An Interdisciplinary Review of the Zygomaticus Muscles: Anatomical Variability, Imaging Modalities, and Clinical Implications
Abstract
1. Introduction
2. Classical Anatomy of the Zygomaticus Muscles
2.1. Zygomatic Major Muscle: Anatomical Course, Attachments, and Function
2.2. Zygomatic Minor Muscle: Anatomical Description and Functional Differences
2.3. Anatomical Relationships of Zygomatic Major Muscle and Zygomatic Minor Muscle with Adjacent Midfacial Mimetic Structures (Levator Labii Superioris, Orbicularis Oculi, SMAS)
2.4. Blood Supply and Innervation: Topographic Relevance for Surgical and Injectable Procedures
3. Embryology and Genetic Basis
3.1. Development of Mimetic Muscles from the Second Pharyngeal Arch
3.2. Sequence of Facial Muscle Differentiation and Integration with the Facial Nerve (CN VII)
3.3. Key Genes in Facial Muscle Morphogenesis: Tbx1, MyoD, Pax3, and Pitx2
3.4. Developmental Variability and Its Clinical Relevance in Disorders Such as Treacher Collins, Williams, and Down Syndromes
4. Morphological Variations
4.1. Historical Reports
4.2. Description of Main Morphological Variants
4.2.1. Variation in Muscle Length and Width
4.2.2. Variation in Number of Muscle Bellies (Single, Double, and Multiple Bellies)
4.2.3. Additional Muscle Bands (e.g., ZMi Duplicatus, Accessory Zygomaticus)
4.2.4. Atypical Insertion Points (e.g., Upper Lip, Orbicularis Oris, Cheek)
4.3. Prevalence of Morphological Variations—Data from Cadaveric Studies, MRI, and Ultrasonography
4.4. Population Variability—Differences Related to Sex, Age, and Ethnicity
4.5. Proposed Classifications of Variants in the Literature
4.6. Proposal of a New Morphological Classification
- Variations in muscle morphology (ZMa and ZMi):
- Variations in muscle insertion:
- Anatomical relationship variants with neighboring structures:
- Population-based variability:
5. Biomechanics and Function of the Zygomatic Muscles
5.1. Smile Kinematics: Muscle Force, Movement Vectors, and Synchronization with Other Facial Muscles (Levator Anguli Oris, Risorius)
5.2. Functional Analysis of Smile Types
5.2.1. Duchenne Versus Non-Duchenne Smile
5.2.2. Symmetrical Versus Asymmetrical Smile—Influence of Muscle Morphology
5.3. EMG Studies—Muscle Activity Patterns During Facial Expressions
5.4. Impact of Morphological Variability on Smile Dynamics and Functional Asymmetry
6. Modern Imaging Methods and Functional Assessment
6.1. Magnetic Resonance Imaging (MRI)
6.1.1. High-Resolution Imaging for Analysis of Muscle Structure
6.1.2. Topographical Mapping of Mimic Muscles at Rest and Activation
6.2. Ultrasonography (US)
6.2.1. Dynamic Ultrasonography as a Tool for Real-Time Functional Analysis
6.2.2. Detection of Asymmetry and Additional Muscle Bands
6.3. Three-Dimensional Facial Scanning and Photogrammetry
6.3.1. Evaluation of Facial Expressions in Motion and Computer Modeling
6.3.2. Potential Application in Surgical Planning and Facial Prosthetics
6.4. Artificial Intelligence (AI)
6.4.1. Muscle Segmentation in Imaging Studies
6.4.2. Automatic Classification of Morphological Variants—An Emerging Tool
7. Anthropological Significance and Reconstructive Applications
7.1. Role of ZMa and ZMi in Forensic Facial Reconstruction Based on Skeletal Remains
7.2. Morphological Variability as a Parameter in Population Analyses and Forensic Anthropology
7.3. Influence of Muscle Morphology on Aesthetics and Expression in Historical Reconstructions (Museums, Art)
8. Discussion
8.1. Clinical Relevance of the Proposed Classification
8.2. Morphological Variability and Facial Biomechanics
