Impact of Bariatric Surgery and Endoscopic Therapies on Liver Health in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Roux-en-Y Gastric Bypass (RYGB)
3.2. Vertical Sleeve Gastrectomy (VSG)
3.3. Adjustable Gastric Banding (AGB)
3.4. Biliopancreatic Diversion with Duodenal Switch (BPD-DS)
3.5. Intragastric Balloon (IGB)
3.6. Endoscopic Sleeve Gastroplasty (ESG)
3.7. Primary Obesity Surgery Endolumenal (POSE)
3.8. Aspiration Therapy
3.9. Duodenal Mucosal Resurfacing (DMR)
3.10. Duodenal-Jejunal Bypass (DJB) Liner or Sleeve
3.11. Magnetic Anastomosis System (MAS)
4. Discussion
4.1. Liver Enzyme Improvement
4.2. Fibrosis and Steatosis Improvement
4.3. Bariatric Surgeries
4.4. Bariatric Endoscopy
5. Conclusions
Funding
Conflicts of Interest
References
- Brauer, M.; Roth, G.A.; Aravkin, A.Y.; Zheng, P.; Abate, K.H.; Abate, Y.H.; Abbafati, C.; Abbasgholizadeh, R.; Abbasi, M.A.; Abbasian, M.; et al. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2162–2203. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Qiu, T.; Li, L.; Yu, R.; Chen, X.; Li, C.; Proud, C.G.; Jiang, T. Pathophysiology of obesity and its associated diseases. Acta Pharm. Sin. B 2023, 13, 2403–2424. [Google Scholar] [CrossRef] [PubMed]
- Cercato, C.; Fonseca, F.A. Cardiovascular risk and obesity. Diabetol. Metab. Syndr. 2019, 11, 74. [Google Scholar] [CrossRef]
- Chandrasekaran, P.; Weiskirchen, R. The Role of Obesity in Type 2 Diabetes Mellitus—An Overview. Int. J. Mol. Sci. 2024, 25, 1882. [Google Scholar] [CrossRef]
- Leggio, M.; Lombardi, M.; Caldarone, E.; Severi, P.; D’Emidio, S.; Armeni, M.; Bravi, V.; Bendini, M.G.; Mazza, A. The relationship between obesity and hypertension: An updated comprehensive overview on vicious twins. Hypertens. Res. 2017, 40, 947–963. [Google Scholar] [CrossRef]
- Mahamat-Saleh, Y.; Aune, D.; Freisling, H.; Hardikar, S.; Jaafar, R.; Rinaldi, S.; Gunter, M.J.; Dossus, L. Association of metabolic obesity phenotypes with risk of overall and site-specific cancers: A systematic review and meta-analysis of cohort studies. Br. J. Cancer 2024, 131, 1480–1495. [Google Scholar] [CrossRef]
- Li, L.; Liu, D.-W.; Yan, H.-Y.; Wang, Z.-Y.; Zhao, S.-H.; Wang, B. Obesity is an independent risk factor for non-alcoholic fatty liver disease: Evidence from a meta-analysis of 21 cohort studies. Obes. Rev. 2016, 17, 510–519. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef]
- Subichin, M.; Clanton, J.; Makuszewski, M.; Bohon, A.; Zografakis, J.G.; Dan, A. Liver disease in the morbidly obese: A review of 1000 consecutive patients undergoing weight loss surgery. Surg. Obes. Relat. Dis. 2015, 11, 137–141. [Google Scholar] [CrossRef]
- Flore, G.; Preti, A.; Carta, M.G.; Deledda, A.; Fosci, M.; Nardi, A.E.; Loviselli, A.; Velluzzi, F. Weight Maintenance after Dietary Weight Loss: Systematic Review and Meta-Analysis on the Effectiveness of Behavioural Intensive Intervention. Nutrients 2022, 14, 1259. [Google Scholar] [CrossRef] [PubMed]
- Dombrowski, S.U.; Knittle, K.; Avenell, A.; Araujo-Soares, V.; Sniehotta, F.F. Long term maintenance of weight loss with non-surgical interventions in obese adults: Systematic review and meta-analyses of randomised controlled trials. BMJ 2014, 348, g2646. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, D.; Shikora, S.A.; Aarts, E.; Aminian, A.; Angrisani, L.; Cohen, R.V.; De Luca, M.; Faria, S.L.; Goodpaster, K.P.; Haddad, A. 2022 American Society of Metabolic and Bariatric Surgery (ASMBS) and International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO) indications for metabolic and bariatric surgery. Obes. Surg. 2023, 33, 3–14. [Google Scholar] [CrossRef]
- Carlsson, L.M.S.; Sjöholm, K.; Jacobson, P.; Andersson-Assarsson, J.C.; Svensson, P.-A.; Taube, M.; Carlsson, B.; Peltonen, M. Life Expectancy after Bariatric Surgery in the Swedish Obese Subjects Study. N. Engl. J. Med. 2020, 383, 1535–1543. [Google Scholar] [CrossRef]
- Courcoulas, A.P.; Daigle, C.R.; Arterburn, D.E. Long term outcomes of metabolic/bariatric surgery in adults. BMJ 2023, 383, e071027. [Google Scholar] [CrossRef]
- Lassailly, G.; Caiazzo, R.; Ntandja-Wandji, L.-C.; Gnemmi, V.; Baud, G.; Verkindt, H.; Ningarhari, M.; Louvet, A.; Leteurtre, E.; Raverdy, V.; et al. Bariatric Surgery Provides Long-term Resolution of Nonalcoholic Steatohepatitis and Regression of Fibrosis. Gastroenterology 2020, 159, 1290–1301.e5. [Google Scholar] [CrossRef] [PubMed]
- Aminian, A.; Al-Kurd, A.; Wilson, R.; Bena, J.; Fayazzadeh, H.; Singh, T.; Albaugh, V.L.; Shariff, F.U.; Rodriguez, N.A.; Jin, J.; et al. Association of Bariatric Surgery with Major Adverse Liver and Cardiovascular Outcomes in Patients with Biopsy-Proven Nonalcoholic Steatohepatitis. JAMA 2021, 326, 2031–2042. [Google Scholar] [CrossRef]
- Mummadi, R.R.; Kasturi, K.S.; Chennareddygari, S.; Sood, G.K. Effect of bariatric surgery on nonalcoholic fatty liver disease: Systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2008, 6, 1396–1402. [Google Scholar] [CrossRef]
- Sharaiha, R.Z.; Kumta, N.A.; Saumoy, M.; Desai, A.P.; Sarkisian, A.M.; Benevenuto, A.; Tyberg, A.; Kumar, R.; Igel, L.; Verna, E.C.; et al. Endoscopic Sleeve Gastroplasty Significantly Reduces Body Mass Index and Metabolic Complications in Obese Patients. Clin. Gastroenterol. Hepatol. 2017, 15, 504–510. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lai, H.; Chua, Y.J.; Wang, M.X.; Lee, G.-H. Endoscopic Bariatric and Metabolic Therapies and Their Effects on Metabolic Syndrome and Non-alcoholic Fatty Liver Disease—A Systematic Review and Meta-Analysis. Front. Med. 2022, 9, 880749. [Google Scholar] [CrossRef]
