Digital Health in Parkinson’s Disease and Atypical Parkinsonism—New Frontiers in Motor Function and Physical Activity Assessment: Review
Abstract
:1. Introduction
2. Methods of the Literature Review
3. Results
3.1. Determinants and Tools for Motor Assessment, Health Technology Devices, and Digital Biomarkers on Typical and Atypical Parkinson’s Disease
3.1.1. Digital Health Technologies Role in PD and Atypical PD
Wearable Sensors for Motion and Gait Analysis
Digital and Tablet-Based Motor Assessments
Advanced Motion Capture and AI-Enhanced Analysis
Neuroimaging and Clinical Evaluation
Data Collection and Analysis
3.1.2. Digital Biomarkers—Impact on PD and Atypical PD
3.2. The Impact of Physical Activity Monitored Through Digital Health Tools on Only People PD
3.2.1. Activity Daily Living (ADL) Quantified by Digital Health Tools
3.2.2. Physical Activity Type—Movement of Hands Related to Digital Technologies Tools
3.2.3. Physical Activity and Wearable Devices for the Assessment of Gait, Postural Control, and Functional Mobility in Parkinson’s Disease Subtypes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Battista, L.; Romaniello, A. A New Wrist-Worn Tool Supporting the Diagnosis of Parkinsonian Motor Syndromes. Sensors 2024, 24, 1965. [Google Scholar] [CrossRef]
- Surguchov, A.; Emamzadeh, F.N. Parkinson’s disease: Biomarkers, Treatment, and Risk Factors. Front. Neurosci. 2018, 12, 612. [Google Scholar] [CrossRef]
- Löhle, M.; Timpka, J.; Bremer, A.; Khodakarami, H.; Gandor, F.; Horne, M.; Ebersbach, G.; Odin, P.; Storch, A. Application of single wrist-wearable accelerometery for objective motor diary assessment in fluctuating Parkinson’s disease. npj Digit. Med. 2023, 6, 194. [Google Scholar] [CrossRef] [PubMed]
- Kirk, C.; Zia, U.; Rehman, R.; Galna, B.; Alcock, L.; Ranciati, S.; Palmerini, L.; Garcia-Aymerich, J.; Hansen, C.; Schaeffer, E.; et al. Can digital mobility assessment enhance the clinical assessment of disease severity in Parkinson’s disease? J. Park. Dis. 2023, 13, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Geerlings, A.D.; Kapelle, W.M.; Sederel, C.J.; Tenison, E.; Wijngaards-Berenbroek, H.; Meinders, M.J.; Munneke, M.; Ben-Shlomo, Y.; Bloem, B.R.; Darweesh, S.K.L. Caregiver burden in Parkinson’s disease: A mixed-methods study. BMC Med. 2023, 21, 247. [Google Scholar] [CrossRef]
- Agley, L.; Hartley, P.; Duffill, D.; Iqbal, A.; Mackett, A.; Rennie, K.L.; Lafortune, L. Digital intervention promoting physical activity in people newly diagnosed with Parkinson’s disease: Feasibility and acceptability of the knowledge, exercise-efficacy and participation (KEEP) intervention. J. Park. Dis. 2024, 14, 1193–1210. [Google Scholar] [CrossRef]
- Torrado, J.C.; Husebo, B.S.; Allore, H.G.; Erdal, A.; Fæø, S.E.; Reithe, H.; Førsund, E.; Tzoulis, C.; Patrascu, M. Digital phenotyping by wearable-driven artificial intelligence in older adults and people with Parkinson’s disease: Protocol of the mixed method, cyclic Active Aging study. PLoS ONE 2022, 17, e0275747. [Google Scholar] [CrossRef]
- Dominey, T.; Kehagia, A.A.; Gorst, T.; Pearson, E.; Murphy, F.; King, E.; Carroll, C. Introducing the Parkinson’s KinetiGraph into Routine Parkinson’s Disease Care: A 3-Year Single Centre Experience. J. Park. Dis. 2020, 10, 1827–1832. [Google Scholar] [CrossRef]