8.3. Imaging and Identification Challenges
8.4. Developmental and Evolutionary Considerations
8.5. Limitations and Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
List of Abbreviations
Abbreviation | Full Term |
ZMa | Zygomaticus major |
ZMi | Zygomaticus minor |
SMAS | Superficial musculoaponeurotic system |
EMG | Electromyography |
MRI | Magnetic resonance imaging |
US | Ultrasonography |
CN VII | Cranial nerve VII (Facial nerve) |
FGF | Fibroblast growth factor |
Shh | Sonic hedgehog |
AI | Artificial intelligence |
3D | Three-dimensional |
Tbx1, MyoD, Pax3, Pitx2 | Key transcription factors in facial muscle development |
References
- Elvan, Ö.; Örs, A.B.; Tezer, M.S. Anatomical Evaluation of Zygomaticus Major Muscle With Relation to Orbicularis Oculi Muscle and Parotid Duct. J. Craniofacial Surg. 2020, 31, 1844–1847. [Google Scholar] [CrossRef] [PubMed]
- Sperber, G.H.; Sperber, S.M.; Guttmann, G.D.; Sperber, G.H. Craniofacial Embryogenetics and Development, 2nd ed.; People’s Medical Pub. House USA: Shelton, CT, USA, 2010. [Google Scholar]
- Knoops, P.G.M.; Papaioannou, A.; Borghi, A.; Breakey, R.W.F.; Wilson, A.T.; Jeelani, O.; Zafeiriou, S.; Steinbacher, D.; Padwa, B.L.; Dunaway, D.J.; et al. A machine learning framework for automated diagnosis and computer-assisted planning in plastic and reconstructive surgery. Sci. Rep. 2019, 9, 13597. [Google Scholar] [CrossRef] [PubMed]
- Darwin, C. The Expression of the Emotions in Man and Animals; John Murray: London, UK, 1872. [Google Scholar]
- Ekman, P. Facial expression and emotion. Am. Psychol. 1993, 48, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Fischer-Brandies, H.; Schmid, R.G.; Fischer-Brandies, E. Craniofacial development in patients with Down’s syndrome from birth to 14 years of age. Eur. J. Orthod. 1986, 8, 35–42. [Google Scholar] [CrossRef]
- Gunnery, S.D.; Hall, J.A. The Duchenne Smile and Persuasion. J. Nonverbal Behav. 2014, 38, 181–194. [Google Scholar] [CrossRef]
- Krumhuber, E.; Manstead, A. Can Duchenne Smiles Be Feigned? New Evidence on Felt and False Smiles. Emotion 2009, 9, 807–820. [Google Scholar] [CrossRef]
- Shim, K.-S.; Hu, K.-S.; Kwak, H.-H.; Youn, K.-H.; Koh, K.-S.; Fontaine, C.; Kim, H.-J. An anatomical study of the insertion of the zygomaticus major muscle in humans focused on the muscle arrangement at the corner of the mouth. Plast. Reconstr. Surg. 2008, 121, 466–473. [Google Scholar] [CrossRef]
- Jones, E.; McLaughlin, K.A. A Novel Perspective on Neuronal Control of Anatomical Patterning, Remodeling, and Maintenance. Int. J. Mol. Sci. 2023, 24, 13358. [Google Scholar] [CrossRef]
- Rohrich, R.J.; Pessa, J.E. The retaining system of the face: Histologic evaluation of the septal boundaries of the subcutaneous fat compartments. Plast. Reconstr. Surg. 2008, 121, 1804–1809. [Google Scholar] [CrossRef]
- Ekman, P.; Davidson, R.J.; Friesen, W.V. The Duchenne smile: Emotional expression and brain physiology II. J. Personal. Soc. Psychol. 1990, 58, 342–353. [Google Scholar] [CrossRef]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.-C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.; Park, M.; Lee, W.; Cho, J.; Kim, B.; Wilkinson, C.M. Facial soft tissue thickness database for craniofacial reconstruction in Korean adults. J. Forensic Sci. 2012, 57, 1442–1447. [Google Scholar] [CrossRef]
- Hwang, K. Surgical anatomy of the facial nerve relating to facial rejuvenation surgery. J. Craniofacial Surg. 2014, 25, 1476–1481. [Google Scholar] [CrossRef] [PubMed]
- Gray’s Anatomy: The Anatomical Basis of Clinical Practice, 42nd ed.; Elsevier: London, UK, 2021.