- Reja, D.; Zhang, C.; Sarkar, A. Endoscopic bariatrics: Current therapies and future directions. Transl. Gastroenterol. Hepatol. 2022, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Zhou, X.; Lv, L.; Ji, F. Endoscopic Bariatric and Metabolic Therapies for Liver Disease: Mechanisms, Benefits, and Associated Risks. J. Clin. Transl. Hepatol. 2022, 10, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, B.G.; Collier, S.A.; Gupta, N. Roux-en-Y Gastric Bypass; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Mason, E.E.; Ito, C. Gastric bypass in obesity. Surg. Clin. N. Am. 1967, 47, 1345–1351. [Google Scholar] [CrossRef] [PubMed]
- WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- van Rijswijk, A.S.; van Olst, N.; Schats, W.; van der Peet, D.L.; van de Laar, A.W. What Is Weight Loss After Bariatric Surgery Expressed in Percentage Total Weight Loss (%TWL)? A Systematic Review. Obes. Surg. 2021, 31, 3833–3847. [Google Scholar] [CrossRef]
- de Brito, E.S.M.B.; Tustumi, F.; de Miranda Neto, A.A.; Dantas, A.C.B.; Santo, M.A.; Cecconello, I. Gastric Bypass Compared with Sleeve Gastrectomy for Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-analysis. Obes. Surg. 2021, 31, 2762–2772. [Google Scholar] [CrossRef]
- Verrastro, O.; Panunzi, S.; Castagneto-Gissey, L.; De Gaetano, A.; Lembo, E.; Capristo, E.; Guidone, C.; Angelini, G.; Pennestrì, F.; Sessa, L.; et al. Bariatric-metabolic surgery versus lifestyle intervention plus best medical care in non-alcoholic steatohepatitis (BRAVES): A multicentre, open-label, randomised trial. Lancet 2023, 401, 1786–1797. [Google Scholar] [CrossRef]
- Fakhry, T.K.; Mhaskar, R.; Schwitalla, T.; Muradova, E.; Gonzalvo, J.P.; Murr, M.M. Bariatric surgery improves nonalcoholic fatty liver disease: A contemporary systematic review and meta-analysis. Surg. Obes. Relat. Dis. 2019, 15, 502–511. [Google Scholar] [CrossRef]
- Cazzo, E.; Jimenez, L.S.; Pareja, J.C.; Chaim, E.A. Effect of Roux-en-Y gastric bypass on nonalcoholic fatty liver disease evaluated through NAFLD fibrosis score: A prospective study. Obes. Surg. 2015, 25, 982–985. [Google Scholar] [CrossRef]
- Moretto, M.; Kupski, C.; da Silva, V.D.; Padoin, A.V.; Mottin, C.C. Effect of bariatric surgery on liver fibrosis. Obes. Surg. 2012, 22, 1044–1049. [Google Scholar] [CrossRef]
- Mottin, C.C.; Moretto, M.; Padoin, A.V.; Kupski, C.; Swarowsky, A.M.; Glock, L.; Duval, V.; da Silva, J.B. Histological behavior of hepatic steatosis in morbidly obese patients after weight loss induced by bariatric surgery. Obes. Surg. 2005, 15, 788–793. [Google Scholar] [CrossRef] [PubMed]
- Barker, K.B.; Palekar, N.A.; Bowers, S.P.; Goldberg, J.E.; Pulcini, J.P.; Harrison, S.A. Non-alcoholic steatohepatitis: Effect of Roux-en-Y gastric bypass surgery. Am. J. Gastroenterol. 2006, 101, 368–373. [Google Scholar] [CrossRef]
- Norouzian Ostad, A.; Rajabzadeh, F.; Jamialahmadi, T.; Goshayeshi, L.; Ranjbar, G.; Rezvani, R.; Nematy, M.; Jangjoo, A. Impact of gastric bypass surgery on the liver fibrosis of patients with extreme obesity and nonalcoholic fatty liver disease in 30-month follow-up. Updates Surg. 2023, 75, 659–669. [Google Scholar] [CrossRef]
- Hess, D.S.; Hess, D.W. Biliopancreatic diversion with a duodenal switch. Obes. Surg. 1998, 8, 267–282. [Google Scholar] [CrossRef]
- ASMBS Clinical Issues Committee. Updated position statement on sleeve gastrectomy as a bariatric procedure. Surg. Obes. Relat. Dis. 2012, 8, e21–e26. [Google Scholar] [CrossRef] [PubMed]
- Alexander, H.; Falk, R.; Utz, S.; Felix, D.; Aladdin, A.D.; Hermann, K.; Laura, S.; Johanna, B.; Michael, A. Comparison of different liver fibrosis scores following sleeve gastrectomy. Langenbecks Arch. Surg. 2025, 410, 29. [Google Scholar] [CrossRef]
- Algooneh, A.; Almazeedi, S.; Al-Sabah, S.; Ahmed, M.; Othman, F. Non-alcoholic fatty liver disease resolution following sleeve gastrectomy. Surg. Endosc. 2016, 30, 1983–1987. [Google Scholar] [CrossRef]
- Batman, B.; Altun, H.; Simsek, B.; Aslan, E.; Namli Koc, S. The Effect of Laparoscopic Sleeve Gastrectomy on Nonalcoholic Fatty Liver Disease. Surg. Laparosc. Endosc. Percutan Tech. 2019, 29, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Yang, P.J.; Lee, P.C.; Chuang, P.H.; Yang, Y.H.; Chiu, W.T.; Wu, C.H. Computed tomography-based gastric volumetry for morbid obesity to assess weight loss and fatty liver change. J. Formos. Med. Assoc. 2024, 123, 1287–1293. [Google Scholar] [CrossRef]
- Cherla, D.V.; Rodriguez, N.A.; Vangoitsenhoven, R.; Singh, T.; Mehta, N.; McCullough, A.J.; Brethauer, S.A.; Schauer, P.R.; Aminian, A. Impact of sleeve gastrectomy and Roux-en-Y gastric bypass on biopsy-proven non-alcoholic fatty liver disease. Surg. Endosc. 2020, 34, 2266–2272. [Google Scholar] [CrossRef]
- Belachew, M.; Legrand, M.; Vincent, V.; Lismonde, M.; Docte, N.L.; Deschamps, V. Laparoscopic Adjustable Gastric Banding. World J. Surg. 1998, 22, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Beitner, M.; Kurian, M.S. Laparoscopic adjustable gastric banding. Abdom. Imaging 2012, 37, 687–689. [Google Scholar] [CrossRef] [PubMed]
- Chapman, A.E.; Kiroff, G.; Game, P.; Foster, B.; O’Brien, P.; Ham, J.; Maddern, G.J. Laparoscopic adjustable gastric banding in the treatment of obesity: A systematic literature review. Surgery 2004, 135, 326–351. [Google Scholar] [CrossRef] [PubMed]