- Greene, B.R.; Premoli, I.; McManus, K.; McGrath, D.; Caulfield, B. Predicting fall counts using wearable sensors: A novel digital biomarker for Parkinson’s disease. Sensors 2021, 22, 54. [Google Scholar] [CrossRef]
- Raccagni, C.; Sidoroff, V.; Paraschiv-Ionescu, A.; Roth, N.; Schönherr, G.; Eskofier, B.; Gassner, H.; Kluge, F.; Teatini, F.; Seppi, K.; et al. Effects of physiotherapy and home-based training in parkinsonian syndromes: Protocol for a randomised controlled trial (Mobility APP). BMJ Open 2024, 14, e081317. [Google Scholar] [CrossRef]
- Shah, V.V.; McNames, J.; Mancini, M.; Carlson-Kuhta, P.; Nutt, J.G.; El-Gohary, M.; Lapidus, J.A.; Horak, F.B.; Curtze, C. Digital biomarkers of mobility in Parkinson’s disease during daily living. J. Park. Dis. 2020, 10, 1099–1111. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, E.; Galli, S.; Alborghetti, M.; De Carolis, L.; Zampogna, A.; Hansen, C.; Vuillerme, N.; Suppa, A.; Pontieri, F.E. Four Days Are Enough to Provide a Reliable Daily Step Count in Mild to Moderate Parkinson’s Disease through a Commercial Smartwatch. Sensors 2023, 23, 8971. [Google Scholar] [CrossRef] [PubMed]
- Zajac, J.A.; Porciuncula, F.; Cavanaugh, J.T.; McGregor, C.; Harris, B.A.; Smayda, K.E.; Awad, L.N.; Pantelyat, A.; Ellis, T.D. Feasibility and Proof-of-Concept of Delivering an Autonomous Music-Based Digital Walking Intervention to Persons with Parkinson’s Disease in a Naturalistic Setting. J. Park. Dis. 2023, 13, 1253–1265. [Google Scholar] [CrossRef]
- Bek, J.; Leventhal, D.; Groves, M.; Growcott, C.; Poliakoff, E. Moving online: Experiences and potential benefits of digital dance for older adults and people with Parkinson’s disease. PLoS ONE 2022, 17, e0277645. [Google Scholar] [CrossRef]
- Hinchliffe, C.; Rehman, R.Z.U.; Pinaud, C.; Branco, D.; Jackson, D.; Ahmaniemi, T.; Guerreiro, T.; Chatterjee, M.; Manyakov, N.V.; Pandis, I.; et al. Evaluation of walking and gait to identify physical and mental fatigue in neurodegenerative and imuune disorders: Preliminary insights from the IDEA-FAST feasibility study. J. Neuroeng. Rehabil. 2024, 21, 94. [Google Scholar] [CrossRef]
- Lipsmeier, F.; Taylor, K.I.; Postuma, R.B.; Volkova-Volkmar, E.; Kilchenmann, T.; Mollenhauer, B.; Bamdadian, A.; Popp, W.L.; Cheng, W.Y.; Zhang, Y.P.; et al. Reliability and validity of the Roche PD mobile application for remote monitoring of early Parkinson’s disease. Sci. Rep. 2022, 12, 12081. [Google Scholar] [CrossRef]
- Angelucci, A.; Damiani, M.; Aliverti, A.; Scarlato, M. A smart tablet application to quantitatively assess the dominant hand dexterity. Comput. Methods Programs Biomed. 2023, 238, 107621. [Google Scholar] [CrossRef] [PubMed]
- Bouça-Machado, R.; Pona-Ferreira, F.; Leitão, M.; Clemente, A.; Vila-Viçosa, D.; Kauppila, L.A.; Costa, R.M.; Matias, R.; Ferreira, J.J. Feasibility of a Mobile-Based System for Unsupervised Monitoring in Parkinson’s Disease. Sensors 2021, 21, 4972. [Google Scholar] [CrossRef]
- Bendig, J.; Spanz, A.; Leidig, J.; Frank, A.; Stahr, M.; Reichmann, H.; Loewenbrück, K.F.; Falkenburger, B.H. Measuring the Usability of eHealth solutions for patients with Parkinson Disease: Observational Study. JMIR Form. Res. 2022, 6, e39954. [Google Scholar] [CrossRef]