- Bergman, R.A. Illustrated Encyclopedia of Human Anatomic Variation: Opera; Virtual Hospital: Iowa City, IA, USA, 1996. [Google Scholar]
- Gosselin, R.-D.; Suter, M.R.; Ji, R.-R.; Decosterd, I. Glial cells and chronic pain. Neuroscientist 2010, 16, 519–531. [Google Scholar] [CrossRef]
- Raghavan, P.; Mukherjee, S.; Phillips, C.D. Imaging of the facial nerve. Neuroimaging Clin. N. Am. 2009, 19, 407–425. [Google Scholar] [CrossRef]
- Wilkinson, C. Forensic Facial Reconstruction; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Cotofana, S.; Lachman, N. Anatomy of the Facial Fat Compartments and their Relevance in Aesthetic Surgery. J. Dtsch. Dermatol. Ges. 2019, 17, 399–413. [Google Scholar] [CrossRef]
- Sarilita, E.; Rynn, C.; Mossey, P.; Black, S. Zygomaticus major muscle bony attachment site: A Thiel-embalmed cadaver study. Morphologie 2021, 105, 24–28. [Google Scholar] [CrossRef]
- Tubbs, R.S.; Shoja, M.M.; Loukas, M. Bergman’s Comprehensive Encyclopedia of Human Anatomic Variation; Wily, B., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2016. [Google Scholar]
- Ji, C.; Yao, D.; Li, M.; Chen, W.; Lin, S.; Zhao, Z. A study on facial features of children with Williams syndrome in China based on three-dimensional anthropometric measurement technology. Am. J. Med. Genet. Part A 2020, 182, 2102–2109. [Google Scholar] [CrossRef]
- Rubin, L.R.; Mishriki, Y.; Lee, G. Anatomy of the nasolabial fold: The keystone of the smiling mechanism. Plast Reconstr. Surg. 1989, 83, 1–10. [Google Scholar] [CrossRef]
- Testut, L. Les Anomalies Musculaires Chez L’homme Expliquées par L’anatomie Comparée et Leur Importance en Anthropologie; Wiley-Blackwell: Hoboken, NJ, USA, 2016. [Google Scholar]
- Trainor, P.A. Craniofacial birth defects: The role of neural crest cells in the etiology and pathogenesis of Treacher Collins syndrome and the potential for prevention. Am. J. Med. Genet. A 2010, 152a, 2984–2994. [Google Scholar] [CrossRef]
- Youn, K.-H.; Kim, J.-S.; Kim, Y.; Hong, S.O.; Na, J. Ultrasonographic Anatomy of the Face and Neck for Minimally Invasive Procedures: An Anatomic Guideline for Ultrasonographic-Guided Procedures; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Pessa, J.E.; Zadoo, V.P.; Garza, P.A.; Adrian, E.K., Jr.; Dewitt, A.I.; Garza, J.R. Double or bifid zygomaticus major muscle: Anatomy, incidence, and clinical correlation. Clin. Anat. 1998, 11, 310–313. [Google Scholar] [CrossRef]
- Rodrigues, A.d.C.; Andreo, J.C.; Menezes, L.d.F.; Chinellato, T.P.; Júnior, G.M.R. Anatomy of the facial nerve and its implication in the surgical procedures. Int. J. Morphol. 2009, 27, 183–186. [Google Scholar] [CrossRef]
- Surek, C.C. Facial Anatomy for Filler Injection: The Superficial Musculoaponeurotic System (SMAS) Is Not Just for Facelifting. Clin. Plast Surg. 2019, 46, 603–612. [Google Scholar] [CrossRef]
- Lari, A.; Panse, N. Anatomical basis of dimple creation—A new technique: Our experience of 100 cases. Indian J. Plast. Surg. 2012, 45, 89–93. [Google Scholar] [CrossRef]
- Lee, H.J.; Won, S.Y.; Jehoon, O.; Hu, K.S.; Mun, S.Y.; Yang, H.M.; Kim, H.J. The facial artery: A Comprehensive Anatomical Review. Clin. Anat. 2018, 31, 99–108. [Google Scholar] [CrossRef]
- Wollina, U.; Goldman, A. Hyaluronic Acid Dermal Fillers: Safety and Efficacy for the Treatment of Wrinkles, Aging Skin, Body Sculpturing and Medical Conditions. Clin. Med. Rev. Ther. 2011, 3, 107–121. [Google Scholar]