- Dixon, J.B.; Bhathal, P.S.; Hughes, N.R.; O’Brien, P.E. Nonalcoholic fatty liver disease: Improvement in liver histological analysis with weight loss. Hepatology 2004, 39, 1647–1654. [Google Scholar] [CrossRef] [PubMed]
- Dixon, J.B.; Bhathal, P.S.; O’Brien, P.E. Weight Loss and Non-alcoholic Fatty Liver Disease: Falls In Gamma-Glutamyl Transferase Concentrations are Associated with Histologic Improvement. Obes. Surg. 2006, 16, 1278–1286. [Google Scholar] [CrossRef]
- Phillips, M.L.; Boase, S.; Wahlroos, S.; Dugar, M.; Kow, L.; Stahl, J.; Slavotinek, J.P.; Valentine, R.; Toouli, J.; Thompson, C.H. Associates of change in liver fat content in the morbidly obese after laparoscopic gastric banding surgery. Diabetes Obes. Metab. 2008, 10, 661–667. [Google Scholar] [CrossRef]
- Loy, J.J.; Youn, H.A.; Schwack, B.; Kurian, M.; Ren Fielding, C.; Fielding, G.A. Improvement in nonalcoholic fatty liver disease and metabolic syndrome in adolescents undergoing bariatric surgery. Surg. Obes. Relat. Dis. 2015, 11, 442–449. [Google Scholar] [CrossRef]
- Scopinaro, N.; Gianetta, E.; Civalleri, D.; Bonalumi, U.; Bachi, V. Bilio-pancreatic bypass for obesity: II. Initial experience in man. Br. J. Surg. 1979, 66, 618–620. [Google Scholar] [CrossRef]
- Larrad-Jiménez, A.; Díaz-Guerra, C.S.; de Cuadros Borrajo, P.; Lesmes, I.B.; Esteban, B.M. Short-, mid- and long-term results of Larrad biliopancreatic diversion. Obes. Surg. 2007, 17, 202–210. [Google Scholar] [CrossRef]
- Russo, M.F.; Lembo, E.; Mari, A.; Angelini, G.; Verrastro, O.; Nanni, G.; Pompili, M.; Raffaelli, M.; Vecchio, F.M.; Bornstein, S.R.; et al. Insulin Resistance Is Central to Long-Term Reversal of Histologic Nonalcoholic Steatohepatitis After Metabolic Surgery. J. Clin. Endocrinol. Metab. 2021, 106, 750–761. [Google Scholar] [CrossRef]
- Keshishian, A.; Zahriya, K.; Willes, E.B. Duodenal Switch Has No Detrimental Effects on Hepatic Function and Improves Hepatic Steatohepatitis after 6 Months. Obes. Surg. 2005, 15, 1418–1423. [Google Scholar] [CrossRef] [PubMed]
- Kral, J.G.; Thung, S.N.; Biron, S.; Hould, F.S.; Lebel, S.; Marceau, S.; Simard, S.; Marceau, P. Effects of surgical treatment of the metabolic syndrome on liver fibrosis and cirrhosis. Surgery 2004, 135, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Weiner, R.A. Surgical treatment of non-alcoholic steatohepatitis and non-alcoholic fatty liver disease. Dig. Dis. 2010, 28, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Buchwald, H.; Avidor, Y.; Braunwald, E.; Jensen, M.D.; Pories, W.; Fahrbach, K.; Schoelles, K. Bariatric surgery: A systematic review and meta-analysis. JAMA 2004, 292, 1724–1737. [Google Scholar] [CrossRef]
- Aller, R.; Pacheco, D.; Izaola, O.; Primo, D.; de Luis, D.A. Effect on Liver Enzymes of Biliopancreatic Diversion: 4 Years of Follow-Up. Ann. Nutr. Metab. 2015, 66, 132–136. [Google Scholar] [CrossRef]
- Frenken, M.; Cho, E.Y.; Karcz, W.K.; Grueneberger, J.; Kuesters, S. Improvement of type 2 diabetes mellitus in obese and non-obese patients after the duodenal switch operation. J. Obes. 2011, 2011, 860169. [Google Scholar] [CrossRef]
- Sasaki, A.; Nitta, H.; Otsuka, K.; Umemura, A.; Baba, S.; Obuchi, T.; Wakabayashi, G. Bariatric surgery and non-alcoholic Fatty liver disease: Current and potential future treatments. Front. Endocrinol. 2014, 5, 164. [Google Scholar] [CrossRef]
- Cazzo, E.; Pareja, J.C.; Chaim, E.A. Liver failure following biliopancreatic diversions: A narrative review. Sao Paulo Med. J. 2016, 135, 66–70. [Google Scholar] [CrossRef]
- Côté, M.; Pelletier, L.; Nadeau, M.; Bouvet-Bouchard, L.; Julien, F.; Michaud, A.; Biertho, L.; Tchernof, A. Micronutrient status 2 years after bariatric surgery: A prospective nutritional assessment. Front. Nutr. 2024, 11, 1385510. [Google Scholar] [CrossRef]
- Søvik, T.T.; Aasheim, E.T.; Taha, O.; Engström, M.; Fagerland, M.W.; Björkman, S.; Kristinsson, J.; Birkeland, K.I.; Mala, T.; Olbers, T. Weight loss, cardiovascular risk factors, and quality of life after gastric bypass and duodenal switch: A randomized trial. Ann. Intern. Med. 2011, 155, 281–291. [Google Scholar] [CrossRef]
- Nelson, D.W.; Blair, K.S.; Martin, M.J. Analysis of obesity-related outcomes and bariatric failure rates with the duodenal switch vs. gastric bypass for morbid obesity. Arch. Surg. 2012, 147, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Søvik, T.T.; Taha, O.; Aasheim, E.T.; Engström, M.; Kristinsson, J.; Björkman, S.; Schou, C.F.; Lönroth, H.; Mala, T.; Olbers, T. Randomized clinical trial of laparoscopic gastric bypass versus laparoscopic duodenal switch for superobesity. Br. J. Surg. 2010, 97, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.B.; Neto, M.G. Intragastric balloon. Minim. Invasive Ther. Allied Technol. 2022, 31, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Bazerbachi, F.; Rustagi, T.; McCarty, T.R.; Thompson, C.C.; Galvao Neto, M.P.; Zundel, N.; Wilson, E.B.; Gostout, C.J.; Abu Dayyeh, B.K. The influence of the Orbera intragastric balloon filling volumes on weight loss, tolerability, and adverse events: A systematic review and meta-analysis. Obes. Surg. 2017, 27, 2272–2278. [Google Scholar] [CrossRef]
- Weitzner, Z.N.; Phan, J.; Begashaw, M.M.; Mak, S.S.; Booth, M.S.; Shekelle, P.G.; Maggard-Gibbons, M.; Girgis, M.D. Endoscopic therapies for patients with obesity: A systematic review and meta-analysis. Surg. Endosc. 2023, 37, 8166–8177. [Google Scholar] [CrossRef]
