Oxygen Saturation Targeting in the Neonatal Intensive Care Unit
Abstract
:1. Introduction
2. Literature Search Methods
3. O2 and Development
4. O2 Transport, Delivery, and Consumption
5. Assessment of O2 Saturation and Partial Pressure of O2
6. O2 Saturation and Transition to Extrauterine Life in the Delivery Room
7. O2 Saturation Target in Preterm Infants
8. O2 Saturation Target in Neonates with Bronchopulmonary Dysplasia (BPD)
9. O2 Saturation Targets in Neonates with PH
10. O2 Saturation and Risk for Retinopathy of Prematurity (ROP)
11. Variability in the Practice of O2 Saturation Target Goals
12. Intermittent Episodes of Hypoxemia and Hyperoxemia
13. O2 Saturation Target Utilizing Manual vs. Closed-Loop Automatic Control of Inspired O2
14. Conclusions
15. Future Directions
- Disease-or Illness-specific O2 saturation targets:
- 2.
- O2 saturation targets and outcomes:
- 3.
- O2 saturation targets and skin color:
- 4.
- Tissue oxygenation and O2 saturation targets:
Author Contributions
Funding
Conflicts of Interest
References
- Li, J. Evolution of the concept of oxygen transport in the critically ill, with a focus on children after cardiopulmonary bypass. Cardiol. Young 2018, 28, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Trayhurn, P. Oxygen-A Critical, but Overlooked, Nutrient. Front. Nutr. 2019, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Mamidi, R.R.; McEvoy, C.T. Oxygen in the neonatal ICU: A complicated history and where are we now? Front. Pediatr. 2024, 12, 1371710. [Google Scholar] [CrossRef] [PubMed]
- Sotiropoulos, J.X.; Saugstad, O.D.; Oei, J.L. Aspects on Oxygenation in Preterm Infants before, Immediately after Birth, and Beyond. Neonatology 2024, 121, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Lakshminrusimha, S.; Abman, S.H. Oxygen Targets in Neonatal Pulmonary Hypertension: Individualized, “Precision-Medicine” Approach. Clin. Perinatol. 2024, 51, 77–94. [Google Scholar] [CrossRef]
- Cannavò, L.; Perrone, S.; Viola, V.; Marseglia, L.; Di Rosa, G.; Gitto, E. Oxidative Stress and Respiratory Diseases in Preterm Newborns. Int. J. Mol. Sci. 2021, 22, 12504. [Google Scholar] [CrossRef]
- Hayes, D., Jr.; Wilson, K.C.; Krivchenia, K.; Hawkins, S.M.M.; Balfour-Lynn, I.M.; Gozal, D.; Panitch, H.B.; Splaingard, M.L.; Rhein, L.M.; Kurland, G.; et al. Home Oxygen Therapy for Children. An Official American Thoracic Society Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2019, 199, e5–e23. [Google Scholar] [CrossRef]
- Balfour-Lynn, I.M.; Field, D.J.; Gringras, P.; Hicks, B.; Jardine, E.; Jones, R.C.; Magee, A.G.; Primhak, R.A.; Samuels, M.P.; Shaw, N.J.; et al. BTS guidelines for home oxygen in children. Thorax 2009, 64 (Suppl. 2), ii1–ii26. [Google Scholar] [CrossRef]
- Kapur, N.; Nixon, G.; Robinson, P.; Massie, J.; Prentice, B.; Wilson, A.; Schilling, S.; Twiss, J.; Fitzgerald, D.A. Respiratory management of infants with chronic neonatal lung disease beyond the NICU: A position statement from the Thoracic Society of Australia and New Zealand. Respirology 2020, 25, 880–888. [Google Scholar] [CrossRef]
- Duijts, L.; van Meel, E.R.; Moschino, L.; Baraldi, E.; Barnhoorn, M.; Bramer, W.M.; Bolton, C.E.; Boyd, J.; Buchvald, F.; Del Cerro, M.J.; et al. European Respiratory Society guideline on long-term management of children with bronchopulmonary dysplasia. Eur. Respir. J. 2020, 55, 1900788. [Google Scholar] [CrossRef]