- Su, C.; Hou, Y.; Xu, J.; Xu, Z.; Zhou, M.; Ke, A.; Li, H.; Xu, J.; Brendel, M.; Maasch, J.R.M.A.; et al. PACE subtypes and repurposing treatments through integrative analyses of multimodal data. npj Digit. Med. 2024, 7, 184. [Google Scholar] [CrossRef]
- Taylor, J.C.; Heuer, H.W.; Clark, A.L.; Wise, A.B.; Manoochehri, M.; Forsberg, L.; Mester, C.; Rao, M.; Brushaber, D.; Kramer, J.; et al. Feasibility and acceptability of remote smartphone cognitive testing in frontotemporal dementia research. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2023, 15, e12423. [Google Scholar] [CrossRef] [PubMed]
- Iseki, C.; Suzuki, S.; Fukami, T.; Yamada, S.; Hayasaka, T.; Kondo, T.; Hoshi, M.; Ueda, S.; Kobayashi, Y.; Ishikawa, M.; et al. Fluctuations in Upper and Lower Body Movement during Walking in Normal Pressure Hydrocephalus and Parkinson’s Disease Assessed by Motion Capture with a Smartphone Application, TDPT-GT. Sensors 2023, 23, 9263. [Google Scholar] [CrossRef]
- Wang, F.; Pan, Y.; Zhang, M.; Hu, K. Predicting the onset of freezing of gait in Parkinson’s disease. BMC Neurol. 2022, 22, 213. [Google Scholar] [CrossRef] [PubMed]
- Prime, M.; McKay, J.L.; Bay, A.A.; Hart, A.R.; Kim, C.; Abraham, A.; Hackney, M.E. Differentiating Parkinson disease subtypes using clinical balance measures. J. Neurol. Phys. Ther. 2020, 44, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Santini, S.; Rampioni, M.; Stara, V.; Di Rosa, M.; Paciaroni, L.; Paolini, S.; Fioretti, S.; Valenza, S.; Riccardi, G.R.; Pelliccioni, G. Cognitive digital intervention for older patients with Parkinson’s disease during COVID-19: A mixed-method pilot study. Int. J. Environ. Res. Public Health 2022, 19, 14844. [Google Scholar] [CrossRef]
- Klaver, E.C.; van Vugt, J.P.P.; Bloem, B.R.; van Wezel, R.J.A.; Nonnekes, J.; Tjepkema-Cloostermans, M.C. Good vibrations: Tactile cueing for freezing of gait in Parkinson’s disease. J. Neurol. 2023, 270, 3424–3432. [Google Scholar] [CrossRef]
- Templeton, J.M.; Poellabauer, C.; Schneider, S. Classification of Parkinson’s disease and its stages using machine learning. Sci. Rep. 2022, 12, 14036. [Google Scholar] [CrossRef]
- Nuic, D.; van de Weijer, S.; Cherif, S.; Skrzatek, A.; Zeeboer, E.; Olivier, C.; Corvol, J.C.; Foulon, P.; Pastor, J.Z.; Mercier, G.; et al. Home-based exergaming to treat gait and balance disorders in patients with Parkinson’s disease: A phase II randomized controlled trial. Eur. J. Neurol. 2023, 31, e16055. [Google Scholar] [CrossRef]
- Campo-Prieto, P.; Cancela-Carral, J.M.; Rodríguez-Fuentes, G. Immersive Virtual Reality Reaction Time Test and Relationship with the Risk of Falling in Parkinson’s Disease. Sensors 2023, 23, 4529. [Google Scholar] [CrossRef]
- Mammen, J.R.; Speck, R.M.; Stebbins, G.M.; Müller, M.L.T.M.; Yang, P.T.; Campbell, M.; Cosman, J.; Crawford, J.E.; Dam, T.; Hellsten, J.; et al. Mapping Relevance of Digital Measures to Meaningful Symptoms and Impacts in Early Parkinson’s Disease. J. Park. Dis. 2023, 13, 589–607. [Google Scholar] [CrossRef]
- Alnes, S.R.; Lærum-Onsager, E.; Bye, A.; Vistven, A.; Franzén, E.; Holst, M.; Brovold, T. Mobile health technology, exercise adherence and optimal nutrition post rehabilitation among people with Parkinson’s Disease (mHEXANUT)—A randomized controlled trial protocol. BMC Neurol. 2023, 23, 93. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.; Tonkin, E.L.; Masullo, A.; Jovan, F.; Sikdar, A.; Khaire, P.; Mirmehdi, M.; McConville, R.; Tourte, G.J.L.; Whone, A.; et al. A multimodal dataset of real-world mobility activities in Parkinson’s disease. Sci. Data 2023, 10, 918. [Google Scholar] [CrossRef]