- Vantanasiri, K.; Matar, R.; Beran, A.; Jaruvongvanich, V. The efficacy and safety of a procedureless gastric balloon for weight loss: A systematic review and meta-analysis. Obes. Surg. 2020, 30, 3341–3346. [Google Scholar] [CrossRef]
- Gleysteen, J.J. A history of intragastric balloons. Surg. Obes. Relat. Dis. 2016, 12, 430–435. [Google Scholar] [CrossRef]
- Gollisch, K.S.C.; Raddatz, D. Endoscopic intragastric balloon: A gimmick or a viable option for obesity? Ann. Transl. Med. 2020, 8, S8. [Google Scholar] [CrossRef]
- Choi, S.J.; Choi, H.S. Various intragastric balloons under clinical investigation. Clin. Endosc. 2018, 51, 407–415. [Google Scholar] [CrossRef]
- Chandan, S.; Mohan, B.P.; Khan, S.R.; Facciorusso, A.; Ramai, D.; Kassab, L.L.; Bhogal, N.; Asokkumar, R.; Lopez-Nava, G.; McDonough, S. Efficacy and safety of intragastric balloon (IGB) in non-alcoholic fatty liver disease (NAFLD): A comprehensive review and meta-analysis. Obes. Surg. 2021, 31, 1271–1279. [Google Scholar] [CrossRef]
- Popov, V.B.; Thompson, C.C.; Kumar, N.; Ciarleglio, M.M.; Deng, Y.; Laine, L. Effect of intragastric balloons on liver enzymes: A systematic review and meta-analysis. Dig. Dis. Sci. 2016, 61, 2477–2487. [Google Scholar] [CrossRef] [PubMed]
- Bazerbachi, F.; Vargas, E.J.; Mounajjed, T.; Venkatesh, S.K.; Watt, K.D.; Port, J.D.; Basu, R.; Rizk, M.; Acosta, A.; Hanouneh, I. 795 Impact of single fluid-filled intragastric balloon on metabolic parameters and nonalcoholic steatohepatitis: A prospective paired endoscopic ultrasound guided core liver biopsy at the time of balloon placement and removal. Gastrointest. Endosc. 2018, 87, AB118–AB119. [Google Scholar] [CrossRef]
- Forlano, R.; Ippolito, A.M.; Iacobellis, A.; Merla, A.; Valvano, M.R.; Niro, G.; Annese, V.; Andriulli, A. Effect of the BioEnterics intragastric balloon on weight, insulin resistance, and liver steatosis in obese patients. Gastrointest. Endosc. 2010, 71, 927–933. [Google Scholar] [CrossRef]
- Popov, V.B.; Ou, A.; Schulman, A.R.; Thompson, C.C. The impact of intragastric balloons on obesity-related co-morbidities: A systematic review and meta-analysis. Am. J. Gastroenterol. 2017, 112, 429–439. [Google Scholar] [CrossRef]
- Nguyen, V.; Li, J.; Gan, J.; Cordero, P.; Ray, S.; Solis-Cuevas, A.; Khatib, M.; Oben, J.A. Outcomes following serial intragastric balloon therapy for obesity and nonalcoholic fatty liver disease in a single centre. Can. J. Gastroenterol. Hepatol. 2017, 2017, 4697194. [Google Scholar] [CrossRef] [PubMed]
- Marinos, G.; Eliades, C.; Muthusamy, V.R.; Greenway, F. Weight loss and improved quality of life with a nonsurgical endoscopic treatment for obesity: Clinical results from a 3-and 6-month study. Surg. Obes. Relat. Dis. 2014, 10, 929–934. [Google Scholar] [CrossRef]
- Rothstein, R.I.; Kopjar, B.; Woodman, G.E.; Swain, J.M.; de la Cruz-Muñoz, N.; Kushnir, V.M.; Pryor, A.D.; English, W.J.; Odstrcil, E.A.; Sullivan, S. Randomized double-blind sham-controlled trial of a novel silicone-filled endoscopically placed device for weight loss. Tech. Innov. Gastrointest. Endosc. 2024, 26, 21–29. [Google Scholar] [CrossRef]
- Kumar, N.; Abu Dayyeh, B.K.; Lopez-Nava Breviere, G.; Galvao Neto, M.P.; Sahdala, N.P.; Shaikh, S.N.; Hawes, R.H.; Gostout, C.J.; Goenka, M.K.; Orillac, J.R. Endoscopic sutured gastroplasty: Procedure evolution from first-in-man cases through current technique. Surg. Endosc. 2018, 32, 2159–2164. [Google Scholar] [CrossRef]
- Dayyeh, B.K.A.; Rajan, E.; Gostout, C.J. Endoscopic sleeve gastroplasty: A potential endoscopic alternative to surgical sleeve gastrectomy for treatment of obesity. Gastrointest. Endosc. 2013, 78, 530–535. [Google Scholar] [CrossRef]
- Barrichello, S.; de Moura, D.T.H.; de Moura, E.G.H.; Jirapinyo, P.; Hoff, A.C.; Fittipaldi-Fernandez, R.J.; Baretta, G.; Lima, J.H.F.; Usuy, E.N.; de Almeida, L.S. Endoscopic sleeve gastroplasty in the management of overweight and obesity: An international multicenter study. Gastrointest. Endosc. 2019, 90, 770–780. [Google Scholar] [CrossRef]
- Nunes, B.C.M.; de Moura, D.T.H.; Kum, A.S.T.; de Oliveira, G.H.P.; Hirsch, B.S.; Ribeiro, I.B.; Gomes, I.L.C.; de Oliveira, C.P.M.; Mahmood, S.; Bernardo, W.M. Impact of endoscopic sleeve gastroplasty in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Obes. Surg. 2023, 33, 2917–2926. [Google Scholar] [CrossRef]
- Jagtap, N.; Kalapala, R.; Katakwar, A.; Sharma, M.; Aslam, M.; Gupta, R.; Rao, P.N.; Goud, R.; Tandan, M.; Kanakagiri, H. Endoscopic sleeve gastroplasty—Minimally invasive treatment for non-alcoholic fatty liver disease and obesity. Indian J. Gastroenterol. 2021, 40, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Abad, J.; Llop, E.; Arias-Loste, M.T.; Burgos-Santamaría, D.; Porras, J.L.M.; Iruzubieta, P.; Graus, J.; Ruiz-Antoran, B.; Yuste, M.R.S.; Romero-Gómez, M. Endoscopic sleeve gastroplasty plus lifestyle intervention in patients with MASH: A multicentre, sham-controlled, randomized trial. Clin. Gastroenterol. Hepatol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Hajifathalian, K.; Mehta, A.; Ang, B.; Skaf, D.; Shah, S.L.; Saumoy, M.; Dawod, Q.; Dawod, E.; Shukla, A.; Aronne, L. Improvement in insulin resistance and estimated hepatic steatosis and fibrosis after endoscopic sleeve gastroplasty. Gastrointest. Endosc. 2021, 93, 1110–1118. [Google Scholar] [CrossRef]
- López-Nava, G.; Bautista-Castaño, I.; Jimenez, A.; De Grado, T.; Fernandez-Corbelle, J.P. The Primary Obesity Surgery Endolumenal (POSE) procedure: One-year patient weight loss and safety outcomes. Surg. Obes. Relat. Dis. 2015, 11, 861–865. [Google Scholar] [CrossRef]
