Sugammadex for Neuromuscular Blockade Reversal: A Narrative Review
Abstract
1. Introduction
2. Pharmacology
3. Clinical Applications
4. Efficacy and Safety
5. Economic and Operational Impact
Study Details | Primary Outcomes and Key Results | Secondary Outcomes and Clinical Implications |
---|---|---|
Azimaraghi et al., 2023 [83]; Retrospective; N = 29,316 | PLOS-ACF reduced by 9.5 min; direct cost ↓ USD 77 (p < 0.001). | Older/high-risk: ↓ 18.2 min and USD 176; PONV lower (17.2% vs. 19.6%). |
Wachtendorf et al., 2023 [82]; Registry analysis; N = 79,474 | Direct cost ↓ 1.3%; total per-case ↓ USD 232 (p = 0.002). | Low-risk: USD 1,042 saved; high-risk: USD 620 ↑ (p < 0.001). |
Kheterpal et al., 2020 [62]; Multicenter; N = 45,712 | PPCs: 3.5% vs. 4.8% (Sugammadex vs. Neostigmine); OR = 0.70. | ↓ pneumonia, respiratory failure; supports pulmonary benefit. |
Togioka et al., 2020 [64]; RCT; N = 200 | No PPC diff; ↓ residual blockade with Sugammadex (p < 0.001). | ↓ 30-day readmissions (p = 0.03); may improve outcomes. |
Hurford et al., 2020 [81]; Cost model (US) | Cost-effective if OR time ≥ USD 8.60/min. | Favored in high-risk or efficiency-driven scenarios. |
Martinez-Ubieto et al., 2021 [84]; Spain; N ≈ 537,931 | Net savings €57.1 M/year with sugammadex. | Fewer complications; system-wide cost offsets. |
Jiang et al., 2021 [85]; US model; N = 100,000 | ↓ PPCs → net savings ~USD 3.08M (~USD 309/procedure). | Fewer complications drive economic benefit. |
Lan et al., 2023 [90]; Taiwan; N = 1784 | Faster recovery; ↓ bradycardia (p < 0.001). | Higher cost not justified in low-cost setting. |
6. Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thilen, S.R.; Weigel, W.A.; Todd, M.M.; Dutton, R.P.; Lien, C.A.; Grant, S.A.; Szokol, J.W.; Eriksson, L.I.; Yaster, M.; Grant, M.D.; et al. 2023 American Society of Anesthesiologists Practice Guidelines for Monitoring and Antagonism of Neuromuscular Blockade: A Report by the American Society of Anesthesiologists Task Force on Neuromuscular Blockade. Anesthesiology 2023, 138, 13–41. [Google Scholar] [CrossRef] [PubMed]
- Iavarone, I.G.; Al-Husinat, L.; Vélez-Páez, J.L.; Robba, C.; Silva, P.L.; Rocco, P.R.M.; Battaglini, D. Management of Neuromuscular Blocking Agents in Critically Ill Patients with Lung Diseases. J. Clin. Med. 2024, 13, 1182. [Google Scholar] [CrossRef] [PubMed]
- Blum, F.E.; Locke, A.R.; Nathan, N.; Katz, J.; Bissing, D.; Minhaj, M.; Greenberg, S.B. Residual Neuromuscular Block Remains a Safety Concern for Perioperative Healthcare Professionals: A Comprehensive Review. J. Clin. Med. 2024, 13, 861. [Google Scholar] [CrossRef] [PubMed]
- Shay, D.; Wongtangman, K.; Eikermann, M.; Schaefer, M.S. The effects of acetylcholinesterase inhibitors on morbidity after general anesthesia and surgery. Neuropharmacology 2020, 173, 108134. [Google Scholar] [CrossRef]
- Hunter, J.M. Reversal of residual neuromuscular block: Complications associated with perioperative management of muscle relaxation. Br. J. Anaesth. 2017, 119, i53–i62. [Google Scholar] [CrossRef]
- Gallanosa, A.; Stevens, J.B.; Hendrix, J.M.; Quick, J. Glycopyrrolate. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2025. [Google Scholar]
- Bash, L.D.; Turzhitsky, V.; Mark, R.J.; Hofer, I.S.; Weingarten, T.N. Post-operative urinary retention is impacted by neuromuscular block reversal agent choice: A retrospective cohort study in US hospital setting. J. Clin. Anesth. 2024, 93, 111344. [Google Scholar] [CrossRef]
- BRIDION. FDA Drug Label. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=9e3eb206-5c35-2c93-e053-2a95a90a9df0 (accessed on 14 April 2025).