- Abman, S.H.; Hansmann, G.; Archer, S.L.; Ivy, D.D.; Adatia, I.; Chung, W.K.; Hanna, B.D.; Rosenzweig, E.B.; Raj, J.U.; Cornfield, D.; et al. Pediatric Pulmonary Hypertension: Guidelines from the American Heart Association and American Thoracic Society. Circulation 2015, 132, 2037–2099. [Google Scholar] [CrossRef] [PubMed]
- Hansmann, G.; Koestenberger, M.; Alastalo, T.P.; Apitz, C.; Austin, E.D.; Bonnet, D.; Budts, W.; D’Alto, M.; Gatzoulis, M.A.; Hasan, B.S.; et al. 2019 updated consensus statement on the diagnosis and treatment of pediatric pulmonary hypertension: The European Pediatric Pulmonary Vascular Disease Network (EPPVDN), endorsed by AEPC, ESPR and ISHLT. J. Heart Lung Transplant. 2019, 38, 879–901. [Google Scholar] [CrossRef] [PubMed]
- Lyons, T.W.; Reinhard, C.T.; Planavsky, N.J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 2014, 506, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Simon, M.C.; Keith, B. The role of oxygen availability in embryonic development and stem cell function. Nat. Rev. Mol. Cell Biol. 2008, 9, 285–296. [Google Scholar] [CrossRef]
- Takahashi, M. Oxidative stress and redox regulation on in vitro development of mammalian embryos. J. Reprod. Dev. 2012, 58, 1–9. [Google Scholar] [CrossRef]
- Zoneff, E.; Wang, Y.; Jackson, C.; Smith, O.; Duchi, S.; Onofrillo, C.; Farrugia, B.; Moulton, S.E.; Williams, R.; Parish, C.; et al. Controlled oxygen delivery to power tissue regeneration. Nat. Commun. 2024, 15, 4361. [Google Scholar] [CrossRef]
- Marsico, T.V.; Silva, M.V.; Valente, R.S.; Annes, K.; Rissi, V.B.; Glanzner, W.G.; Sudano, M.J. Unraveling the Consequences of Oxygen Imbalance on Early Embryo Development: Exploring Mitigation Strategies. Animals 2023, 13, 2171. [Google Scholar] [CrossRef]
- Fathollahipour, S.; Patil, P.S.; Leipzig, N.D. Oxygen Regulation in Development: Lessons from Embryogenesis towards Tissue Engineering. Cells Tissues Organs 2018, 205, 350–371. [Google Scholar] [CrossRef]
- Konstantogianni, O.; Panou, T.; Zikopoulos, A.; Skentou, C.; Stavros, S.; Asimakopoulos, B. Culture of Human Embryos at High and Low Oxygen Levels. J. Clin. Med. 2024, 13, 2222. [Google Scholar] [CrossRef]
- Stepien, B.K.; Wielockx, B. From Vessels to Neurons-The Role of Hypoxia Pathway Proteins in Embryonic Neurogenesis. Cells 2024, 13, 621. [Google Scholar] [CrossRef]
- Pellicer, B.; Herraiz, S.; Leal, A.; Simón, C.; Pellicer, A. Prenatal brain damage in preeclamptic animal model induced by gestational nitric oxide synthase inhibition. J. Pregnancy 2011, 2011, 809569. [Google Scholar] [CrossRef]
- Hencz, A.; Magony, A.; Thomas, C.; Kovacs, K.; Szilagyi, G.; Pal, J.; Sik, A. Mild hypoxia-induced structural and functional changes of the hippocampal network. Front. Cell. Neurosci. 2023, 17, 1277375. [Google Scholar] [CrossRef] [PubMed]
- Ordway, G.A.; Garry, D.J. Myoglobin: An essential hemoprotein in striated muscle. J. Exp. Biol. 2004, 207, 3441–3446. [Google Scholar] [CrossRef]
- Harder, L.; Boshkov, L. The optimal hematocrit. Crit. Care Clin. 2010, 26, 335–354, table of contents. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.A.; Rudenski, A.; Gibson, J.; Howard, L.; O’Driscoll, R. Relating oxygen partial pressure, saturation and content: The haemoglobin-oxygen dissociation curve. Breathe 2015, 11, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, B. Placental physioxia is based on spatial and temporal variations of placental oxygenation throughout pregnancy. J. Reprod. Immunol. 2023, 158, 103985. [Google Scholar] [CrossRef]
- Carreau, A.; El Hafny-Rahbi, B.; Matejuk, A.; Grillon, C.; Kieda, C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J. Cell. Mol. Med. 2011, 15, 1239–1253. [Google Scholar] [CrossRef]