- Gupta, S.; Mends, F.; Hagiwara, M.; Fatterpekar, G.; Roehm, P.C. Imaging the facial nerve: A contemporary review. Radiol. Res. Pract. 2013, 2013, 248039. [Google Scholar] [CrossRef]
- Lagha, M.; Kormish, J.D.; Rocancourt, D.; Manceau, M.; Epstein, J.A.; Zaret, K.S.; Relaix, F.; Buckingham, M.E. Pax3 regulation of FGF signaling affects the progression of embryonic progenitor cells into the myogenic program. Genes Dev. 2008, 22, 1828–1837. [Google Scholar] [CrossRef]
- Buckingham, M.; Bajard, L.; Chang, T.; Daubas, P.; Hadchouel, J.; Meilhac, S.; Montarras, D.; Rocancourt, D.; Relaix, F. The formation of skeletal muscle: From somite to limb. J. Anat. 2003, 202, 59–68. [Google Scholar] [CrossRef]
- Buckingham, M.; Rigby, P.W. Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev. Cell 2014, 28, 225–238. [Google Scholar] [CrossRef]
- Sadler, T.W. Langman’s Medical Embryology, 14th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2018. [Google Scholar]
- Graham, A. Development of the pharyngeal arches. Am. J. Med. Genet. A 2003, 119a, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, E.A.; Vitelli, F.; Su, H.; Morishima, M.; Huynh, T.; Pramparo, T.; Jurecic, V.; Ogunrinu, G.; Sutherland, H.F.; Scambler, P.J.; et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 2001, 410, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Tassabehji, M.; Read, A.P.; Newton, V.E.; Harris, R.; Balling, R.; Gruss, P.; Strachan, T. Waardenburg’s syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 1992, 355, 635–636. [Google Scholar] [CrossRef] [PubMed]
- Lescroart, F.; Chabab, S.; Lin, X.; Rulands, S.; Paulissen, C.; Rodolosse, A.; Auer, H.; Achouri, Y.; Dubois, C.; Bondue, A.; et al. Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat. Cell Biol. 2014, 16, 829–840. [Google Scholar] [CrossRef]
- Tzahor, E. Heart and craniofacial muscle development: A new developmental theme of distinct myogenic fields. Dev. Biol. 2009, 327, 273–279. [Google Scholar] [CrossRef]
- Dixon, J.; Trainor, P.; Dixon, M.J. Treacher Collins syndrome. Orthod Craniofac Res. 2007, 10, 88–95. [Google Scholar] [CrossRef]
- Morris, C.A. Williams Syndrome. In GeneReviews® [Internet]; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1999. [Google Scholar]
- Allanson, J.E.; O’Hara, P.; Farkas, L.G.; Nair, R.C. Anthropometric craniofacial pattern profiles in Down syndrome. Am. J. Med. Genet. 1993, 47, 748–752. [Google Scholar] [CrossRef]
- Khoe, L.C.; Widyahening, I.S.; Ali, S.; Khusun, H. Assessment of the obesogenic environment in primary schools: A multi-site case study in Jakarta. BMC Nutr. 2022, 8, 19. [Google Scholar] [CrossRef]
- Macalister, A. Additional observations on muscular anomalies in human anatomy (third series), with a catalogue of the principal muscular variations hitherto published. Trans. R. Irish Acad. Sci. 1875, 25, 1–130. [Google Scholar]
- LeDouble, A. Traité des Variations du Système Musculaire de l’Homme et de leur Signification au Point de Vue de l’Anthropologie Zoologique; Schleicher Frères: Paris, France, 1897. [Google Scholar]
- Calori, A. Anatomia Patologica del Cranio Umano; Tipografia dell’Istituto di Scienze: Bologna, Italy, 1874. [Google Scholar]
- Gruber, W. Ueber accessorische Muskeln der Regio glutaea. In Memoires de l’Academie Imperiale des Sciences de St Petersbourg; Smithsonian Libraries and Archives: Washington, DC, USA, 1868; Volume 7, pp. 161–172. [Google Scholar]