- Dubovoy, T.Z.; Saager, L.; Shah, N.J.; Colquhoun, D.A.; Mathis, M.R.; Kapeles, S.; Mentz, G.; Kheterpal, S.; Vaughn, M.T. Utilization Patterns of Perioperative Neuromuscular Blockade Reversal in the United States: A Retrospective Observational Study from the Multicenter Perioperative Outcomes Group. Anesth. Analg. 2020, 131, 1510–1519. [Google Scholar] [CrossRef]
- Hristovska, A.M.; Duch, P.; Allingstrup, M.; Afshari, A. Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults. Cochrane Database Syst. Rev. 2017, 8, Cd012763. [Google Scholar] [CrossRef]
- Bowdle, T.A.; Haththotuwegama, K.J.; Jelacic, S.; Nguyen, S.T.; Togashi, K.; Michaelsen, K.E. A Dose-finding Study of Sugammadex for Reversal of Rocuronium in Cardiac Surgery Patients and Postoperative Monitoring for Recurrent Paralysis. Anesthesiology 2023, 139, 6–15. [Google Scholar] [CrossRef]
- Thilen, S.R.; Sherpa, J.R.; James, A.M.; Cain, K.C.; Treggiari, M.M.; Bhananker, S.M. Management of Muscle Relaxation with Rocuronium and Reversal with Neostigmine or Sugammadex Guided by Quantitative Neuromuscular Monitoring. Anesth. Analg. 2024, 139, 536–544. [Google Scholar] [CrossRef]
- Koo, C.H.; Lee, S.; Yim, S.; Bae, Y.K.; Park, I.; Oh, A.Y. Is quantitative neuromuscular monitoring mandatory after administration of the recommended dose of sugammadex? A prospective observational study. Anaesth. Crit. Care Pain. Med. 2024, 43, 101445. [Google Scholar] [CrossRef] [PubMed]
- Kenđel, A.; Piantanida, I.; Miljanić, S. Encapsulation of Vecuronium and Rocuronium by Sugammadex Investigated by Surface-Enhanced Raman Spectroscopy. Molecules 2025, 30, 231. [Google Scholar] [CrossRef]
- Mohanraj, S.K.P.; Tulasi, R.; Subramanian, V.C.; Dandu, B.S.R.; Guvvala, V.; Kota, S.R. A study on structural characterization of potential impurities of Sugammadex sodium using LC/ESI/QTOF/MS/MS and NMR. J. Pharm. Biomed. Anal. 2022, 207, 114419. [Google Scholar] [CrossRef] [PubMed]
- Ploeger, B.A.; Smeets, J.; Strougo, A.; Drenth, H.J.; Ruigt, G.; Houwing, N.; Danhof, M. Pharmacokinetic-pharmacodynamic model for the reversal of neuromuscular blockade by sugammadex. Anesthesiology 2009, 110, 95–105. [Google Scholar] [CrossRef] [PubMed]
- de Kam, P.J.; Hou, J.; Wang, Z.; Lin, W.H.; van den Heuvel, M. Pharmacokinetics of sugammadex 16 mg/kg in healthy Chinese volunteers. Int. J. Clin. Pharmacol. Ther. 2015, 53, 456–461. [Google Scholar] [CrossRef]
- Min, K.C.; Lasseter, K.C.; Marbury, T.C.; Wrishko, R.E.; Hanley, W.D.; Wolford, D.G.; Udo de Haes, J.; Reitmann, C.; Gutstein, D.E. Pharmacokinetics of sugammadex in subjects with moderate and severe renal impairment. Int. J. Clin. Pharmacol. Ther. 2017, 55, 746–752. [Google Scholar] [CrossRef]
- Elkhateb, R.; Campbell, D.; Zhao, X.; Mentz, G.; Sharawi, N.; Sathish Kumar, S.; Mhyre, J.; Kheterpal, S.; Colquhoun, D. Neuromuscular Blockade and Antagonism in Patients with Renal Impairment: A Multicenter Retrospective Cross Sectional Study. Anesthesiology 2025, 142, 1009–1024. [Google Scholar] [CrossRef]
- Panhuizen, I.F.; Gold, S.J.; Buerkle, C.; Snoeck, M.M.; Harper, N.J.; Kaspers, M.J.; van den Heuvel, M.W.; Hollmann, M.W. Efficacy, safety and pharmacokinetics of sugammadex 4 mg kg-1 for reversal of deep neuromuscular blockade in patients with severe renal impairment. Br. J. Anaesth. 2015, 114, 777–784. [Google Scholar] [CrossRef]
- Cammu, G.; Van Vlem, B.; van den Heuvel, M.; Stet, L.; el Galta, R.; Eloot, S.; Demeyer, I. Dialysability of sugammadex and its complex with rocuronium in intensive care patients with severe renal impairment. Br. J. Anaesth. 2012, 109, 382–390. [Google Scholar] [CrossRef]
- Oh, M.W.; Mohapatra, S.G.; Pak, T.; Hermawan, A.; Chen, C.A.; Thota, B.; Chen, J.; Siu, E.; Park, J.; Moon, T.S. Sugammadex Versus Neostigmine for Reversal of Neuromuscular Blockade in Patients with Severe Renal Impairment: A Randomized, Double-Blinded Study. Anesth. Analg. 2024, 138, 1043–1051. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Lim, B.-G.; Won, Y.-J.; Oh, S.-K.; Oh, J.-S.; Cho, S.-A. Efficacy and Safety of Sugammadex for the Reversal of Rocuronium-Induced Neuromuscular Blockade in Patients with End-Stage Renal Disease: A Systematic Review and Meta-Analysis. Medicina 2021, 57, 1259. [Google Scholar] [CrossRef] [PubMed]