- Mori, M.P.; Penjweini, R.; Knutson, J.R.; Wang, P.Y.; Hwang, P.M. Mitochondria and oxygen homeostasis. FEBS J. 2022, 289, 6959–6968. [Google Scholar] [CrossRef]
- Nguyen, T.C.; Madappa, R.; Siefkes, H.M.; Lim, M.J.; Siddegowda, K.M.; Lakshminrusimha, S. Oxygen saturation targets in neonatal care: A narrative review. Early Hum. Dev. 2024, 199, 106134. [Google Scholar] [CrossRef]
- Vali, P.; Underwood, M.; Lakshminrusimha, S. Hemoglobin oxygen saturation targets in the neonatal intensive care unit: Is there a light at the end of the tunnel? (1). Can. J. Physiol. Pharmacol. 2019, 97, 174–182. [Google Scholar] [CrossRef]
- Morton, S.U.; Brodsky, D. Fetal Physiology and the Transition to Extrauterine Life. Clin. Perinatol. 2016, 43, 395–407. [Google Scholar] [CrossRef]
- Kiserud, T. Physiology of the fetal circulation. Semin. Fetal Neonatal Med. 2005, 10, 493–503. [Google Scholar] [CrossRef]
- Chan, E.D.; Chan, M.M.; Chan, M.M. Pulse oximetry: Understanding its basic principles facilitates appreciation of its limitations. Respir. Med. 2013, 107, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Poets, C.F. Noninvasive Monitoring and Assessment of Oxygenation in Infants. Clin. Perinatol. 2019, 46, 417–433. [Google Scholar] [CrossRef]
- Zhou, H.; Hou, X.; Cheng, R.; Zhao, Y.; Qiu, J. Effects of Nasal Continuous Positive Airway Pressure on Cerebral Hemodynamics in Preterm Infants. Front. Pediatr. 2020, 8, 487. [Google Scholar] [CrossRef] [PubMed]
- Dani, C.; Ciarcià, M.; Miselli, F.; Luzzati, M.; Petrolini, C.; Corsini, I.; Simone, P. Measurement of lung oxygenation by near-infrared spectroscopy in preterm infants with respiratory distress syndrome: A proof-of-concept study. Pediatr. Pulmonol. 2022, 57, 2306–2312. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, M.; Memur, Ş.; Yasa, B.; Çetinkaya, M. A Novel and Promising Method for Prediction of Early Surfactant Requirement in Preterm Infants with Respiratory Distress Syndrome: Pulmonary Near-Infrared Spectroscopy. Pediatr. Pulmonol. 2025, 60, e71023. [Google Scholar] [CrossRef]
- Falsaperla, R.; Leone, G.; Giallongo, A.; Giacchi, V.; Lombardo, G.; Polizzi, A.; Romano, C.; Ruggieri, M. Near-infrared spectroscopy (NIRS) as a tool to prevent cerebral desaturation in newborns with bradycardia events: A systematic review. Pediatr. Neonatol. 2024, 66, 94–101. [Google Scholar] [CrossRef]
- Mankouski, A.; Bahr, T.M.; Braski, K.L.; Lewis, K.W.; Baserga, M.C. Cerebral and Splanchnic Tissue Oxygenation Are Significantly Affected in Premature infants with Ductal-Dependent Congenital Heart Disease. J. Pediatr. Clin. Pract. 2024, 14, 200126. [Google Scholar] [CrossRef]
- Holleran, E.M.; Brown, M.D.; Sassano, C.; Musa, N.; Colyer, J.; Sagiv, E. Monitoring abdominal near-infrared spectroscopy during feeds in neonates with CHD recovering from surgery: A feasibility study. Cardiol. Young 2024, 34, 2355–2361. [Google Scholar] [CrossRef]
- Scholkmann, F.; Haslbeck, F.; Oba, E.; Restin, T.; Ostojic, D.; Kleiser, S.; Verbiest, B.C.H.; Zohdi, H.; Wolf, U.; Bassler, D.; et al. Creative music therapy in preterm infants effects cerebrovascular oxygenation and perfusion. Sci. Rep. 2024, 14, 28249. [Google Scholar] [CrossRef] [PubMed]
- Vesoulis, Z.A.; Mintzer, J.P.; Chock, V.Y. Neonatal NIRS monitoring: Recommendations for data capture and review of analytics. J. Perinatol. 2021, 41, 675–688. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, D.; Lakshminrusimha, S. Pulmonary hypertension in the newborn- etiology and pathogenesis. Semin. Fetal Neonatal Med. 2022, 27, 101381. [Google Scholar] [CrossRef]