- Lopez-Nava, G.; Asokkumar, R.; Arau, R.T.; Neto, M.G.; Dayyeh, B.A. Modified primary obesity surgery endoluminal (POSE-2) procedure for the treatment of obesity. VideoGIE 2020, 5, 91–93. [Google Scholar] [CrossRef]
- AlKhatry, M.; Rapaka, B.; Maselli, D.B.; Abboud, D.M.; Brunaldi, V.O.; Mahmoud, T.; Ghazi, R.; Razzak, F.A.; Gala, K.; Joudah, I. Improvements in hepatic steatosis, obesity, and insulin resistance in adults with nonalcoholic fatty liver disease after the primary obesity surgery endoluminal 2.0 procedure. Endoscopy 2023, 55, 1028–1034. [Google Scholar] [CrossRef]
- Sullivan, S.; Stein, R.; Jonnalagadda, S.; Mullady, D.; Edmundowicz, S. Aspiration therapy leads to weight loss in obese subjects: A pilot study. Gastroenterology 2013, 145, 1245–1252.e5. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, S. Aspiration therapy for obesity. Gastrointest. Endosc. Clin. 2017, 27, 277–288. [Google Scholar] [CrossRef]
- Jirapinyo, P.; de Moura, D.T.; Horton, L.C.; Thompson, C.C. Effect of aspiration therapy on obesity-related comorbidities: Systematic review and meta-analysis. Clin. Endosc. 2020, 53, 686–697. [Google Scholar] [CrossRef]
- Rajagopalan, H.; Cherrington, A.D.; Thompson, C.C.; Kaplan, L.M.; Rubino, F.; Mingrone, G.; Becerra, P.; Rodriguez, P.; Vignolo, P.; Caplan, J. Endoscopic duodenal mucosal resurfacing for the treatment of type 2 diabetes: 6-month interim analysis from the first-in-human proof-of-concept study. Diabetes Care 2016, 39, 2254–2261. [Google Scholar] [CrossRef] [PubMed]
- Mingrone, G.; Van Baar, A.C.; Devière, J.; Hopkins, D.; Moura, E.; Cercato, C.; Rajagopalan, H.; Lopez-Talavera, J.C.; White, K.; Bhambhani, V. Safety and efficacy of hydrothermal duodenal mucosal resurfacing in patients with type 2 diabetes: The randomised, double-blind, sham-controlled, multicentre REVITA-2 feasibility trial. Gut 2022, 71, 254–264. [Google Scholar] [CrossRef] [PubMed]
- van Baar, A.C.; Beuers, U.; Wong, K.; Haidry, R.; Costamagna, G.; Hafedi, A.; Deviere, J.; Ghosh, S.S.; Lopez-Talavera, J.C.; Rodriguez, L. Endoscopic duodenal mucosal resurfacing improves glycaemic and hepatic indices in type 2 diabetes: 6-month multicentre results. JHEP Rep. 2019, 1, 429–437. [Google Scholar] [CrossRef]
- Gersin, K.S.; Keller, J.E.; Stefanidis, D.; Simms, C.S.; Abraham, D.D.; Deal, S.E.; Kuwada, T.S.; Heniford, B.T. Duodenal—Jejunal bypass sleeve: A totally endoscopic device for the treatment of morbid obesity. Surg. Innov. 2007, 14, 275–278. [Google Scholar] [CrossRef]
- de Jonge, C.; Rensen, S.S.; Koek, G.H.; Joosten, M.F.; Buurman, W.A.; Bouvy, N.D.; Greve, J.W.M. Endoscopic Duodenal–jejunal bypass liner rapidly improves plasma parameters of nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2013, 11, 1517–1520. [Google Scholar] [CrossRef]
- Randomized, A. Multi-Center, Pivotal Efficacy and Safety Study Comparing the EndoBarrier Gastrointestinal Liner System vs. Sham for Glycemic Improvement in Inadequately Controlled Obese Type 2 Diabetic Subjects on Oral Anti-Diabetes Agents. 2012. Available online: https://clinicaltrials.gov/study/NCT01728116 (accessed on 25 May 2025).
- Gollisch, K.; Lindhorst, A.; Raddatz, D. EndoBarrier gastrointestinal liner in type 2 diabetic patients improves liver fibrosis as assessed by liver elastography. Exp. Clin. Endocrinol. Diabetes 2017, 125, 116–121. [Google Scholar] [CrossRef] [PubMed]
- van Rijn, S.; Roebroek, Y.G.; de Jonge, C.; Greve, J.W.M.; Bouvy, N.D. Effect of the EndoBarrier device: A 4-year follow-up of a multicenter randomized clinical trial. Obes. Surg. 2019, 29, 1117–1121. [Google Scholar] [CrossRef]
- Ren, M.; Zhou, X.; Yu, M.; Cao, Y.; Xu, C.; Yu, C.; Ji, F. Prospective study of a new endoscopic duodenal–jejunal bypass sleeve in obese patients with nonalcoholic fatty liver disease (with video). Dig. Endosc. 2023, 35, 58–66. [Google Scholar] [CrossRef]
- Yu, H.-H.; Hsieh, M.-C.; Wu, S.-Y.; Sy, E.D.; Shan, Y.-S. Effects of duodenal–jejunal bypass surgery in ameliorating nonalcoholic steatohepatitis in diet-induced obese rats. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 149–159. [Google Scholar] [CrossRef]
- Roehlen, N.; Laubner, K.; Nicolaus, L.; Schwacha, H.; Bettinger, D.; Krebs, A.; Thimme, R.; Seufert, J. Impact of duodenal-jejunal bypass liner (DJBL) on NAFLD in patients with obesity and type 2 diabetes mellitus. Nutrition 2022, 103, 111806. [Google Scholar] [CrossRef]
- Karlas, T.; Petroff, D.; Feisthammel, J.; Beer, S.; Blüher, M.; Schütz, T.; Lichtinghagen, R.; Hoffmeister, A.; Wiegand, J. Endoscopic bariatric treatment with duodenal-jejunal bypass liner improves non-invasive markers of non-alcoholic steatohepatitis. Obes. Surg. 2022, 32, 2495–2503. [Google Scholar] [CrossRef] [PubMed]
- Riedel, N.; Laubner, K.; Lautenbach, A.; Schön, G.; Schlensak, M.; Stengel, R.; Eberl, T.; Dederichs, F.; Aberle, J.; Seufert, J. Longitudinal evaluation of efficacy, safety and nutritional status during one-year treatment with the duodenal-jejunal bypass liner. Surg. Obes. Relat. Dis. 2018, 14, 769–779. [Google Scholar] [CrossRef]
- Randomized, A. Multi-Center, Pivotal Efficacy and Safety Study Evaluating the RESET® System for Glycemic Improvement in Patients with Inadequately Controlled Type 2 Diabetes and Obesity. 2019. Available online: https://clinicaltrials.gov/study/NCT04101669 (accessed on 25 May 2025).