- Mowlavi, A.; Wilhelmi, B.J. The extended SMAS facelift: Identifying the lateral zygomaticus major muscle border using bony anatomic landmarks. Ann. Plast Surg. 2004, 52, 353–357. [Google Scholar] [CrossRef]
- Phan, K.; Onggo, J. Prevalence of Bifid Zygomaticus Major Muscle. J. Craniofacial Surg. 2019, 30, 758–760. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, J.H.; DeRosa, J. The anatomical relationship between the orbicularis oculi muscle and the levator labii superioris and zygomaticus muscle complexes. Plast. Reconstr. Surg. 2005, 116, 1937–1942, discussion 43–44. [Google Scholar] [CrossRef] [PubMed]
- Volk, G.F.; Wystub, N.; Pohlmann, M.; Finkensieper, M.; Chalmers, H.J.; Guntinas-Lichius, O. Quantitative ultrasonography of facial muscles. Muscle Nerve 2013, 47, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-J.B.; Kim, J.-S.D.; Gil, Y.-C.; Phetudom, T.; Kim, H.-J.D.; Tansatit, T.M.; Hu, K.-S.D. Anatomical considerations regarding the location and boundary of the depressor anguli oris muscle with reference to botulinum toxin injection. Plast. Reconstr. Surg. 2014, 134, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.-S.; Jin, G.-C.; Youn, K.-H.; Kwak, H.-H.; Koh, K.-S.; Fontaine, C.; Kim, H.-J. An anatomic study of the bifid zygomaticus major muscle. J. Craniofacial Surg. 2008, 19, 534–536. [Google Scholar] [CrossRef]
- Schmidt, K.L.; Cohn, J.F. Human facial expressions as adaptations: Evolutionary questions in facial expression research. Am. J. Phys. Anthropol. 2001, 116 (Suppl. S33), 3–24. [Google Scholar] [CrossRef]
- Paletz, J.L.; Manktelow, R.T.; Chaban, R. The shape of a normal smile: Implications for facial paralysis reconstruction. Plast Reconstr. Surg. 1994, 93, 784–789, discussion 90–91. [Google Scholar] [CrossRef]
- Schumann, N.P.; Bongers, K.; Guntinas-Lichius, O.; Scholle, H.C. Facial muscle activation patterns in healthy male humans: A multi-channel surface EMG study. J. Neurosci. Methods 2010, 187, 120–128. [Google Scholar] [CrossRef]
- Gunnery, S.D.; Ruben, M.A. Perceptions of Duchenne and non-Duchenne smiles: A meta-analysis. Cogn. Emot. 2016, 30, 501–515. [Google Scholar] [CrossRef]
- Cohn, J.F.; Schmidt, K.L. The Timing of Facial Motion in Posed and Spontaneous Smiles. Int. J. Wavelets Multiresolution Inf. Process. 2004, 02, 121–132. [Google Scholar] [CrossRef]
- Fridlund, A.J.; Cacioppo, J.T. Guidelines for human electromyographic research. Psychophysiology 1986, 23, 567–589. [Google Scholar] [CrossRef] [PubMed]
- Sforza, C.; Ferrario, V. Three-dimensional analysis of facial morphology: Growth, development and aging of the orolabial region. Ital. J. Anat. Embryol. Arch. Ital. Di Anat. Ed Embriol. 2010, 115, 141–145. [Google Scholar]
- Orhan, K.; Shamshiev, M.; Ezhov, M.; Plaksin, A.; Kurbanova, A.; Ünsal, G.; Gusarev, M.; Golitsyna, M.; Aksoy, S.; Mısırlı, M.; et al. AI-based automatic segmentation of craniomaxillofacial anatomy from CBCT scans for automatic detection of pharyngeal airway evaluations in OSA patients. Sci. Rep. 2022, 12, 11863. [Google Scholar] [CrossRef] [PubMed]
- Sauer, M.; Guntinas-Lichius, O.; Volk, G.F. Ultrasound echomyography of facial muscles in diagnosis and follow-up of facial palsy in children. Eur. J. Paediatr. Neurol. 2016, 20, 666–670. [Google Scholar] [CrossRef]
- Knoops, P.G.; Beaumont, C.A.A.; Borghi, A.; Rodriguez-Florez, N.; Breakey, R.W.; Rodgers, W.; Angullia, F.; Jeelani, N.O.; Schievano, S.; Dunaway, D.J. Comparison of three-dimensional scanner systems for craniomaxillofacial imaging. J. Plast. Reconstr. Aesthetic Surg. 2017, 70, 441–449. [Google Scholar] [CrossRef]