- Kamlin, C.O.; O’Donnell, C.P.; Davis, P.G.; Morley, C.J. Oxygen saturation in healthy infants immediately after birth. J. Pediatr. 2006, 148, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Rabi, Y.; Yee, W.; Chen, S.Y.; Singhal, N. Oxygen saturation trends immediately after birth. J. Pediatr. 2006, 148, 590–594. [Google Scholar] [CrossRef]
- Bhandankar, M.; Patil, V.D.; Vidyasagar, D. Oxygen saturation immediately after birth in infants delivered in tertiary care hospital in India. Indian. J. Pediatr. 2014, 81, 254–256. [Google Scholar] [CrossRef]
- Saugstad, O.D. Oxygen saturations immediately after birth. J. Pediatr. 2006, 148, 569–570. [Google Scholar] [CrossRef]
- Padilla-Sánchez, C.; Baixauli-Alacreu, S.; Cañada-Martínez, A.J.; Solaz-García, Á.; Alemany-Anchel, M.J.; Vento, M. Delayed vs Immediate Cord Clamping Changes Oxygen Saturation and Heart Rate Patterns in the First Minutes after Birth. J. Pediatr. 2020, 227, 149–156.e141. [Google Scholar] [CrossRef]
- American Academy of Pediatrics. Textbook of Neonatal Resuscitation; American Academy of Pediatrics: Itasca, IL, USA, 2011. [Google Scholar] [CrossRef]
- Thomas, A.R.; Foglia, E.E. Delivery Room Oxygen for Preterm Infants-Uncertainty Persists. JAMA Pediatr. 2024, 178, 746–748. [Google Scholar] [CrossRef]
- Cummings, J.J.; Polin, R.A. Oxygen Targeting in Extremely Low Birth Weight Infants. Pediatrics 2016, 138, e20161576. [Google Scholar] [CrossRef]
- STOP-ROP Multicenter Study Group. Supplemental Therapeutic Oxygen for Prethreshold Retinopathy of Prematurity (STOP-ROP), a randomized, controlled trial. I: Primary outcomes. Pediatrics 2000, 105, 295–310. [Google Scholar] [CrossRef] [PubMed]
- Askie, L.M.; Henderson-Smart, D.J.; Irwig, L.; Simpson, J.M. Oxygen-saturation targets and outcomes in extremely preterm infants. N. Engl. J. Med. 2003, 349, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Askie, L.M.; Brocklehurst, P.; Darlow, B.A.; Finer, N.; Schmidt, B.; Tarnow-Mordi, W. NeOProM: Neonatal Oxygenation Prospective Meta-analysis Collaboration study protocol. BMC Pediatr. 2011, 11, 6. [Google Scholar] [CrossRef] [PubMed]
- Carlo, W.A.; Finer, N.N.; Walsh, M.C.; Rich, W.; Gantz, M.G.; Laptook, A.R.; Yoder, B.A.; Faix, R.G.; Das, A.; Poole, W.K.; et al. Target ranges of oxygen saturation in extremely preterm infants. N. Engl. J. Med. 2010, 362, 1959–1969. [Google Scholar] [CrossRef]
- Stenson, B.J.; Tarnow-Mordi, W.O.; Darlow, B.A.; Simes, J.; Juszczak, E.; Askie, L.; Battin, M.; Bowler, U.; Broadbent, R.; Cairns, P.; et al. Oxygen saturation and outcomes in preterm infants. N. Engl. J. Med. 2013, 368, 2094–2104. [Google Scholar] [CrossRef]
- Schmidt, B.; Whyte, R.K.; Asztalos, E.V.; Moddemann, D.; Poets, C.; Rabi, Y.; Solimano, A.; Roberts, R.S. Effects of targeting higher vs lower arterial oxygen saturations on death or disability in extremely preterm infants: A randomized clinical trial. JAMA 2013, 309, 2111–2120. [Google Scholar] [CrossRef]
- Askie, L.M.; Darlow, B.A.; Finer, N.; Schmidt, B.; Stenson, B.; Tarnow-Mordi, W.; Davis, P.G.; Carlo, W.A.; Brocklehurst, P.; Davies, L.C.; et al. Association Between Oxygen Saturation Targeting and Death or Disability in Extremely Preterm Infants in the Neonatal Oxygenation Prospective Meta-analysis Collaboration. JAMA 2018, 319, 2190–2201. [Google Scholar] [CrossRef]
