The Software Package for Textural Analysis of Biomedical Images. In Computers in Medical Activity; Kącki, E., Rudnicki, M., Stempczyńska, J., Eds.; Advances in Soft Computing; Springer: Berlin/Heidelberg, Germany, 2009; Volume 65, pp. 73–84. [Google Scholar] [CrossRef]
- Strzelecki, M. Texture boundary detection using network of synchronised oscillators. Electron. Lett. 2004, 40, 466–467. [Google Scholar] [CrossRef]
AI Technique | Medical Problem |
---|---|
Data classification (CNN) | Chest [2], mammograms [3], tuberculosis [4], brain tumor [5] |
Data segmentation (CNN) | Cell counting in H&E-stained images [6], heart and lung anatomy [7], appendix segmentation [8], temporomandibular joints [9], lung fissure [10], COVID-19 diagnosis [11], brain [12], nasolacrimal canal [13], brain tumor [14], osteosarcoma [15], appendix [16], rib fracture [17] |
Other applications of CNNs | Detection of anomalies in OCT [18], denoising in chest [19], working with older equipment [20], technical improvements [21], review [1,22,23] |
Data analysis with transformers | Spine segmentation [24], bone age estimation [25], analysis of H&E WSI [27], breast [28], brain [29] |
Gold standard definitions | Coronary occlusion identification [30], dental caries [31], limb fractures [32], chest [33], OCTA [34], PET [35], scar healing [36], breast cancer [37], discussion helps to apply new technology [38] |
ML with radiomics | Lung/prostate tumors [39], PIRADS [41], cell carcinoma [42], prostate cancer [43] |
Other applications | Idiopathic macular hole [44], Parkinson’s disease [45], breast cancer [46], dose estimation in CT [47], left atrial volume is equivalent to biplane methods [48], laparoscopy duration [49], osteophytes impact planning of surgical interventions [50], leukemic cells [51], kidney [52] |
Unsupervised ML | Active lesions [53], immunohistochemical staining [54] |
LLM | Speech recognition [55], describing image content [56,57], detection of acute ischemic stroke [58] |
DL Tools | Problem | Modality | Algorithm | Results |
---|---|---|---|---|
CNN [6] | The automatic cell counting on images of H&E-stained slides | H&E-stained images | U-Net | Good agreement between pathologists and AI: MAE(pat) = 13.3%, MAE(AI) = 10.9 |
CNN [7] | Lung and heart segmentation for cardiothoracic ratio calculation | Chest radiographs | U-Net | Segmentation accuracy: IoU = 0.83, F1 = 0.91 |
CNN [8] | The accurate segmentation of the appendix | CT | Modified U-Net, DenseNet, Resnet | Segmentation accuracy of modified U-Net: DSC = 0.87, HD = 3.95 mm |
CNN [10] | Lung lobe segmentation and lung fissure segmentation | CT | U-Net, Derivative-of-Stick Filter | Segmentation accuracy: F1 = (0.894–0.899), for left and right lung fissures, average DSC = 0.989 |
CNN [14] | Brain tumor segmentation | MRI | Enhanced by Hierarchical Feature Fusion module | Accuracies of three tumor subregions (enhanced tumor, tumor core, entire tumor): DSC = 88.27%, 91.31%, and 92.96%, respectively |
CNN [15] | A novel annotation method for preparing training data for osteosarcoma detection | X-ray | U-Net | Segmentation accuracy for three classes: DSC = 0.644 |
CNN [16] | Automatic and accurate segmentation of the appendix | CT | Mask R-CNN, Reset101, Grad-CAM | Segmentation accuracy: DSC = 0.87 |
CNN [17] | Segmentation of rib fractures | Chest radiography | Detectron2 with feature pyramid network | Radiograph with rib fracture classification: AUC = 0.89, rib fracture detection: JAFROC = 0.76 |
Transformers [24] | The accurate and efficient segmentation of the spine and vertebrae identification | CT | Vertebrae-aware Vision Transformer (a variant of Vision Transformer) | Segmentation accuracy: DSC = (0.95–0.94), IoU = (0.96–0.94) for VerSe2019 and VerSe2020 datasets |
AI Tools | Problem | Modality | Algorithm | Results |
---|---|---|---|---|
DL [2] | Identifying acute aortic syndrome and thoracic aortic aneurysm in emergency departments | Chest radiographs | InceptionV3, ResNet101, VGG19, nception-ResNet-v2 | InceptionV3 F1 = 0.76 for identification of patients with chest pain and suspected acute aortic syndrome/thoracic aortic aneurysm |
DL [5] | Brain tumor detection and classification | MRI | Optimized CNN | Accuracy of classification (three tumor types) = 0.97 |
DL [4] | Identification of pneumonia, COVID-19, and tuberculosis | Chest radiographs | ResNet50, VGG16 | ResNet50’s precision and recall rates are close to 0.99 in disease identification |
DL with attention module [3] | Computer-aided systems for breast cancer diagnosis in mammograms | X-ray | EfficientNet-b0, cross-mammogram dual-pathway attention module | Classification accuracy = 98.02%, AUC = 0.9664 |
DL with attention module [5] | Breast cancer diagnosis from histopathology images | Microscope histopathology images | Efficient channel-spatial attention network, improved version of EfficientNetV2 | Accuracies of 94.2% at 40×, 92.96% at 100×, 88.41% at 200×, 89.42% at 400× magnifications |
DL with attention module [27] | Prediction of lymph node metastasis in colorectal cancer images | H&E-stained whole slide images | Customized deep convolutional neural network attention module, classification module | Accuracy = 0.92, AUC = 0.781–0.824 |
Radiomics, Statistical analysis [42] | Determination of the grade of cellular differentiation in head and neck squamous cell carcinoma | Multi-Slice Spiral CT | Texture analysis (TA), gray-level co-occurrence matrix | The correlations found between texture parameters and histopathological features suggest that TA is a useful tool in the prognosis and tailoring of treatment strategies for patients with different tumor types |
ML/DL, Radiomics [5] | Segmentation and classification of prostate lesions using different ML models | MRI | Texture features, support vector machine, random forest, multiple perceptron, ConvNeXt, ConvNet, ResNet | CNN-based approaches obtained better results compared to the classical machine learning approaches |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurzynska, K.; Strzelecki, M.; Piórkowski, A.; Obuchowicz, R. AI in Medical Imaging and Image Processing. J. Clin. Med. 2025, 14, 4153. https://doi.org/10.3390/jcm14124153
Nurzynska K, Strzelecki M, Piórkowski A, Obuchowicz R. AI in Medical Imaging and Image Processing. Journal of Clinical Medicine. 2025; 14(12):4153. https://doi.org/10.3390/jcm14124153
Chicago/Turabian StyleNurzynska, Karolina, Michał Strzelecki, Adam Piórkowski, and Rafał Obuchowicz. 2025. "AI in Medical Imaging and Image Processing" Journal of Clinical Medicine 14, no. 12: 4153. https://doi.org/10.3390/jcm14124153
APA StyleNurzynska, K., Strzelecki, M., Piórkowski, A., & Obuchowicz, R. (2025). AI in Medical Imaging and Image Processing. Journal of Clinical Medicine, 14(12), 4153. https://doi.org/10.3390/jcm14124153