- Sawyer, A.R.; See, M.; Nduka, C. 3D stereophotogrammetry quantitative lip analysis. Aesthetic Plast. Surg. 2009, 33, 497–504. [Google Scholar] [CrossRef]
- Tzou, C.-H.J.; Artner, N.M.; Pona, I.; Hold, A.; Placheta, E.; Kropatsch, W.G.; Frey, M. Comparison of three-dimensional surface-imaging systems. J. Plast Reconstr. Aesthetic Surg. 2014, 67, 489–497. [Google Scholar] [CrossRef]
- Dinescu, S.C.; Stoica, D.; Bita, C.E.; Nicoara, A.-I.; Cirstei, M.; Staiculesc, M.-A.; Vreju, F. Applications of artificial intelligence in musculoskeletal ultrasound: Narrative review. Front. Med. 2023, 10, 1286085. [Google Scholar] [CrossRef]
- Mathis, A.; Mamidanna, P.; Cury, K.M.; Abe, T.; Murthy, V.N.; Mathis, M.W.; Bethge, M. DeepLabCut: Markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 2018, 21, 1281–1289. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef]
- Stephan, C.N.; Caple, J.M.; Guyomarc’h, P.; Claes, P. An overview of the latest developments in facial imaging. Forensic Sci. Res. 2019, 4, 10–28. [Google Scholar] [CrossRef] [PubMed]
- Stephan, C.N.; Simpson, E.K. Facial soft tissue depths in craniofacial identification (part I): An analytical review of the published adult data. J. Forensic. Sci. 2008, 53, 1257–1272. [Google Scholar] [PubMed]
Muscle | Origin | Insertion | Innervation | Blood Supply | Main Function |
---|---|---|---|---|---|
ZMa | Zygomatic bone (lateral surface) | Modiolus (corner of the mouth) | Facial nerve (CN VII) | Facial artery | Pulling corners of mouth upward and outward (smile) |
ZMi | Zygomatic bone (anterior aspect) | Upper lip, skin near nasolabial fold | Facial nerve (CN VII) | Facial artery | Elevating upper lip (smile, subtle expressions) |
Gene/Syndrome | Associated Effect on ZMa/ZMi Morphology |
---|---|
Tbx1 | Disruption linked to craniofacial hypoplasia, abnormal muscle formation |
MyoD, Myf5 | Critical in early myogenesis; mutations impair muscle segmentation and positioning |
Möbius syndrome | Facial paralysis; ZMa/ZMi underdeveloped or absent |
Myotonic dystrophy type 1 | Progressive muscle atrophy; ZMa visibly reduced on MRI |
Facioscapulohumeral dystrophy | Weakness and asymmetry of facial muscles, including ZMa |
Variant Type | Description | Clinical Relevance | Prevalence | Literature Sources |
---|---|---|---|---|
Bifid ZMa | Muscle splitting into two bellies (superior/inferior) | Associated with facial dimples, asymmetry in smiling | ~13–34% | Pessa et al., 1998 [29]; Phan and Onggo, 2019 [54] |
Multibellied ZMa | Presence of more than two bellies | Influences expression symmetry | Rare | Elvan et al., 2020 [1] |
Accessory ZMi bands | Additional bands duplicating typical ZMi | Potential impact on surgical outcomes, injection techniques | Occasionally observed | Spiegel and DeRosa, 2005 [55] |
Atypical insertions | Insertions into upper lip, orbicularis oris, or cheek skin | Affects facial expressivity and surgical procedures | Common | Elvan et al., 2020 [1]; Spiegel and DeRosa, 2005 [55] |
Category | Description | Prevalence | Clinical Importance |
---|---|---|---|
Type I—single belly | Typical anatomy of ZMa/ZMi | Standard reference for surgery | |
Type II—double belly | Clearly separated superior/inferior bellies | ~13–34% | Associated with dimples, aesthetic implications |
Type III—multibellied | More than two distinct bellies | Rare | Increased complexity in surgical management |