- Sweet, D.G.; Carnielli, V.P.; Greisen, G.; Hallman, M.; Klebermass-Schrehof, K.; Ozek, E.; Te Pas, A.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update. Neonatology 2023, 120, 3–23. [Google Scholar] [CrossRef]
- Poets, C.F.; Roberts, R.S.; Schmidt, B.; Whyte, R.K.; Asztalos, E.V.; Bader, D.; Bairam, A.; Moddemann, D.; Peliowski, A.; Rabi, Y.; et al. Association Between Intermittent Hypoxemia or Bradycardia and Late Death or Disability in Extremely Preterm Infants. JAMA 2015, 314, 595–603. [Google Scholar] [CrossRef]
- Jensen, E.A.; Whyte, R.K.; Schmidt, B.; Bassler, D.; Vain, N.E.; Roberts, R.S. Association between Intermittent Hypoxemia and Severe Bronchopulmonary Dysplasia in Preterm Infants. Am. J. Respir. Crit. Care Med. 2021, 204, 1192–1199. [Google Scholar] [CrossRef]
- Ambalavanan, N.; Weese-Mayer, D.E.; Hibbs, A.M.; Claure, N.; Carroll, J.L.; Moorman, J.R.; Bancalari, E.; Hamvas, A.; Martin, R.J.; Di Fiore, J.M.; et al. Cardiorespiratory Monitoring Data to Predict Respiratory Outcomes in Extremely Preterm Infants. Am. J. Respir. Crit. Care Med. 2023, 208, 79–97. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.A.; Sullivan, C.E. Sleep pattern and supplementary oxygen requirements in infants with chronic neonatal lung disease. Lancet 1995, 345, 831–832. [Google Scholar] [CrossRef] [PubMed]
- Moyer-Mileur, L.J.; Nielson, D.W.; Pfeffer, K.D.; Witte, M.K.; Chapman, D.L. Eliminating sleep-associated hypoxemia improves growth in infants with bronchopulmonary dysplasia. Pediatrics 1996, 98, 779–783. [Google Scholar] [CrossRef] [PubMed]
- DeMauro, S.B.; Jensen, E.A.; Passarella, M.; Gambacorta, M.C.; Dhawan, M.; Weimer, J.; Jang, S.; Panitch, H.; Kirpalani, H. Oxygen Saturation Targeting for Infants with Bronchopulmonary Dysplasia: A Pilot Randomized Trial. Ann. Am. Thorac. Soc. 2025, 22, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.L. Initial Insights into the Ideal Oxygen Saturation Target for Postterm Corrected Age Infants with Bronchopulmonary Dysplasia. Ann. Am. Thorac. Soc. 2025, 22, 482–484. [Google Scholar] [CrossRef]
- Nelin, L.D.; Bhandari, V. How to decrease bronchopulmonary dysplasia in your neonatal intensive care unit today and “tomorrow”. F1000Research 2017, 6, 539. [Google Scholar] [CrossRef]
- Kotecha, S.; Allen, J. Oxygen therapy for infants with chronic lung disease. Arch. Dis. Child. Fetal Neonatal Ed. 2002, 87, F11–F14. [Google Scholar] [CrossRef]
- Sharma, A.; Greenough, A. Survey of neonatal respiratory support strategies. Acta Paediatr. 2007, 96, 1115–1117. [Google Scholar] [CrossRef]
- Balink, S.; Onland, W.; Vrijlandt, E.; Andrinopoulou, E.R.; Bos, A.F.; Dijk, P.H.; Goossens, L.; Hulsmann, A.R.; Nuytemans, D.H.; Reiss, I.K.M.; et al. Supplemental oxygen strategies in infants with bronchopulmonary dysplasia after the neonatal intensive care unit period: Study protocol for a randomised controlled trial (SOS BPD study). BMJ Open 2022, 12, e060986. [Google Scholar] [CrossRef]
- Kovacs, G.; Bartolome, S.; Denton, C.P.; Gatzoulis, M.A.; Gu, S.; Khanna, D.; Badesch, D.; Montani, D. Definition, classification and diagnosis of pulmonary hypertension. Eur. Respir. J. 2024, 64, 2401324. [Google Scholar] [CrossRef]
- Cerro, M.J.; Abman, S.; Diaz, G.; Freudenthal, A.H.; Freudenthal, F.; Harikrishnan, S.; Haworth, S.G.; Ivy, D.; Lopes, A.A.; Raj, J.U.; et al. A consensus approach to the classification of pediatric pulmonary hypertensive vascular disease: Report from the PVRI Pediatric Taskforce, Panama 2011. Pulm. Circ. 2011, 1, 286–298. [Google Scholar] [CrossRef] [PubMed]