- Ono, Y.; Fujita, Y.; Kajiura, T.; Okawa, H.; Nakashima, J.; Isobe, H.; Fujiwara, Y. Efficacy and safety of sugammadex in patients undergoing renal transplantation. JA Clin. Rep. 2018, 4, 56. [Google Scholar] [CrossRef]
- Tang, J.; He, R.; Zhang, L.; Xu, S. Safety and Efficacy of 4 mg·kg−1 Sugammadex for Simultaneous Pancreas-Kidney Transplantation Recipients: A Prospective Randomized Trial. Ann. Transplant. 2023, 28, e940211. [Google Scholar] [CrossRef]
- Song, S.; Cho, H.B.; Park, S.Y.; Koo, W.M.; Choi, S.J.; Yoon, S.; Park, S.; Yoo, J.H.; Kim, M.G.; Chung, J.W.; et al. Postoperative mortality in patients with end-stage renal disease according to the use of sugammadex: A single-center retrospective propensity score matched study. Anesth. Pain Med. 2022, 17, 371–380. [Google Scholar] [CrossRef]
- Liao, J.Q.; Shih, D.; Lin, T.Y.; Lee, M.; Lu, C.W. Appropriate dosing of sugammadex for reversal of rocuronium-/vecuronium-induced muscle relaxation in morbidly obese patients: A meta-analysis of randomized controlled trials. J. Int. Med. Res. 2022, 50, 3000605221116760. [Google Scholar] [CrossRef]
- Wang, S.; Dong, Y.; Wang, S.; Han, Y.; Li, Q. The Efficacy and Adverse Effects of Sugammadex and Neostigmine in Reversing Neuromuscular Blockade Inpatients with Obesity Undergoing Metabolic and Bariatric Surgery: A Systematic Review with Meta-Analysis and Trial Sequential Analysis. Medicina 2024, 60, 1842. [Google Scholar] [CrossRef]
- Horrow, J.C.; Li, W.; Blobner, M.; Lombard, J.; Speek, M.; DeAngelis, M.; Herring, W.J. Actual versus ideal body weight dosing of sugammadex in morbidly obese patients offers faster reversal of rocuronium- or vecuronium-induced deep or moderate neuromuscular block: A randomized clinical trial. BMC Anesthesiol. 2021, 21, 62. [Google Scholar] [CrossRef]
- Subramani, Y.; Querney, J.; He, S.; Nagappa, M.; Yang, H.; Fayad, A. Efficacy and Safety of Sugammadex versus Neostigmine in Reversing Neuromuscular Blockade in Morbidly Obese Adult Patients: A Systematic Review and Meta-Analysis. Anesth. Essays Res. 2021, 15, 111–118. [Google Scholar] [CrossRef]
- Abd El-Rahman, A.M.; Othman, A.H.; El Sherif, F.A.; Mostafa, M.F.; Taha, O. Comparison of three different doses sugammadex based on ideal body weight for reversal of moderate rocuronium-induced neuromuscular blockade in laparoscopic bariatric surgery. Minerva Anestesiol. 2017, 83, 138–144. [Google Scholar] [CrossRef]
- Elfawy, D.M.; Saleh, M.; Nofal, W.H. Sugammadex based on ideal, actual, or adjusted body weights for the reversal of neuromuscular blockade in patients undergoing laparoscopic bariatric surgery. Res. Opin. Anesth. Intensive Care 2019, 6, 20–26. [Google Scholar]
- Ornek, D.H.; Tezcan, A.H.; Terzi, H.O.; Yildiz, B.D. Dosage of sugammadex in morbidly obese patients. Ann. Clin. Anal. Med. 2020, 11, S52–S56. [Google Scholar]
- Ajetunmobi, O.; Wong, D.; Perlas, A.; Rajaleelan, W.; Wang, S.; Huszti, E.; Jackson, T.; Chung, F.; Wong, J. Impact of Sugammadex Versus Neostigmine Reversal on Postoperative Recovery Time in Patients with Obstructive Sleep Apnea Undergoing Bariatric Surgery: A Double-Blind, Randomized Controlled Trial. Anesth. Analg. 2025, 140, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Voss, T.; Wang, A.; DeAngelis, M.; Speek, M.; Saldien, V.; Hammer, G.B.; Wrishko, R.; Herring, W.J. Sugammadex for reversal of neuromuscular blockade in pediatric patients: Results from a phase IV randomized study. Paediatr. Anaesth. 2022, 32, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Franz, A.M.; Chiem, J.; Martin, L.D.; Rampersad, S.; Phillips, J.; Grigg, E.B. Case series of 331 cases of sugammadex compared to neostigmine in patients under 2 years of age. Paediatr. Anaesth. 2019, 29, 591–596. [Google Scholar] [CrossRef]
- Li, L.; Jiang, Y.; Zhang, W. Sugammadex for Fast-Track Surgery in Children Undergoing Cardiac Surgery: A Randomized Controlled Study. J. Cardiothorac. Vasc. Anesth. 2021, 35, 1388–1392. [Google Scholar] [CrossRef]
- Lang, B.; Han, L.; Zeng, L.; Zhang, Q.; Chen, S.; Huang, L.; Jia, Z.; Yu, Q.; Zhang, L. Efficacy and safety of sugammadex for neuromuscular blockade reversal in pediatric patients: An updated meta-analysis of randomized controlled trials with trial sequential analysis. BMC Pediatr. 2022, 22, 295. [Google Scholar] [CrossRef]