- Girnis, J.L.; Cavanaugh, J.T.; Baker, T.C.; Duncan, R.P.; Fulford, D.; LaValley, M.P.; Lawrence, M.; Nordahl, T.; Porciuncula, F.; Rawson, K.S.; et al. Natural Walking Intensity in Persons With Parkinson Disease. J. Neurol. Phys. Ther. 2023, 47, 146–154. [Google Scholar] [CrossRef]
- Sidoroff, V.; Raccagni, C.; Kaindlstorfer, C.; Eschlboeck, S.; Fanciulli, A.; Granata, R.; Eskofier, B.; Seppi, K.; Poewe, W.; Willeit, J.; et al. Characterization of gait variability in multiple atrophy system and Parkinson’s disease. J. Neurol. 2021, 268, 1770–1779. [Google Scholar] [CrossRef] [PubMed]
- Lützow, L.; Teckenburg, I.; Koch, V.; Marxreiter, F.; Jukic, J.; Stallforth, S.; Regensburger, M.; Winkler, J.; Klucken, J.; Gaßner, H. the effects of an individualized smartphone-based exercise program on self-defined motor tasks in Parkinson’s disease: A long-term feasibility study. J. Patient-Rep. Outcomes 2023, 7, 106. [Google Scholar] [CrossRef]
- Coravos, A.; Khozin, S.; Mandl, K.D. Developing and Adopting Safe and Effective Digital Biomarkers to Improve Patient Outcomes. npj Digit. Med. 2019, 2, 14. [Google Scholar] [CrossRef]
- Adams, J.L.; Kangarloo, T.; Tracey, B.; O’donnell, P.; Volfson, D.; Latzman, R.D.; Zach, N.; Alexander, R.; Bergethon, P.; Cosman, J.; et al. Using a Smartwatch and Smartphone to Assess Early Parkinson’s Disease in the WATCH-PD Study. npj Park. Dis. 2023, 9, 64. [Google Scholar] [CrossRef] [PubMed]
- Burq, M.; Rainaldi, E.; Ho, K.C.; Chen, C.; Bloem, B.R.; Evers, L.J.W.; Helmich, R.C.; Myers, L.; Marks, W.J.; Kapur, R. Virtual Exam for Parkinson’s Disease Enables Frequent and Reliable Remote Measurements of Motor Function. npj Digit. Med. 2022, 5, 65. [Google Scholar] [CrossRef]
- Johnson, S.; Kantartjis, M.; Severson, J.; Dorsey, R.; Adams, J.L.; Kangarloo, T.; Kostrzebski, M.A.; Best, A.; Merickel, M.; Amato, D.; et al. Wearable sensor-based assessments for remotely screening early-stage Parkinson’s Disease. Sensors 2024, 24, 5637. [Google Scholar] [CrossRef]
- Schootemeijer, S.; de Vries, N.M.; Macklin, E.A.; Roes, K.C.B.; Joosten, H.; Omberg, L.; Ascherio, A.; Schwarzschild, M.A.; Bloem, B.R. The STEPWISE study: Study protocol for a smartphone-based exercise solution for people with Parkinson’disease (randomized controlled trial). BMC Neurol. 2023, 23, 323. [Google Scholar] [CrossRef]
- Hill, D.L.; Stephenson, D.; Brayanov, J.; Claes, K.; Badawy, R.; Sardar, S.; Fisher, K.; Lee, S.J.; Bannon, A.; Roussos, G.; et al. Metadata Framework to Support Deployment of Digital Health Technologies in Clinical Trials in Parkinson’s Disease. Sensors 2022, 22, 2136. [Google Scholar] [CrossRef] [PubMed]
Motor Tools | Instruments | Digital Biomarkers |
---|---|---|
MDS-UPDRS Motor Examination section (part 3) of the Unified Parkinson’s Disease Rating Scale | Wrist-worn tri-axial accelerometer | aRMS |
H&Y Hoehn & Yahr | Smart tablet | BL |
TUG Time-Up-and Go | Capacitive pen | ICC |
9 NHTP Nine-Hole Peg Test | adPMD | CPF |
SPDDS Self-assessment Parkinson’s Disease disability score | PKGTM | FE |
PIGD Postural instability/gait difficulty | In-sole wearable sensors-based gait analysis | FI |