- Lammers, A.E.; Adatia, I.; Cerro, M.J.; Diaz, G.; Freudenthal, A.H.; Freudenthal, F.; Harikrishnan, S.; Ivy, D.; Lopes, A.A.; Raj, J.U.; et al. Functional classification of pulmonary hypertension in children: Report from the PVRI pediatric taskforce, Panama 2011. Pulm. Circ. 2011, 1, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Lakshminrusimha, S.; Russell, J.A.; Steinhorn, R.H.; Swartz, D.D.; Ryan, R.M.; Gugino, S.F.; Wynn, K.A.; Kumar, V.H.; Mathew, B.; Kirmani, K.; et al. Pulmonary hemodynamics in neonatal lambs resuscitated with 21%, 50%, and 100% oxygen. Pediatr. Res. 2007, 62, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Rawat, M.; Chandrasekharan, P.; Gugino, S.F.; Koenigsknecht, C.; Nielsen, L.; Wedgwood, S.; Mathew, B.; Nair, J.; Steinhorn, R.; Lakshminrusimha, S. Optimal Oxygen Targets in Term Lambs with Meconium Aspiration Syndrome and Pulmonary Hypertension. Am. J. Respir. Cell Mol. Biol. 2020, 63, 510–518. [Google Scholar] [CrossRef]
- Young, K.C.; Schmidt, A.F.; Tan, A.W.; Sbragia, L.; Elsaie, A.; Shivanna, B. Pathogenesis and Physiologic Mechanisms of Neonatal Pulmonary Hypertension: Preclinical Studies. Clin. Perinatol. 2024, 51, 21–43. [Google Scholar] [CrossRef]
- El-Saie, A.; Varghese, N.P.; Webb, M.K.; Villafranco, N.; Gandhi, B.; Guaman, M.C.; Shivanna, B. Bronchopulmonary dysplasia—Associated pulmonary hypertension: An updated review. Semin. Perinatol. 2023, 47, 151817. [Google Scholar] [CrossRef]
- Hansmann, G.; Sallmon, H.; Roehr, C.C.; Kourembanas, S.; Austin, E.D.; Koestenberger, M. Pulmonary hypertension in bronchopulmonary dysplasia. Pediatr. Res. 2021, 89, 446–455. [Google Scholar] [CrossRef]
- Abman, S.H.; Lakshminrusimha, S. Pulmonary Hypertension in Established Bronchopulmonary Dysplasia: Physiologic Approaches to Clinical Care. Clin. Perinatol. 2024, 51, 195–216. [Google Scholar] [CrossRef]
- Gentle, S.J.; Travers, C.P.; Nakhmani, A.; Indic, P.; Carlo, W.A.; Ambalavanan, N. Intermittent Hypoxemia and Bronchopulmonary Dysplasia with Pulmonary Hypertension in Preterm Infants. Am. J. Respir. Crit. Care Med. 2023, 207, 899–907. [Google Scholar] [CrossRef]
- Abman, S.H.; Wolfe, R.R.; Accurso, F.J.; Koops, B.L.; Bowman, C.M.; Wiggins, J.W., Jr. Pulmonary vascular response to oxygen in infants with severe bronchopulmonary dysplasia. Pediatrics 1985, 75, 80–84. [Google Scholar] [CrossRef]
- Gunn, T.R.; Easdown, J.; Outerbridge, E.W.; Aranda, J.V. Risk factors in retrolental fibroplasia. Pediatrics 1980, 65, 1096–1100. [Google Scholar] [CrossRef] [PubMed]
- Pierce, E.A.; Foley, E.D.; Smith, L.E. Regulation of vascular endothelial growth factor by oxygen in a model of retinopathy of prematurity. Arch. Ophthalmol. 1996, 114, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Cayabyab, R.; Ramanathan, R. Retinopathy of Prematurity: Therapeutic Strategies Based on Pathophysiology. Neonatology 2016, 109, 369–376. [Google Scholar] [CrossRef]
- Raghuveer, T.S.; Zackula, R. Strategies to Prevent Severe Retinopathy of Prematurity: A 2020 Update and Meta-analysis. Neoreviews 2020, 21, e249–e263. [Google Scholar] [CrossRef]
- Chen, M.L.; Guo, L.; Smith, L.E.; Dammann, C.E.; Dammann, O. High or low oxygen saturation and severe retinopathy of prematurity: A meta-analysis. Pediatrics 2010, 125, e1483–e1492. [Google Scholar] [CrossRef]
- Couroucli, X.I. Oxidative stress in the retina: Implications for Retinopathy of Prematurity. Curr. Opin. Toxicol. 2018, 7, 102–109. [Google Scholar] [CrossRef]
- Schmidt, B.; Roberts, R.S.; Davis, P.; Doyle, L.W.; Barrington, K.J.; Ohlsson, A.; Solimano, A.; Tin, W. Caffeine therapy for apnea of prematurity. N. Engl. J. Med. 2006, 354, 2112–2121. [Google Scholar] [CrossRef] [PubMed]