- Ryou, M.; Agoston, A.T.; Thompson, C.C. Endoscopic intestinal bypass creation by using self-assembling magnets in a porcine model. Gastrointest. Endosc. 2016, 83, 821–825. [Google Scholar] [CrossRef]
- Schlottmann, F.; Ryou, M.; Lautz, D.; Thompson, C.C.; Buxhoeveden, R. Sutureless duodeno-ileal anastomosis with self-assembling magnets: Safety and feasibility of a novel metabolic procedure. Obes. Surg. 2021, 31, 4195–4202. [Google Scholar] [CrossRef] [PubMed]
- Gagner, M.; Almutlaq, L.; Cadiere, G.-B.; Torres, A.J.; Sanchez-Pernaute, A.; Buchwald, J.N.; Abuladze, D. Side-to-side magnetic duodeno-ileostomy in adults with severe obesity with or without type 2 diabetes: Early outcomes with prior or concurrent sleeve gastrectomy. Surg. Obes. Relat. Dis. 2024, 20, 341–352. [Google Scholar] [CrossRef]
- Dziakova, J.; Torres, A.; Odovic, M.; Esteban, J.M.; Vázquez-Romero, M.; Castillo, A.; Sánchez-Pernaute, A.; Gagner, M. Spanish Experience with Latero-Lateral Duodeno-Ileostomy+ Sleeve Gastrectomy with Magnet Anastomosis System. Obes. Surg. 2024, 34, 3569–3575. [Google Scholar] [CrossRef] [PubMed]
- Zadeh, M.H.; Zamaninour, N.; Ansar, H.; Kabir, A.; Pazouki, A.; Farsani, G.M. Changes in serum albumin and liver enzymes following three different types of bariatric surgery: Six-month follow-up. A retrospective cohort study. Sao Paulo Med. J. 2021, 139, 598–606. [Google Scholar] [CrossRef]
- Johansson, H.-E.; Haenni, A.; Zethelius, B. Platelet counts and liver enzymes after bariatric surgery. J. Obes. 2013, 2013, 567984. [Google Scholar] [CrossRef]
- van Berckel, M.M.G.; Van Loon, S.L.; Boer, A.-K.; Scharnhorst, V.; Nienhuijs, S.W. Visual analysis of biomarkers reveals differences in lipid profiles and liver enzymes before and after gastric sleeve and bypass. Obes. Facts 2021, 14, 21–31. [Google Scholar] [CrossRef]
- Azulai, S.; Grinbaum, R.; Beglaibter, N.; Eldar, S.M.; Rubin, M.; Ben-Haroush Schyr, R.; Romano-Zelekha, O.; Ben-Zvi, D. Sleeve gastrectomy is associated with a greater reduction in plasma liver enzymes than bypass surgeries—A registry-based two-year follow-up analysis. J. Clin. Med. 2021, 10, 1144. [Google Scholar] [CrossRef]
- Schwenger, K.J.; Fischer, S.E.; Jackson, T.; Okrainec, A.; Allard, J.P. In nonalcoholic fatty liver disease, Roux-en-Y gastric bypass improves liver histology while persistent disease is associated with lower improvements in waist circumference and glycemic control. Surg. Obes. Relat. Dis. 2018, 14, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Vargas, V.; Allende, H.; Lecube, A.; Salcedo, M.T.; A Baena-Fustegueras, J.; Fort, J.M.; Rivero, J.; Ferrer, R.; Catalán, R.; Pardina, E.; et al. Surgically induced weight loss by gastric bypass improves non alcoholic fatty liver disease in morbid obese patients. World J. Hepatol. 2012, 4, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Furuya, C.K., Jr.; De Oliveira, C.P.M.S.; De Mello, E.S.; Faintuch, J.; Raskovski, A.; Matsuda, M.; Vezozzo, D.C.P.; Halpern, A.; Garrido, A.B.; Alves, V.A.F.; et al. Effects of bariatric surgery on nonalcoholic fatty liver disease: Preliminary findings after 2 years. J. Gastroenterol. Hepatol. 2007, 22, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Tai, C.-M.; Huang, C.-K.; Hwang, J.-C.; Chiang, H.; Chang, C.-Y.; Lee, C.-T.; Yu, M.-L.; Lin, J.-T. Improvement of Nonalcoholic Fatty Liver Disease After Bariatric Surgery in Morbidly Obese Chinese Patients. Obes. Surg. 2012, 22, 1016–1021. [Google Scholar] [CrossRef]
- Esquivel, C.M.; Garcia, M.; Armando, L.; Ortiz, G.; Lascano, F.M.; Foscarini, J.M. Laparoscopic Sleeve Gastrectomy Resolves NAFLD: Another Formal Indication for Bariatric Surgery? Obes. Surg. 2018, 28, 4022–4033. [Google Scholar] [CrossRef]
- Caiazzo, R.; Lassailly, G.; Leteurtre, E.; Baud, G.; Verkindt, H.; Raverdy, V.; Buob, D.; Pigeyre, M.; Mathurin, P.; Philippe; et al. Roux-en-Y gastric bypass versus adjustable gastric banding to reduce nonalcoholic fatty liver disease: A 5-year controlled longitudinal study. Ann. Surg. 2014, 260, 893–898; discussion 898–899. [Google Scholar] [CrossRef]
- Baldwin, D.; Chennakesavalu, M.; Gangemi, A. Systematic review and meta-analysis of Roux-en-Y gastric bypass against laparoscopic sleeve gastrectomy for amelioration of NAFLD using four criteria. Surg. Obes. Relat. Dis. 2019, 15, 2123–2130. [Google Scholar] [CrossRef]
- Jimenez, L.S.; Chaim, F.H.M.; Utrini, M.P.; Gestic, M.A.; Chaim, E.A.; Cazzo, E. Impact of Weight Regain on the Evolution of Non-alcoholic Fatty Liver Disease After Roux-en-Y Gastric Bypass: A 3-Year Follow-up. Obes. Surg. 2018, 28, 3131–3135. [Google Scholar] [CrossRef]
- Nickel, F.; Tapking, C.; Benner, L.; Sollors, J.; Billeter, A.T.; Kenngott, H.G.; Bokhary, L.; Schmid, M.; Von Frankenberg, M.; Fischer, L.; et al. Bariatric Surgery as an Efficient Treatment for Non-Alcoholic Fatty Liver Disease in a Prospective Study with 1-Year Follow-up. Obes. Surg. 2018, 28, 1342–1350. [Google Scholar] [CrossRef]
Refs. | Citation | Intervention | Study Type | Duration | Diagnosis Method | Effect on Steatosis | Effect on Fibrosis | Effect on Liver Enzymes |
---|---|---|---|---|---|---|---|---|
1 | Mottin et al. [32] | RYGB | Retrospective cohort study | 12 months | Liver biopsy | Steatosis regressed in 54.4% of patients and improved in 27.8% (p < 0.0001) | ||
2 | Cazzo et al. [30] | RYGB | Prospective cohort study | 12 months | Liver biopsy, NFS | NFS decreased by a mean of 1.08 points at follow-up (p = 0.039); 55% had regression of severe fibrosis | ALT levels decreased by 32.6% (p < 0.0001), and AST levels decreased by 17.5% (p < 0.0005) | |
3 | Norouzian Ostad et al. [34]. | RYGB | Prospective cohort study | 30 months | Liver biopsy or ultrasound (2D-SWE) | Patients with no fibrosis increased from 55% to 91%, while advanced fibrosis (F4) declined from 21% to 2% | ALT levels decreased by 30.1% (p = 0.005); AST levels decreased by 9.2%, (p = 0.567); ALP levels increased by 4.6% (p < 0.001); GGT levels decreased by 57.6% (p = 0.012) | |
4 | Jimenez et al. [121] | RYGB | Prospective cohort study | 3 years | NFS | NFS decreased by a mean of 0.90 points at 1 year (p < 0.0001) and a mean of 0.50 points from baseline at 3 years (p < 0.0001) | ALT levels decreased by 45.9% (p < 0.0001), AST levels decreased by 19.2% (p = 0.0112) | |