UMSARS Unified Multiple System Atrophy rating scale | Tablet-based neurocognitive features | FRE |
BBS Berg balance scale | MaxQda software | Gini index |
STS/5TSTS Sit to stand; | Stop-watch | PDTs |
6MKT six-minute walk test | OPAL-APDM | Mobility risk score |
SEE Self-efficacy for exercise | Gene active | Wisconsin Card |
MOEES Multifactorial outcome expectation for exercise scale | Fibit sense | |
KEPA-PD Knowledge on exercise and physical activity in PD questionnaire | Empatica E4 | |
RPAQ Recent physical activity questionnaire | Oura ring | |
G-SAP Gait-specific attentional profile | Ipsilon | |
CRS Clinical rating scales; | eHealth platform | |
PAM Physical activity monitoring | Wearable sensors on the feet-IMU | |
IPAQ International physical activity questionnaire | Accelerometer spectra | |
FOG-Q Freezing of gait questionnaire | GLMN | |
SCOPA-AUT Scales for outcomes in Parkinson’s disease autonomic | AI | |
10-MWT 10-m Walk Test | SPECT tomograph | |
TDPT-GT Three-Dimensional Pose Tracker for Gait Test | QTUG | |
SWST Stand-Walk-Sit-Test | Roche PD mobile application v.2 | |
TUG-C-IVR Cognitive IVR | Android smartphone | |
GABS-B Gait and Balance Scale Part B | ALLFTD-mApp | |
ABC Activity-specific Balance Scale | MR-005 system | |
mKinetikos system | ||
TGPT-GT motion- capture application | ||
Garmin Vivismart 4 | ||
FlexiForce A401 | ||
Adafruit mini motor disc 1202 | ||
Exergaming | ||
IVR | ||
TelePark tablet app. | ||
REMAP-Real-word |
Authors | Participants | Characteristics | Age/Gender | Tools | Conclusions |
---|---|---|---|---|---|
Löhle M., et al. (2023) [3] Waking, ADL | 63 participants PD with motor fluctuations 46% men | VALIDATE-PD study synopsis (disease and symptom duration, duration of fluctuation, clinical phenotype, reported motor complications, PD medications), n = 40-German subcohort, n = 23-Swedish subcohort | About 66 years | Wearable accelerometer-based digital PD Motor diary Kinetograph |
|
Kirk C., et al. (2023) [4] Walking | 88-PD, 111-healthy control group | ICICLE Gait study (monitoring gait, cognitive decline and falls in early PD-36 months) Real-world gait assessment protocol | 58–81 years | Wearable devices, Accelerometer |
|
Templeton J. M., et al. (2022) [27] Walking, Neurocognitive speaking | 50-PD 50-control group (CP) | Functional test: e.g., motor, speech, memory, executive function), Multifunctional test | 50–85 years | Tablet-based neurocognitive features |
|
Prime M., et al. (2020) [24] Walking | 104 PD, 43-female, 61-male | PIGD phenotype-67 participants, TG phenotype-37, 30 participants with assistive devices | 68 ± 9 years | Stop-watch |
|
Shah V.V., et al. (2020) [11] Walking | 29-PD 27-HC | 43 digital biomarkers of mobility (e.g., pitch at initial contact, at toe off, gait speed, stride, turn duration length, swing, cadence, double support, sagittal range of motion, step in turn). | 67.66 ± 5.27 years | Opal-APDM (three inertial sensors): Both feet, Lumbar region, Wrists |
|