- Ammar, A.S.; Mahmoud, K.M.; Kasemy, Z.A. A comparison of sugammadex and neostigmine for reversal of rocuronium-induced neuromuscular blockade in children. Acta Anaesthesiol. Scand. 2017, 61, 374–380. [Google Scholar] [CrossRef]
- Gaver, R.S.; Brenn, B.R.; Gartley, A.; Donahue, B.S. Retrospective Analysis of the Safety and Efficacy of Sugammadex Versus Neostigmine for the Reversal of Neuromuscular Blockade in Children. Anesth. Analg. 2019, 129, 1124–1129. [Google Scholar] [CrossRef]
- Richardson, M.G.; Raymond, B.L. Sugammadex Administration in Pregnant Women and in Women of Reproductive Potential: A Narrative Review. Anesth. Analg. 2020, 130, 1628–1637. [Google Scholar] [CrossRef]
- Noguchi, S.; Iwasaki, H.; Shiko, Y.; Kawasaki, Y.; Ishida, Y.; Shinomiya, S.; Ono Uokawa, R.; Mazda, Y. Fetal outcomes with and without the use of sugammadex in pregnant patients undergoing non-obstetric surgery: A multicenter retrospective study. Int. J. Obstet. Anesth. 2023, 53, 103620. [Google Scholar] [CrossRef]
- Kosinová, M.; Stourac, P.; Adamus, M.; Seidlova, D.; Pavlik, T.; Janku, P.; Krikava, I.; Mrozek, Z.; Prochazka, M.; Klucka, J.; et al. Rocuronium versus suxamethonium for rapid sequence induction of general anaesthesia for caesarean section: Influence on neonatal outcomes. Int. J. Obstet. Anesth. 2017, 32, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Stourac, P.; Adamus, M.; Seidlova, D.; Pavlik, T.; Janku, P.; Krikava, I.; Mrozek, Z.; Prochazka, M.; Klucka, J.; Stoudek, R.; et al. Low-Dose or High-Dose Rocuronium Reversed with Neostigmine or Sugammadex for Cesarean Delivery Anesthesia: A Randomized Controlled Noninferiority Trial of Time to Tracheal Intubation and Extubation. Anesth. Analg. 2016, 122, 1536–1545. [Google Scholar] [CrossRef] [PubMed]
- Do, W.; Cho, A.R. What we need to know and do on sugammadex usage in pregnant and lactating women and those on hormonal contraceptives. Anesth. Pain Med. 2023, 18, 114–122. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, H.; Bao, Q.; Zhang, T.; Chen, B.; Ding, J. Sugammadex Versus Neostigmine for Neuromuscular Block Reversal and Postoperative Pulmonary Complications in Patients Undergoing Resection of Lung Cancer. J. Cardiothorac. Vasc. Anesth. 2022, 36, 3626–3633. [Google Scholar] [CrossRef]
- Togioka, B.M.; Schenning, K.J. Optimizing Reversal of Neuromuscular Block in Older Adults: Sugammadex or Neostigmine. Drugs Aging 2022, 39, 749–761. [Google Scholar] [CrossRef]
- Tang, L.W.T.; Varma, M.V.S. Hepatic Impairment and the Differential Effects on Drug Clearance Mechanisms: Analysis of Pharmacokinetic Changes in Disease State. Clin. Pharmacol. Ther. 2025. [Google Scholar] [CrossRef]
- Bruintjes, M.H.; van Helden, E.V.; Braat, A.E.; Dahan, A.; Scheffer, G.J.; van Laarhoven, C.J.; Warlé, M.C. Deep neuromuscular block to optimize surgical space conditions during laparoscopic surgery: A systematic review and meta-analysis. Br. J. Anaesth. 2017, 118, 834–842. [Google Scholar] [CrossRef]
- Murphy, G.S. Neuromuscular Monitoring in the Perioperative Period. Anesth. Analg. 2018, 126, 464–468. [Google Scholar] [CrossRef]
- Lentz, S.; Morrissette, K.M.; Porter, B.A.; DeWitt, K.M.; Koyfman, A.; Long, B. What is the Role of Sugammadex in the Emergency Department? J. Emerg. Med. 2021, 60, 44–53. [Google Scholar] [CrossRef]
- Ross, J.; Ramsay, D.P.; Sutton-Smith, L.J.; Willink, R.D.; Moore, J.E. Residual neuromuscular blockade in the ICU: A prospective observational study and national survey. Anaesthesia 2022, 77, 991–998. [Google Scholar] [CrossRef]
- Renew, J.R.; Ratzlaff, R.; Hernandez-Torres, V.; Brull, S.J.; Prielipp, R.C. Neuromuscular blockade management in the critically Ill patient. J. Intensive Care 2020, 8, 37. [Google Scholar] [CrossRef] [PubMed]
- Apfelbaum, J.L.; Hagberg, C.A.; Connis, R.T.; Abdelmalak, B.B.; Agarkar, M.; Dutton, R.P.; Fiadjoe, J.E.; Greif, R.; Klock, P.A.; Mercier, D.; et al. 2022 American Society of Anesthesiologists Practice Guidelines for Management of the Difficult Airway. Anesthesiology 2022, 136, 31–81. [Google Scholar] [CrossRef]