5 | Cherla et al. [41]. | RYGB | Retrospective cohort study | 4 years | Liver biopsy + liver enzymes | ALT levels decreased by 55.2% after one year (p < 0.0001); AST levels decreased by 49.5% after one year (p < 0.0001); after one year: 83.9% had normalization of liver enzymes | ||
6 | Johansson et al. [111] | RYGB | Prospective cohort study | 3 years | Liver enzymes | ALT levels decreased by 45.2% at 1 year (p < 0.001), and by 61.3% from baseline at 3 years (p < 0.001); GGT levels decreased by 56.9% at 1 year (p < 0.001), and by 53.8% from baseline at 3 years (p < 0.001) | ||
7 | Verrastro et al. [28]. | RYGB | Multicenter RCT | 12 months | Liver biopsy, NFS, NAS, NASH-CRN system | NAS decreased by 56.2% (p < 0.001); NASH resolved in 56% of the patients (p < 0.0001) | 46% had regression of fibrosis (p = 0.017) | ALT levels decreased by 37.41% (p <0.0001), AST levels decreased by 22.04% (p < 0.0006) |
8 | de Brito e Silva et al. [27] | RYGB | Review and meta-analysis | 14 ± 6 months | Liver biopsy | NAS decreased by 2.52 points (p < 0.00001), 53% absolute reduction in the prevalence of steatohepatitis (p < 0.00001) | 26% absolute reduction in the presence of fibrosis (p < 0.0001), with grade of fibrosis improving with a pooled mean reduction of 0.77 points (p < 0.00001) | ALT levels decreased by a mean of 12.04 (8.44, 15.65) (p < 0.00001); AST levels decreased by a mean of 5.15 (2.39, 7.91) (p < 0.0003); ALP levels decreased by a mean of 4.57 (−3.44, 12.59) (p = 0.26); GGT levels decreased by a mean of 19.06 (13.77, 24.34) (p < 0.0001) |
9 | Vargas et al. [115] | RYGB | Prospective cohort study | 16 months | Liver biopsy | NASH decreased in 84% of patients (p < 0.001) | Fibrosis score 0 (normal liver) increased from 3.84% to 34.6% | ALT levels decreased by ~24.5% (p = 0.143); AST levels increased slightly by ~2.9% (p = 0.862); GGT levels decreased by ~52.2% (p < 0.001) |
10 | Tai et al. [117] | RYGB | Prospective cohort study | 12 months | Liver biopsy | Steatosis grade 0 (normal liver) increased from 9.5% of patients to 95.2% (p < 0.01) | Fibrosis score 0 (normal liver) increased from 14.3% of patients to 42.9% (p < 0.01) | ALT levels decreased by 29.4% (p < 0.01); AST levels remained unchanged (27.0 IU/L) (p = 0.66); GGT levels decreased by 57.1% (p < 0.01) |
11 | Fakhry et al. [29] | RYGB | Systematic review and meta-analysis | 5–60 months | Liver biopsy | Resolution of steatosis was 91% (95% CI: 0.82, −0.97) | 31% of patients showed fibrosis improvement (95% CI: 0.17–0.46) | ALT levels decreased by 58% (95% CI: 0.22, 0.94); AST levels decreased by 34% (95% CI: 0.14, 0.54) |
12 | Caiazzo et al. [119] | RYGB | Prospective cohort study | 5 years | Liver biopsy | NAS decreased by 65% at 1 year (p < 0.001) and remained reduced by 65% from baseline at 5 years (p < 0.001; steatosis decreased by 76% at 1 year (p < 0.001) and by 74% from baseline at 5 years (p < 0.001) | ALT decreased by 41% at 1 year (p < 0.001) and by 39% from baseline at 5 years (p < 0.001); AST decreased by 25% at 1 year (p = 0.035) and by 11% from baseline at 5 years (p = 0.092); GGT decreased by 53% at 1 year (p < 0.001) and by 33% from baseline at 5 years (p = 0.002); ALP decreased by 9% at 1 year (p = 0.035) and by 28% from baseline at 5 years (p = 0.003). | |
13 | Furuya et al. [116] | RYGB | Prospective cohort study | 2 years | Liver biopsy | Steatosis disappeared in 84% of patients (p < 0.05) | 75% had regression of fibrosis (p < 0.05) | ALT decreased by 22.6% (p = 0.081); AST remained stable (p = 0.856); ALP decreased by 3.5% (p = 0.420); GGT decreased by 52.3% (p = 0.000) |
14 | Schwenger et al. [114] | RYGB | Prospective cohort study | 12 months | Liver biopsy | NASH decreased in 89% of patients (p < 0.001); NAS decreased by 1.74 points (p < 0.001); steatosis grade 0 (normal liver) increased from 14.3% of patients to 80.9% (p < 0.001) | Fibrosis score 0 (normal liver) increased from 35.7% of patients to 66.7% (p < 0.001) | AST levels decreased by 18.9% (p = 0.038); ALT levels decreased by 20.7% (p = 0.007); ALP levels slightly increased by 1.6% (p = 0.59) |
15 | Barker et al. [33] | RYGB | Retrospective cohort study | 21.4 months (range 13.3–31.7) | Liver biopsy | Steatosis scores decreased in all patients (p < 0.001); NASH remitted in 89% of patients | Fibrosis was significantly reduced (p = 0.008) | ALT levels increased by 2.7% (p = 0.984); AST levels showed no change (p = 0.945) |
16 | Baldwin et al. [120] | RYGB | Systematic review | 12–55 months | NAS | NAS decreased by 2.8 points (p < 0.0001) | NFS decreased by 1.0 points (p < 0.00001) | ALT levels decreased by −12.3 IU/L (p < 0.00001), AST levels decreased by −3.6 IU/L (p < 0.002) |
17 | Batman et al. [39] | VSG | Prospective cohort study | 6 months | FibroScan (LSM, CAP) | CAP values showed a 29.7% reduction in liver steatosis (from 309.2 to 217.4 dB/m) (p = 0.001) | LSM showed a 25.3% decrease in liver stiffness (from 7.5 to 5.6 kPa) (p = 0.013) | ALT levels decreased by 50.0% (p = 0.001); AST levels decreased by 19.8% (p = 0.06); ALP levels decreased by 4.9% (p = 0.047); GGT levels decreased by 59.7% (p = 0.001) |
18 | Chen et al. [40] | VSG | Prospective cohort study | 12 months | LSDR | LSDR increased by approximately 49.4% (from 0.79 ± 0.26 to 1.18 ± 0.14, p < 0.001), fatty liver decreased from 84.1% pre-surgery to 14.3% after SG | ALT levels decreased by 68.2% (p < 0.001), and AST levels decreased by 46.7% (p < 0.001) | |
19 | Cherla et al. [41]. | VSG | Retrospective cohort study | 4 years (range: 1–10 years) | Liver biopsy + liver enzymes | ALT levels decreased by 53.8% after one year (p < 0.0001); AST levels decreased by 45.4% after one year (p < 0.0001); after one year: 76.9% had normalization of liver enzymes | ||
20 | Fakhry et al. [29] | VSG | Systematic review and meta-analysis | 5–60 months | Liver biopsy | ALT levels decreased by 79% (95% CI: 0.60, 0.97); AST levels decreased by 32% (95% CI: 0.02, 0.67) | ||