Type IV—accessory bands | Presence of additional muscle slips | Occasionally observed | Potential effect on mimic expression and symmetry |
Type V—atypical insertion | Insertions into non-typical anatomical points | Common | Impacts surgical outcomes and expression dynamics |
Author | Year | Classification Basis | Limitations/Scope |
---|---|---|---|
Pessa et al. [29] | 1998 | Binary: presence or absence of bifid ZMa | Limited to bifid variant only |
Phan and Onggo [54] | 2019 | Meta-analysis of bifid ZMa prevalence | Focused on population prevalence, limited to bifid |
Elvan et al. [1] | 2020 | Shape-based: ribbon-like, fan-shaped, bifid | Lacks clinical correlation and demographic factors |
Present Study | 2025 | Five-type classification: muscle belly count, accessory bands, insertion types, population variability | Comprehensive; includes anatomy, imaging, and clinical relevance |
Imaging Modality | Advantages | Limitations | Clinical Application | Literature Sources |
---|---|---|---|---|
MRI (high-resolution) | Excellent soft-tissue contrast, non-invasive, 3D analysis | Costly, limited accessibility, static or limited dynamic analysis | Preoperative anatomical mapping | Cotofana et al., 2018 [21] |
Dynamic Ultrasonography | Real-time muscle visualization, affordable, non-invasive | Limited depth resolution | Functional analysis, dynamic asymmetry detection | Kwon et al., 2014; Lee et al., 2020 [33] |
3D Photogrammetry | Precise facial surface modeling, dynamic analysis | Superficial only, requires specialized equipment | Surgical planning, prosthetic fitting | Knoops et al., 2017 [68] |
AI-based Imaging Analysis | Fast, objective, accurate identification of variants | Requires training dataset, computational resources | Automated diagnostics, clinical classification of variants | Lee et al., 2021 [33]; Codari et al., 2020 |
Variable | Key Findings | Clinical Implications | Literature Sources |
---|---|---|---|
Sex | Males: typically larger, thicker muscles; females: thinner, smaller volume | Aesthetic procedures, individualized planning | Standring, 2021; Loukas et al., 2006 [21] |
Age | Progressive muscle atrophy, reduced elasticity | Impact on facial expressions, surgical rejuvenation outcomes | Spiegel and DeRosa, 2005 [55]; Cotofana et al., 2018 [21] |
Ethnicity | Variability in prevalence of bifid muscles (higher in Asian and American populations) | Consideration in forensic identification, surgical approaches | Phan and Onggo, 2019 [54]; Hu et al., 2008 [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landfald, I.C.; Olewnik, Ł. An Interdisciplinary Review of the Zygomaticus Muscles: Anatomical Variability, Imaging Modalities, and Clinical Implications. J. Clin. Med. 2025, 14, 4110. https://doi.org/10.3390/jcm14124110
Landfald IC, Olewnik Ł. An Interdisciplinary Review of the Zygomaticus Muscles: Anatomical Variability, Imaging Modalities, and Clinical Implications. Journal of Clinical Medicine. 2025; 14(12):4110. https://doi.org/10.3390/jcm14124110
Chicago/Turabian StyleLandfald, Ingrid C., and Łukasz Olewnik. 2025. "An Interdisciplinary Review of the Zygomaticus Muscles: Anatomical Variability, Imaging Modalities, and Clinical Implications" Journal of Clinical Medicine 14, no. 12: 4110. https://doi.org/10.3390/jcm14124110
APA StyleLandfald, I. C., & Olewnik, Ł. (2025). An Interdisciplinary Review of the Zygomaticus Muscles: Anatomical Variability, Imaging Modalities, and Clinical Implications. Journal of Clinical Medicine, 14(12), 4110. https://doi.org/10.3390/jcm14124110