- Abou Nafeh, N.G.; Aouad, M.T.; Khalili, A.F.; Serhan, F.G.; Sokhn, A.M.; Kaddoum, R.N. Use of Sugammadex in “Cannot Intubate, Cannot Ventilate” Scenarios: A Systematic Review of Case Reports. Anesth. Analg. 2025, 140, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Oh, S.H.; Ryu, S.A. Treatment of rocuronium-induced anaphylaxis using sugammadex—A case report. Anesth. Pain Med. 2021, 16, 56–59. [Google Scholar] [CrossRef]
- Hsieh, Y.L.; Lin, C.R.; Liu, Y.C.; Wang, C.J.; Weng, W.T. The effect of sugammadex versus neostigmine on postoperative nausea and vomiting: A meta-analysis of randomized controlled trials with trial sequential analysis. Minerva Anestesiol. 2023, 89, 434–444. [Google Scholar] [CrossRef]
- Adams, D.R.; Tollinche, L.E.; Yeoh, C.B.; Artman, J.; Mehta, M.; Phillips, D.; Fischer, G.W.; Quinlan, J.J.; Sakai, T. Short-term safety and effectiveness of sugammadex for surgical patients with end-stage renal disease: A two-centre retrospective study. Anaesthesia 2020, 75, 348–352. [Google Scholar] [CrossRef]
- Paredes, S.; Porter, S.B.; Porter, I.E., II; Ross, R.J. Sugammadex use in patients with end-stage renal disease: A historical cohort study. Can. J. Anaesth. 2020, 67, 1789–1797. [Google Scholar] [CrossRef]
- Brueckmann, B.; Sasaki, N.; Grobara, P.; Li, M.K.; Woo, T.; de Bie, J.; Maktabi, M.; Lee, J.; Kwo, J.; Pino, R.; et al. Effects of sugammadex on incidence of postoperative residual neuromuscular blockade: A randomized, controlled study. Br. J. Anaesth. 2015, 115, 743–751. [Google Scholar] [CrossRef]
- Cheong, S.H.; Ki, S.; Lee, J.; Lee, J.H.; Kim, M.H.; Hur, D.; Cho, K.; Lim, S.H.; Lee, K.M.; Kim, Y.J.; et al. The combination of sugammadex and neostigmine can reduce the dosage of sugammadex during recovery from the moderate neuromuscular blockade. Korean J. Anesthesiol. 2015, 68, 547–555. [Google Scholar] [CrossRef]
- Kheterpal, S.; Vaughn, M.T.; Dubovoy, T.Z.; Shah, N.J.; Bash, L.D.; Colquhoun, D.A.; Shanks, A.M.; Mathis, M.R.; Soto, R.G.; Bardia, A.; et al. Sugammadex versus Neostigmine for Reversal of Neuromuscular Blockade and Postoperative Pulmonary Complications (STRONGER): A Multicenter Matched Cohort Analysis. Anesthesiology 2020, 132, 1371–1381. [Google Scholar] [CrossRef]
- Carron, M.; Zarantonello, F.; Tellaroli, P.; Ori, C. Efficacy and safety of sugammadex compared to neostigmine for reversal of neuromuscular blockade: A meta-analysis of randomized controlled trials. J. Clin. Anesth. 2016, 35, 1–12. [Google Scholar] [CrossRef]
- Togioka, B.M.; Yanez, D.; Aziz, M.F.; Higgins, J.R.; Tekkali, P.; Treggiari, M.M. Randomised controlled trial of sugammadex or neostigmine for reversal of neuromuscular block on the incidence of pulmonary complications in older adults undergoing prolonged surgery. Br. J. Anaesth. 2020, 124, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-F.; Zhao, Z.-Z.; Jiang, Z.-Y.; Liu, H.-X.; Deng, X.-M. Influence of sugammadex versus neostigmine for neuromuscular block reversal on the incidence of postoperative pulmonary complications: A meta-analysis of randomized controlled trials. Perioper. Med. 2021, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Suleiman, A.; Munoz-Acuna, R.; Azimaraghi, O.; Houle, T.T.; Chen, G.; Rupp, S.; Witt, A.S.; Azizi, B.A.; Ahrens, E.; Shay, D.; et al. The effects of sugammadex vs. neostigmine on postoperative respiratory complications and advanced healthcare utilisation: A multicentre retrospective cohort study. Anaesthesia 2023, 78, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-M.; Yu, H.; Zuo, Y.-D.; Liang, P. Postoperative pulmonary complications after sugammadex reversal of neuromuscular blockade: A systematic review and meta-analysis with trial sequential analysis. BMC Anesthesiol. 2023, 23, 130. [Google Scholar] [CrossRef]
- Yang, J.L.; Chen, K.B.; Shen, M.L.; Hsu, W.T.; Lai, Y.W.; Hsu, C.M. Sugammadex for reversing neuromuscular blockages after lung surgery: A systematic review and meta-analysis. Medicine 2022, 101, e30876. [Google Scholar] [CrossRef]
- Olesnicky, B.L.; Farrell, C.; Clare, P.; Wen, S.; Leslie, K.; Delaney, A. The effect of sugammadex on patient morbidity and quality of recovery after general anaesthesia: A systematic review and meta-analysis. Br. J. Anaesth. 2024, 132, 107–115. [Google Scholar] [CrossRef]