21 | Alexander et al. [37] | VSG | Retrospective cohort study | 36 months | NFS, APRI, FIB-4, BARD, Forns | NFS decreased by 0.82 points at 12 months (from 0.63 to 0.19; p < 0.001) and by 1.36 points at 36 months (to 0.73; p < 0.001); APRI score decreased by 33.3% at 12 months (from 0.30 to 0.20; p < 0.001) and remained reduced at 36 months (to 0.20; p < 0.001); FIB-4 score increased by 7.7% at 12 months (from 0.91 to 0.98; p < 0.001) and by 23.1% at 36 months (to 1.12; p = 0.129); BARD score doubled by 12 months (from 2.00 to 4.00; p < 0.001) and remained elevated at 36 months (to 3.00; p < 0.001); Forns score decreased by 5.5% at 12 months (from 5.82 to 5.49; p < 0.001) and by 9.6% at 36 months (to 5.27; p = 0.407); LOK score increased by 77.6% at 12 months (from 1.61 to 0.36; p = 0.592) and remained elevated at 36 months (0.60; p = 0.782) | ||
22 | Verrastro et al. [28]. | VSG | Multicenter RCT | 12 months | Liver biopsy, NFS, NAS, NASH-CRN system | NAS decreased by 52 ± 83% (p < 0.001), NASH resolved in 57% of patients (p < 0.0001) | 47% had regression of fibrosis (p = 0.017) | ALT levels decreased by 38.7% (p < 0.0001), AST levels decreased by 23.6% (p < 0.0006) |
23 | de Brito e Silva et al. [27] | VSG | Review and meta-analysis | 14 ± 6 months | Liver biopsy | NAS decreased by 2.25 points (p < 0.00001), 42% absolute reduction in the prevalence of steatohepatitis (p < 0.00001) | 20% absolute reduction in the presence of fibrosis (p < 0.05), with grade of fibrosis improving with a pooled mean reduction of 0.76 points (p < 0.00001) | ALT levels decreased by a mean of 15.43 (12.99, 17.86) (p < 0.00001); AST levels decreased by a mean of 8.02 (5.80, 10.25) (p < 0.00001); ALP levels decreased by a mean of 13.75 (3.08, 24.43) (p = 0.01); GGT levels decreased by a mean of 12.27 (8.40, 16.15) (p < 0.00001) |
24 | Esquivel et al. [118] | VSG | Prospective cohort study | 12 months | Liver biopsy + abdominal US | Steatosis resolved in 93.7% of patients, with 100% improvement of its grade, 100% of patients had resolution of steatohepatitis | ||
25 | Azulai et al. [113] | VSG/RYGB | Retrospective cohort study | 2 years | Liver enzymes | Patients with abnormal ALT decreased by 34% in SG and by 11% in RYGB | ||
26 | van Berckel et al. [112] | VSG/RYGB | Retrospective cohort study | 2 years | Liver enzymes | AST levels decreased by 4.3% after RYGB and by 16.7% after SG (p < 0.001); ALT levels decreased by 15.38% after RYGB and by 32.1% after SG (p < 0.001); ALP levels increased by 4.9% after RYGB but decreased by 10% after SG (p < 0.001) | ||
27 | Nickel et al. [122] | VSG + RYGB | Prospective cohort study | 12 months | FibroScan, NFS, APRI | LSM showed ~45% decrease in liver stiffness (from 12.9 to 7.1 kPa) (p < 0.001); fibrosis stage improved in 94% of patients; patients with advanced fibrosis (F4) dropped from 48% to 16.5%; NFS decreased by 0.68 points (p < 0.001), and APRI score decreased by 24.0% (p = 0.009) | AST levels decreased by ~32% (p < 0.001); ALT levels decreased by ~48% (p < 0.001); GGT levels decreased by ~57% (p < 0.001); ALP levels decreased ~4.86% (p = 0.302) |
Refs. | Citation | Intervention | Study Type | Duration | Diagnosis Method | Effect on Steatosis | Effect on Fibrosis | Effect on Liver Enzymes |
---|---|---|---|---|---|---|---|---|
28 | Hajifathalian et al. [85] | ESG | Prospective cohort study | 2 years | HSI, NFS | HSI decreased by 4 points per year (p < 0.001) | NFS decreased by 0.3 points per year (p = 0.034); fibrosis improved from F3–F4 to F0–F2 in 20% of patients | ALT decreased by 5 U/L per year (p < 0.001); AST decreased by 3 U/L per year (p < 0.001) |
29 | Abad et al. [84] | ESG | RCT | 16.5 months (72 weeks) | Liver biopsy, FibroScan | CAP showed a mean decrease in liver steatosis of 41.12 ± 49.41 dB/m (p = 0.067), which was observed in 81.3% of patients; NAS score decreased by 1.89 points (p = 0.544); steatosis decreased by 0.94 points (±0.87) (p = 0.033); MASH resolution happened in 27.8% (p = 0.36) | FibroScan (LSM) showed a mean decrease in liver stiffness of 5.63 ± 7.2 kPa (p = 0.017) | ALT decreased by 32.8 U/L at week 48 (p = 0.015) and by 27.7 U/L from baseline at week 72 (not significant); AST decreased by 23.6 U/L at week 48 and 21.3 U/L from baseline at week 72 (both not significant); GGT decreased by 47.1 U/L at week 48 (p = 0.015) and by 41.2 U/L from baseline at week 72 (p = 0.037) |
30 | Jagtap et al. [83] | ESG | Multicenter prospective cohort study- | 12 months | NFS, HIS, FIB-4, APRI | HSI decreased by 9.9% at 6 months (p = 0.001) and by 12.1% from baseline at 12 months (p = 0.001) | FIB-4 decreased by 14.0% at 6 months (p = 0.174) and by 25.5% at 12 months compared to baseline (p = 0.013); APRI decreased by 20.1% at 6 months (p = 0.001) and by 34.1% at 12 months compared to baseline (p = 0.001); NFS decreased by 0.43 points at 6 months (p = 0.001) and by 0.78 points at 12 months compared to baseline (p = 0.001) | ALT levels decreased by 16.9% at 6 months (p = 0.006) and by 18.7% at 12 months compared to baseline (p = 0.022) |
31 | Nunes et al. [82] | ESG | Systematic review and meta-analysis | 12 months | NFS, HIS | HSI decreased by 4.85 points (p < 0.00001) | NFS decreased by 0.50 points (p = 0.001) | ALT levels decreased by 16.5% (p = 0.0001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tasabehji, D.; Saleh, S.; Mokadem, M. Impact of Bariatric Surgery and Endoscopic Therapies on Liver Health in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Review. J. Clin. Med. 2025, 14, 4012. https://doi.org/10.3390/jcm14124012
Tasabehji D, Saleh S, Mokadem M. Impact of Bariatric Surgery and Endoscopic Therapies on Liver Health in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Review. Journal of Clinical Medicine. 2025; 14(12):4012. https://doi.org/10.3390/jcm14124012
Chicago/Turabian StyleTasabehji, Dana, Sanaz Saleh, and Mohamad Mokadem. 2025. "Impact of Bariatric Surgery and Endoscopic Therapies on Liver Health in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Review" Journal of Clinical Medicine 14, no. 12: 4012. https://doi.org/10.3390/jcm14124012
APA StyleTasabehji, D., Saleh, S., & Mokadem, M. (2025). Impact of Bariatric Surgery and Endoscopic Therapies on Liver Health in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Review. Journal of Clinical Medicine, 14(12), 4012. https://doi.org/10.3390/jcm14124012