- Di Fiore, J.M.; Bloom, J.N.; Orge, F.; Schutt, A.; Schluchter, M.; Cheruvu, V.K.; Walsh, M.; Finer, N.; Martin, R.J. A higher incidence of intermittent hypoxemic episodes is associated with severe retinopathy of prematurity. J. Pediatr. 2010, 157, 69–73. [Google Scholar] [CrossRef]
- Hartnett, M.E. Pathophysiology of Retinopathy of Prematurity. Annu. Rev. Vis. Sci. 2023, 9, 39–70. [Google Scholar] [CrossRef]
- Parikh, P.; White, R.D.; Tolia, V.N.; Reyburn, B.; Guillory, C.; Ahmad, K.A. Variability in Practice and Implementation of Oxygen Target Saturation Policies in United States’ Neonatal Intensive Care Units. Am. J. Perinatol. 2024, 41, 1728–1735. [Google Scholar] [CrossRef]
- Huizing, M.J.; Villamor-Martínez, E.; Vento, M.; Villamor, E. Pulse oximeter saturation target limits for preterm infants: A survey among European neonatal intensive care units. Eur. J. Pediatr. 2017, 176, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Clucas, L.; Doyle, L.W.; Dawson, J.; Donath, S.; Davis, P.G. Compliance with alarm limits for pulse oximetry in very preterm infants. Pediatrics 2007, 119, 1056–1060. [Google Scholar] [CrossRef] [PubMed]
- Bolivar, J.M.; Gerhardt, T.; Gonzalez, A.; Hummler, H.; Claure, N.; Everett, R.; Bancalari, E. Mechanisms for episodes of hypoxemia in preterm infants undergoing mechanical ventilation. J. Pediatr. 1995, 127, 767–773. [Google Scholar] [CrossRef]
- Martin, R.J.; Wang, K.; Köroğlu, O.; Di Fiore, J.; Kc, P. Intermittent hypoxic episodes in preterm infants: Do they matter? Neonatology 2011, 100, 303–310. [Google Scholar] [CrossRef]
- Chandel, N.S.; Trzyna, W.C.; McClintock, D.S.; Schumacker, P.T. Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. J. Immunol. 2000, 165, 1013–1021. [Google Scholar] [CrossRef]
- Dimaguila, M.A.; Di Fiore, J.M.; Martin, R.J.; Miller, M.J. Characteristics of hypoxemic episodes in very low birth weight infants on ventilatory support. J. Pediatr. 1997, 130, 577–583. [Google Scholar] [CrossRef]
- van Zanten, H.A.; Tan, R.N.; van den Hoogen, A.; Lopriore, E.; te Pas, A.B. Compliance in oxygen saturation targeting in preterm infants: A systematic review. Eur. J. Pediatr. 2015, 174, 1561–1572. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.; Wheeler, K.I.; Gale, T.J.; Jackson, H.D.; Kihlstrand, J.F.; Sand, C.; Dawson, J.A.; Dargaville, P.A. Oxygen saturation targeting in preterm infants receiving continuous positive airway pressure. J. Pediatr. 2014, 164, 730–736.e731. [Google Scholar] [CrossRef]
- Hagadorn, J.I.; Furey, A.M.; Nghiem, T.H.; Schmid, C.H.; Phelps, D.L.; Pillers, D.A.; Cole, C.H. Achieved versus intended pulse oximeter saturation in infants born less than 28 weeks’ gestation: The AVIOx study. Pediatrics 2006, 118, 1574–1582. [Google Scholar] [CrossRef]
- Abdo, M.; Hanbal, A.; Asla, M.M.; Ishqair, A.; Alfar, M.; Elnaiem, W.; Ragab, K.M.; Nourelden, A.Z.; Zaazouee, M.S. Automated versus manual oxygen control in preterm infants receiving respiratory support: A systematic review and meta-analysis. J. Matern. Fetal Neonatal Med. 2022, 35, 6069–6076. [Google Scholar] [CrossRef]
- Stafford, I.G.; Lai, N.M.; Tan, K. Automated oxygen delivery for preterm infants with respiratory dysfunction. Cochrane Database Syst. Rev. 2023, 11, Cd013294. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.; Loganathan, P.; Lal, M.K.; Bachman, T. Automated Oxygen Delivery in Neonatal Intensive Care. Front. Pediatr. 2022, 10, 915312. [Google Scholar] [CrossRef] [PubMed]