- Bai, Y.X.; Han, J.J.; Liu, J.; Li, X.; Xu, Z.Z.; Lv, Y.; Liu, K.X.; Wu, Q.P. Sugammadex Reduced the Incidence of Postoperative Pulmonary Complications in Susceptible Patients Identified by ARISCAT Risk Index: Systematic Review and Meta-analysis. Adv. Ther. 2023, 40, 3784–3803. [Google Scholar] [CrossRef]
- Raval, A.D.; Anupindi, V.R.; Ferrufino, C.P.; Arper, D.L.; Bash, L.D.; Brull, S.J. Epidemiology and outcomes of residual neuromuscular blockade: A systematic review of observational studies. J. Clin. Anesth. 2020, 66, 109962. [Google Scholar] [CrossRef]
- Sharma, S.; McKechnie, T.; Talwar, G.; Patel, J.; Heimann, L.; Doumouras, A.; Hong, D.; Eskicioglu, C. Postoperative Gastrointestinal Dysfunction After Neuromuscular Blockade Reversal with Sugammadex Versus Cholinesterase Inhibitors in Patients Undergoing Gastrointestinal Surgery: A Systematic Review and Meta-Analysis. Am. Surg. 2024, 90, 1618–1629. [Google Scholar] [CrossRef]
- Min, K.C.; Woo, T.; Assaid, C.; McCrea, J.; Gurner, D.M.; Sisk, C.M.; Adkinson, F.; Herring, W.J. Incidence of hypersensitivity and anaphylaxis with sugammadex. J. Clin. Anesth. 2018, 47, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Orihara, M.; Takazawa, T.; Horiuchi, T.; Sakamoto, S.; Nagumo, K.; Tomita, Y.; Tomioka, A.; Yoshida, N.; Yokohama, A.; Saito, S. Comparison of incidence of anaphylaxis between sugammadex and neostigmine: A retrospective multicentre observational study. Br. J. Anaesth. 2020, 124, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Chia, P.A.; Wolfe, M.W. Sugammadex-Associated Anaphylaxis: Summary and Proposed Management. Anesth. Analg. 2024, 139, 273–277. [Google Scholar] [CrossRef]
- Johnson, K.B.; Chacin, R. Clarifying the grey space of sugammadex induced bradycardia. Curr. Opin. Anaesthesiol. 2023, 36, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Zhang, R.; Liang, X.; Liu, F.; Dai, Y.; Wang, M.; Huang, H.; Fu, G. A pharmacovigilance study of FDA adverse events for sugammadex. J. Clin. Anesth. 2024, 97, 111509. [Google Scholar] [CrossRef]
- Liu, H.; Yang, Q.; Li, Z.; Yan, S.; Ming, S. Systematic analysis of sugammadex-related adverse drug reaction signals using FAERS database. Int. J. Surg. 2025, 111, 1988–1994. [Google Scholar] [CrossRef]
- Devoy, T.; Hunter, M.; Smith, N.A. A prospective observational study of the effects of sugammadex on peri-operative oestrogen and progesterone levels in women who take hormonal contraception. Anaesthesia 2023, 78, 180–187. [Google Scholar] [CrossRef]
- Bartels, K.; Fernandez-Bustamante, A.; Vidal Melo, M.F. Reversal of neuromuscular block: What are the costs? Br. J. Anaesth. 2023, 131, 202–204. [Google Scholar] [CrossRef]
- Hurford, W.E.; Welge, J.A.; Eckman, M.H. Sugammadex versus neostigmine for routine reversal of rocuronium block in adult patients: A cost analysis. J. Clin. Anesth. 2020, 67, 110027. [Google Scholar] [CrossRef]
- Wachtendorf, L.J.; Tartler, T.M.; Ahrens, E.; Witt, A.S.; Azimaraghi, O.; Fassbender, P.; Suleiman, A.; Linhardt, F.C.; Blank, M.; Nabel, S.Y.; et al. Comparison of the effects of sugammadex versus neostigmine for reversal of neuromuscular block on hospital costs of care. Br. J. Anaesth. 2023, 130, 133–141. [Google Scholar] [CrossRef]
- Azimaraghi, O.; Ahrens, E.; Wongtangman, K.; Witt, A.S.; Rupp, S.; Suleiman, A.; Tartler, T.M.; Wachtendorf, L.J.; Fassbender, P.; Choice, C.; et al. Association of sugammadex reversal of neuromuscular block and postoperative length of stay in the ambulatory care facility: A multicentre hospital registry study. Br. J. Anaesth. 2023, 130, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Ubieto, J.; Aragón-Benedí, C.; de Pedro, J.; Cea-Calvo, L.; Morell, A.; Jiang, Y.; Cedillo, S.; Ramírez-Boix, P.; Pascual-Bellosta, A.M. Economic impact of improving patient safety using Sugammadex for routine reversal of neuromuscular blockade in Spain. BMC Anesthesiol. 2021, 21, 55. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Bash, L.D.; Saager, L. A Clinical and Budgetary Impact Analysis of Introducing Sugammadex for Routine Reversal of Neuromuscular Blockade in a Hypothetical Cohort in the US. Adv. Ther. 2021, 38, 2689–2708. [Google Scholar] [CrossRef]
- Hurford, W.E.; Eckman, M.H.; Welge, J.A. Data and meta-analysis for choosing sugammadex or neostigmine for routine reversal of rocuronium block in adult patients. Data Brief. 2020, 32, 106241. [Google Scholar] [CrossRef] [PubMed]