Torrado J.C., et al. (2022) [7] Walking, ADL | First study: 15-PD/15 Helgetun residents-CG Second study: 90 dyads from Digi Park, 90 participants from Helgetun branch (residents and people on the waiting list) | Active Aging framework cyclic study for four years, Digi Park Branch, Helgetun branch, Device monitoring and human data collection: “device level” and “human level” | Older adults | Smartwatch-Fitbit sense, Smartwatch-Empatica E4, Smart ring-Oura Ring-wrist skin, Ipsilon-interactive task-based digital cognitive assessment tool, eHealth platform | Digital phenotyping can investigate clinical diagnosis, symptom tracking, and treatment response in PD patients Through explicable Artificial Intelligence (XAI), it is possible to evaluate decisions, modify parameters, and verify biases. |
Greene B.R., et al. (2021) [9] Walking | 1057 participants, three cohorts: 1. healthy community-dwelling older adults (1015) 2. PD1-longitudinal study-Order of Saint Francis (15), 3. PD2-cross sectional study, less impaired than PD1(27). | Control group-first cohort, PD1-12.1 falls/participant for 24 weeks, through daily falls diaries PD2-0.37 falls/participant measured retrospectively, self-reported | 61.3–74.4 years | Wearable inertial sensors (QTUG-Kinesis Health technologies) | Through a detailed kinematic assessment, it is possible to predict fall occurrences using two pre-existing trained models (the FRE model and the Mobility model), which have previously been evaluated for fall risk assessment. |
Lipsmeier, F., et al. (2022) [16] Walking, ADL, Movement of hands, Neurocognitive speaking | 316 participants early-stage PD | PASADENA study22 | - | Roche PD mobile application v2, Android smartphone, Smartwatch |
|
Zajac J.A., et al., 2023 [13] Walking | 23-PD | Clinical Study (30-min sessions of unsupervised, overground walking with music-based cues) | About 66 years | MR-005 system |
|
Bouça-Machado R., et al., 2021 [18] Walking, Movement of hands | 20-PD | Clinical Study (daily survey, three weekly active tests, performance of monthly in-person clinical assessment) | 60.8 ± 11.2 years | mKinetikos system |
|
Bianchini E et al., 2023 [12] Walking | 56-PD patients | Clinical study investigating the minimum number of days required to reliably estimate the average daily steps in PD patients | 69.5 ± 7.8 years | Garmin Vivosmart 4, smartwatch |
|
Klaver E. C. et al., 2023 [26] Walking | 40-PD | Clinicat study (Monitoring gait for recent history of disabling or regular FOG ON dopaminergic state OFF dopaminergic state) | 66 (60–74) years | Vibrating socks motor control unit, pressure sensor (FlexiForce A401 pressure sensor) and vibration motor (Adafruit Mini Motor Disc 1201) |
|
Nuic D. et al., 2024 [28] Walking | 50 patients 25-PD 25-Control Group | Clinical Study | About 69 years | Home-based, tailored, exergaming training system |
|
Campo-Prieto P. et al., 2023 [29] Walking | 26 PD 10-Fallers 16-Non-Fallers | Clinical Study (exploring the feasibility of reaction time tests performed in IVR as predictors of falls) | 69.73 ± 6.32 years | IVR Immersive virtual reality |
|
Mammen J.R. et al., 2023 [30] Walking, Movement of hands, Neurocognitive speaking | 40-PD | Clinical Study 12-month multicenter monitoring PD symptoms and disease progression in people with early, untreated PD | - | WATCH-PD |
|
Bendig J. et al., 2022 [19] Waking, Movement of hands | 18-PD | Observational Study | 69 (37–86) years | eHealth solutions, including 3D-camera system, Wearable system (PDMonitor mobile app.), Tablet app. (TelePark tablet app) |
|
Alnes R.S. et al., 2023 [31] Walking | 100-PD 50-Intervention Group 50-Control Group | Clinical Study-controlled trial protocol self-management exercise and nutritional protocol | ≥40 years, | Garmin Vivosmart 4 (Mhealth system) |