- Maiwald, C.A.; Niemarkt, H.J.; Poets, C.F.; Urschitz, M.S.; König, J.; Hummler, H.; Bassler, D.; Engel, C.; Franz, A.R. Effects of closed-loop automatic control of the inspiratory fraction of oxygen (FiO2-C) on outcome of extremely preterm infants—Study protocol of a randomized controlled parallel group multicenter trial for safety and efficacy. BMC Pediatr. 2019, 19, 363. [Google Scholar] [CrossRef] [PubMed]
- König, J.; Stauch, A.; Engel, C.; Urschitz, M.S.; Franz, A.R. Statistical analysis plan for the FiO2-C trial: Effects of closed-loop automatic control of the inspiratory fraction of oxygen (FiO2-C) on outcomes of extremely preterm infants-a randomized-controlled parallel group multicentre trial for safety and efficacy. Trials 2024, 25, 756. [Google Scholar] [CrossRef]
- Shuzan, M.N.I.; Chowdhury, M.H.; Chowdhury, M.E.H.; Murugappan, M.; Hoque Bhuiyan, E.; Arslane Ayari, M.; Khandakar, A. Machine Learning-Based Respiration Rate and Blood Oxygen Saturation Estimation Using Photoplethysmogram Signals. Bioengineering 2023, 10, 167. [Google Scholar] [CrossRef]
- Cabanas, A.M.; Sáez, N.; Collao-Caiconte, P.O.; Martín-Escudero, P.; Pagán, J.; Jiménez-Herranz, E.; Ayala, J.L. Evaluating AI Methods for Pulse Oximetry: Performance, Clinical Accuracy, and Comprehensive Bias Analysis. Bioengineering 2024, 11, 1061. [Google Scholar] [CrossRef]
- Niraula, P.; Kadariya, S.; Poudel, B.; Kadariya, S. AI-Driven and Automated Continuous Oxygen Saturation Monitoring and LTOT: A Systematic Review. medRxiv, 2025; preprint. [Google Scholar] [CrossRef]
Decreased Hemoglobin Affinity for O2 | Increased Hemoglobin Affinity for O2 |
---|---|
Decrease in pH | Increase in pH |
Higher temperatures | Lower temperatures |
Increased CO2 levels | Decreased CO2 levels |
Increased 2,3-DPG levels | Decreased 2,3-DPG levels |
Adult hemoglobin vs. Fetal hemoglobin | Fetal hemoglobin vs. Adult hemoglobin |
Increased O2 release from hemoglobin to tissues | Decreased O2 release from hemoglobin to tissues |
Right shift of oxyhemoglobin dissociation curve | Left shift of oxyhemoglobin dissociation curve |
Higher P50 (PaO2 required for 50% saturation is higher or lower saturation for a given PaO2) | Lower P50 (PaO2 required for 50% saturation is lower or higher saturation for a given PaO2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almudares, F.; Gandhi, B.; Davies, J.; Couroucli, X.; Villafranco, N.; Varghese, N.P.; Guaman, M.C.; Guillory, C.; Shivanna, B. Oxygen Saturation Targeting in the Neonatal Intensive Care Unit. J. Clin. Med. 2025, 14, 3975. https://doi.org/10.3390/jcm14113975
Almudares F, Gandhi B, Davies J, Couroucli X, Villafranco N, Varghese NP, Guaman MC, Guillory C, Shivanna B. Oxygen Saturation Targeting in the Neonatal Intensive Care Unit. Journal of Clinical Medicine. 2025; 14(11):3975. https://doi.org/10.3390/jcm14113975
Chicago/Turabian StyleAlmudares, Faeq, Bheru Gandhi, Jonathan Davies, Xanthi Couroucli, Natalie Villafranco, Nidhy Paulose Varghese, Milenka Cuevas Guaman, Charleta Guillory, and Binoy Shivanna. 2025. "Oxygen Saturation Targeting in the Neonatal Intensive Care Unit" Journal of Clinical Medicine 14, no. 11: 3975. https://doi.org/10.3390/jcm14113975
APA StyleAlmudares, F., Gandhi, B., Davies, J., Couroucli, X., Villafranco, N., Varghese, N. P., Guaman, M. C., Guillory, C., & Shivanna, B. (2025). Oxygen Saturation Targeting in the Neonatal Intensive Care Unit. Journal of Clinical Medicine, 14(11), 3975. https://doi.org/10.3390/jcm14113975