- Haberkorn, S.; Twite, M.; Klockau, K.; Whitney, G.; Faulk, D.J. Quantitative Monitoring Maximizes Cost-Saving Strategies When Antagonizing Neuromuscular Block with Sugammadex. Cureus 2024, 16, e68551. [Google Scholar] [CrossRef]
- Linn, D.D.; Renew, J.R. The impact of sugammadex dosing and administration practices on potential cost savings for pharmacy departments. Am. J. Health Syst. Pharm. 2024, 81, e575–e583. [Google Scholar] [CrossRef]
- Sohn, C.; Roberts, J.; Jean-Jacques, E.; Parrish, R.H., 2nd. A causal model for predicting the impact of pharmacotherapy on colorectal surgery outcomes. World J. Surg. 2024, 48, 2831–2842. [Google Scholar] [CrossRef]
- Lan, W.; Tam, K.W.; Chen, J.T.; Cata, J.P.; Cherng, Y.G.; Chou, Y.Y.; Chien, L.N.; Chang, C.L.; Tai, Y.H.; Chu, L.M. Cost-Effectiveness of Sugammadex Versus Neostigmine to Reverse Neuromuscular Blockade in a University Hospital in Taiwan: A Propensity Score-Matched Analysis. Healthcare 2023, 11, 240. [Google Scholar] [CrossRef]
- Echeverry, G.; Polskin, L.; Tollinche, L.E.; Seier, K.; Tan, K.S.; McCormick, P.J.; Fischer, G.W.; Grant, F.M. Routine use of sugammadex does not shorten pacu length of stay: A prospective double-blinded randomized controlled trial. Perioper. Care Oper. Room Manag. 2021, 24, 100199. [Google Scholar] [CrossRef]
- Stäuble, C.G.; Blobner, M. The future of neuromuscular blocking agents. Curr. Opin. Anaesthesiol. 2020, 33, 490–498. [Google Scholar] [CrossRef]
- de Boer, H.D.; Vieira Carlos, R. Next generation of neuromuscular blockade reversal agents. Curr. Opin. Anaesthesiol. 2025. [Google Scholar] [CrossRef]
- Carr, S.G.; Clifton, J.C.; Freundlich, R.E.; Fowler, L.C.; Sherwood, E.R.; McEvoy, M.D.; Robertson, A.; Dunworth, B.A.; McCarthy, K.Y.; Shotwell, M.S.; et al. Improving Neuromuscular Monitoring Through Education-Based Interventions and Studying Its Association with Adverse Postoperative Outcomes: A Retrospective Observational Study. Anesth. Analg. 2024, 138, 517–529. [Google Scholar] [CrossRef]
Author, Year; Study Design | Primary Outcomes | Key Findings and Conclusions |
---|---|---|
Obstetrics | ||
Stourac et al., 2016 [44]; RCT; N = 240 | Sugammadex vs. succinylcholine for Cesarean GA; intubation time, reversal | Noninferior intubation time (+2.9 s); better conditions; lower myalgia (0% vs. 6.7%); no neonatal issues |
Kosinová et al., 2017 [43]; RCT; N = 488 women | Apgar scores post Cesarean with Sugammadex | Higher 1-min Apgar < 7 (17.5% vs. 10.3%); resolved by 5 min; no NICU admissions |
Noguchi et al., 2023 [42]; Retrospective; N = 124 | Non-OB surgery during pregnancy; reversal and complications | No increased miscarriage/preterm birth; effective reversal; safe use in pregnancy |
Richardson and Raymond, 2020 [41]; Review | Literature summary through 2020 on OB safety | No OB complications; minimal placental transfer; cautious 1st trimester use |
Pediatrics | ||
Ammar et al., 2017 [39]; RCT; N = 60 | Sugammadex vs. Neostigmine (2–10 yrs) | Faster TOF ≥ 0.9 (2.5 vs. 12.6 min); less PONV, tachycardia |
Franz et al., 2019 [36]; Retrospective; N = 331 | Infants < 2 yrs; Sugammadex vs. Neostigmine | Faster reversal (84 vs. 103 min); safe; 2 mg/kg effective |
Gaver et al., 2019 [40]; Retrospective; N = 968 | 0–17 yrs; reversal time, adverse events | Lower bradycardia; faster OR exit (−2.8 min); no hypersensitivity |
Li et al., 2021 [37]; RCT; N = 60 | Infants < 3 yrs with CHD; reversal and recovery | Faster TOF (3.4 vs. 76.2 min); less atelectasis; shorter stay |
Voss et al., 2022 [35]; RCT; N = 276 | Children 2–<17 yrs; moderate block | TOF recovery 1.6 vs. 7.5 min; low bradycardia; reliable across ages |
Lang et al., 2022 [38]; Meta-analysis; 14 RCTs | Sugammadex vs. Neostigmine in pediatrics | Faster TOF (−10.3 min); fewer PONV/bradycardia; limited infant data |
Author, Year; Study Design | Primary Outcomes | Key Findings and Conclusions |
---|---|---|
Renal Failure | ||
Panhuizen et al., 2015 [20]; Prospective; N = 67 | TOF 0.9 recovery, PK, safety | TOF recovery slower (3.1 vs. 1.9 min); exposure prolonged; no recurarization. |
Ono et al., 2018 [24]; Retrospective; N = 99 | Reversal efficacy; periop/6-month outcomes | All reversed; no intra-op or long-term complications; graft function preserved. |