|
Bek J. et al., 2022 [14] Walking | 149-OA 178-PD | Clinical Study 12-month participation | 50–89 years 47–88 years | Digital home dance program |
|
Morgan C. et al., 2023 [32] Walking | 24 participants, 12-PD 12-Control Group | Clinical Study (Sensor-based collected data for 5 days) | 61.25 years 59.25 years | REMAP-REal-world Mobility Activities in Parkinson’s disease Wearable wrist-worn accelerometer, Skeleton |
|
Girnis J.L. et al., 2023 [33] Walking | 82-PD | Clinical Study (cross-sectional analysis of low to moderate walking intensity) | 67.5 ± 8.4 years | Accelerometer SAM on legs device (Step watch) |
|
Geerlings A.D., et al. (2023) [5] ADL | 504-PD 17-informal givers | Cross-sectional study with quantitative and qualitative (semi-structured interviews) approaches-PRIME-NL | 50–70 years | Questionnaires |
|
Santini S., et al. (2022) [25] ADL, Neurocognitive speaking | 18 PD, 7-females 11-males | Digital cognitive rehabilitation (CTR) treatment, Face-to-face rehabilitation method, QUANT data, QUAL data | 73.1 ± 4.8 years | Semi-structured topic-guide interviews digitally recorded and transcribed verbatim, MaxQda software |
|
Agley L., et al. (2024) [6] ADL | 29-PD | 8 weeks KEEP study: 6 interactive digital modules, 4 online live group discussions | 67.3 ± 10.8 years | Wrist accelerometer (GENE active), Telephone |
|
Wang F., et al. (2022) [23] ADL | 68-FoG group, 115-non-FoG group, | PPMI cohort, observational study, Five years | 52.8–69.6 years | Siemens or General electric SPECT tomograph |
|
Dominey T. et al., 2020 [8] ADL | 166 PD patients FU = 71 NP = 78 | Clinical Study (PKG™ monitoring for 3–6 months) | 46–85 years 39–87 years | Parkinson’s KinetiGraph (PKG™), wrist-worn device that provides a continuous measure of movement |
|
Battista L., et al. (2024) [1] Movement of hands | 59-PD 41-healthy controls | First step: Continuous recording, Second step: Active test | 60–70 years | Wrist-worn tri-axial accelerometer |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bacanoiu, M.V.; Rusu, L.; Marin, M.I.; Piele, D.; Rusu, M.R.; Danoiu, R.; Danoiu, M. Digital Health in Parkinson’s Disease and Atypical Parkinsonism—New Frontiers in Motor Function and Physical Activity Assessment: Review. J. Clin. Med. 2025, 14, 4140. https://doi.org/10.3390/jcm14124140
Bacanoiu MV, Rusu L, Marin MI, Piele D, Rusu MR, Danoiu R, Danoiu M. Digital Health in Parkinson’s Disease and Atypical Parkinsonism—New Frontiers in Motor Function and Physical Activity Assessment: Review. Journal of Clinical Medicine. 2025; 14(12):4140. https://doi.org/10.3390/jcm14124140
Chicago/Turabian StyleBacanoiu, Manuela Violeta, Ligia Rusu, Mihnea Ion Marin, Denisa Piele, Mihai Robert Rusu, Raluca Danoiu, and Mircea Danoiu. 2025. "Digital Health in Parkinson’s Disease and Atypical Parkinsonism—New Frontiers in Motor Function and Physical Activity Assessment: Review" Journal of Clinical Medicine 14, no. 12: 4140. https://doi.org/10.3390/jcm14124140
APA StyleBacanoiu, M. V., Rusu, L., Marin, M. I., Piele, D., Rusu, M. R., Danoiu, R., & Danoiu, M. (2025). Digital Health in Parkinson’s Disease and Atypical Parkinsonism—New Frontiers in Motor Function and Physical Activity Assessment: Review. Journal of Clinical Medicine, 14(12), 4140. https://doi.org/10.3390/jcm14124140