Adams et al., 2020 [58]; Retrospective; N = 158 | Reintubation, delayed extubation | 1.9% reintubation, unrelated to NMB; no recurrence. |
Paredes et al., 2020 [59]; Retrospective; N = 219 | Sugammadex complications; mortality | Low adverse event rate: none linked to sugammadex; 4% mortality unrelated. |
Oh et al., 2024 [22]; RCT; N = 49 | TOF ≥ 0.9; adverse events | Recovery 3.5 vs. 14.8 min vs. neostigmine; no serious events. |
Elkhateb et al., 2025 [19]; Retrospective; N = 243,944 | Practice trends in eGFR < 60; ESRD use | Use increased to 95%; ESRD 87%; higher doses common; supports routine use. |
Obesity | ||
Abd El-Rahman et al., 2017 [31]; RCT; N = 180 | 1.5–4 mg/kg IBW for mod block | All reversed; 4 mg/kg fastest; no safety issues. |
Elfawy et al., 2019 [32]; RCT; N = 60 | IBW vs. ABW vs. AdjBW dosing | ABW fastest; all safe; IBW least effective. |
Ornek et al., 2020 [33]; RCT; N = 60 | IBW vs. CorrBW vs. TBW | TBW fastest; all tolerated; IBW slowest. |
Horrow et al., 2021 [29]; RCT; N = 188 | ABW vs. IBW vs. Neostigmine | ABW best; faster than neostigmine; safe profile. |
Subramani et al., 2021 [30]; Meta-analysis; N = 386 | Sugammadex vs. Neostigmine | Faster reversal; fewer complications; sugammadex preferred. |
Liao et al., 2022 [27]; Meta-analysis; N = 444 | IBW vs. TBW | TBW faster; IBW underdosed; CorrBW comparable. |
Wang et al., 2024 [28]; Meta-analysis; N = 633 | Sugammadex vs. Neostigmine | Reduced PORC; faster recovery; favors sugammadex. |
Ajetunmobi et al., 2025 [34]; RCT; N = 120 | OSA patients; sugammadex vs. neostigmine | Similar outcomes; no clear advantage in OSA group. |
Study Details | Primary Outcomes and Key Results | Secondary Outcomes and Clinical Implications |
---|---|---|
Brueckmann et al., 2015 [60]; RCT; N = 154 | Faster OR discharge readiness with Sugammadex (p < 0.05). | Improved efficiency; fewer adverse events (RR 0.39, CI 0.11–1.41). |
Cheong et al., 2015 [61]; RCT; N = 120 | Fewer adverse events with Sugammadex (RR 0.13, CI 0.03–0.55). | Neostigmine combo lowers dose but raises side effect risk. |
Carron et al., 2016 [63]; Meta-analysis; 13 RCTs; N = 1384 | Sugammadex faster for moderate/deep block (12.9 vs. 48.8 min). | More reliable reversal; fewer residual paralysis and complications. |
Hristovska et al., 2017 [10]; Meta-analysis; 41 RCTs; N = 4206 | Faster reversal (mod: −10.2 min; deep: −45.8 min). | Lower bradycardia (RR = 0.16), PONV (RR = 0.52), paralysis (RR = 0.40); SAE similar. |
Kheterpal et al., 2020 [62]; Retrospective; N = 45,712 | Lower PPCs with Sugammadex (3.5% vs. 4.8%). | Fewer pneumonias and respiratory failures; reduced PPC risk. |
Togioka et al., 2020 [64]; RCT; N = 197 | PPCs similar; residual paralysis lower with Sugammadex. | Improved recovery; potential for fewer readmissions. |
Wang et al., 2021 [65]; Meta-analysis; 14 RCTs; N = 1478 | Fewer PPCs, mainly respiratory failure (OR 0.62). | Pulmonary benefit driven by fewer ventilatory support needs. |
Suleiman et al., 2023 [66]; Retrospective; N = 83,250 | No difference in respiratory complications or healthcare use. | Neostigmine non-inferior for general population safety. |
Liu et al., 2023 [67]; Meta-analysis; RCTs + obs. | Reduced PPCs: pneumonia, atelectasis, reintubation with Sugammadex. | Supports pulmonary benefit; further trials needed. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravindranath, S.; Backfish-White, K.; Wolfe, J.; Ranganath, Y.S. Sugammadex for Neuromuscular Blockade Reversal: A Narrative Review. J. Clin. Med. 2025, 14, 4128. https://doi.org/10.3390/jcm14124128
Ravindranath S, Backfish-White K, Wolfe J, Ranganath YS. Sugammadex for Neuromuscular Blockade Reversal: A Narrative Review. Journal of Clinical Medicine. 2025; 14(12):4128. https://doi.org/10.3390/jcm14124128
Chicago/Turabian StyleRavindranath, Sapna, Kevin Backfish-White, John Wolfe, and Yatish S. Ranganath. 2025. "Sugammadex for Neuromuscular Blockade Reversal: A Narrative Review" Journal of Clinical Medicine 14, no. 12: 4128. https://doi.org/10.3390/jcm14124128
APA StyleRavindranath, S., Backfish-White, K., Wolfe, J., & Ranganath, Y. S. (2025). Sugammadex for Neuromuscular Blockade Reversal: A Narrative Review. Journal of Clinical Medicine, 14(12), 4128. https://doi.org/10.3390/jcm14124128