Role of Electrically Evoked Muscle Hypertrophy on Spasticity in Persons with Spinal Cord Injury
Abstract
:1. Introduction
2. Methods
3. Study Design
3.1. Intervention
3.1.1. NMES- Resistance Training (RT)
3.1.2. Testosterone Treatment (TT)
3.2. Measurements
3.2.1. Body Weight and Height
3.2.2. Lean Mass Measured by DXA
3.2.3. Whole Thigh and Knee Extensor Cross-Sectional Areas (KE-CSA)
3.2.4. Spasticity Measurements
3.2.5. Statistical Analyses
4. Results
4.1. Muscle Hypertrophy
4.2. Extensor Spasticity
4.3. Flexor Spasticity
4.4. Catch and Release Slopes
5. Discussion
5.1. Rationale of the Study
5.2. Use of Isokinetic Dynamometer to Objectively Measure Spasticity
5.3. Potential Mechanism of NMES-RT or TT on Spasticity
5.4. The Catch and Release
5.5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | analysis of variance |
ANCOVA | analysis of covariance |
BL | baseline measurements |
BMI | body mass index |
CSA | cross-sectional area |
DXA | dual energy x-ray absorptiometry |
MAS | Modified Ashworth scale |
MRI | magnetic resonance imaging |
NMES-RT | neuromuscular resistance training |
PI | post-intervention measurements |
RT | resistance training |
SCI | spinal cord injury |
TT | testosterone treatment |
References
- Kirshblum, S.C.; Burns, S.P.; Biering-Sorensen, F.; Donovan, W.; Graves, D.E.; Jha, A.; Johansen, M.; Jones, L.; Krassioukov, A.; Mulcahey, M.J.; et al. International standards for neurological classification of spinal cord injury (revised 2011). J. Spinal Cord Med. 2011, 34, 535–546. [Google Scholar] [CrossRef]
- Steel Logistics Center. Traumatic Spinal Cord Injury Facts and Figure at a Glance (2023). Birm AL Univ Ala Birm [Internet]. 2016; p. 10. Available online: https://msktc.org/sites/default/files/Facts-and-Figures-2023-Eng-508.pdf (accessed on 15 April 2025).
- Ding, W.; Hu, S.; Wang, P.; Kang, H.; Peng, R.; Dong, Y.; Li, F. Spinal Cord Injury: The Global Incidence, Prevalence, and Disability From the Global Burden of Disease Study 2019. Spine 2022, 47, 1532–1540. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.J.; Apple, D.F., Jr.; Hillegass, E.A.; Dudley, G.A. Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 80, 373–378. [Google Scholar] [CrossRef]
- Spungen, A.M.; Wang, J.; Pierson, R.N., Jr.; Bauman, W.A. Soft tissue body composition differences in monozygotic twins discordant for spinal cord injury. J. Appl. Physiol. 2000, 88, 1310–1315. [Google Scholar] [CrossRef] [PubMed]
- Elder, C.P.; Apple, D.F.; Bickel, C.S.; Meyer, R.A.; Dudley, G.A. Intramuscular fat and glucose tolerance after spinal cord injury--a cross-sectional study. Spinal Cord 2004, 42, 711–716. [Google Scholar] [CrossRef]
- Rodriguez, G.; Berri, M.; Lin, P.; Kamdar, N.; Mahmoudi, E.; Peterson, M.D. Musculoskeletal morbidity following spinal cord injury: A longitudinal cohort study of privately-insured beneficiaries. Bone 2021, 142, 115700. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Talifu, Z.; Zhang, C.J.; Gao, F.; Ke, H.; Pan, Y.Z.; Gong, H.; Du, H.-Y.; Yu, Y.; Jing, Y.-L.; et al. Mechanism of skeletal muscle atrophy after spinal cord injury: A narrative review. Front. Nutr. 2023, 10, 1099143. [Google Scholar] [CrossRef]
- Stevens, S.L.; Caputo, J.L.; Fuller, D.K.; Morgan, D.W. Physical activity and quality of life in adults with spinal cord injury. J. Spinal Cord Med. 2008, 31, 373–378. [Google Scholar] [CrossRef]
- Nash, M.S.; Gater, D.R., Jr. Cardiometabolic Disease and Dysfunction Following Spinal Cord Injury: Origins and Guideline-Based Countermeasures. Phys. Med. Rehabil. Clin. N. Am. 2020, 31, 415–436. [Google Scholar] [CrossRef]
- Bauman, W.; Spungen, A. Coronary heart disease in individuals with spinal cord injury: Assessment of risk factors. Spinal Cord 2008, 46, 466–476. [Google Scholar] [CrossRef]
- Holman, M.E.; Gorgey, A.S. Testosterone and Resistance Training Improve Muscle Quality in Spinal Cord Injury. Med. Sci. Sports Exerc. 2019, 51, 1591–1598. [Google Scholar] [CrossRef]
- Fenton, J.M.; King, J.A.; Hoekstra, S.P.; Valentino, S.E.; Phillips, S.M.; Goosey-Tolfrey, V.L. Protocols aiming to increase muscle mass in persons with motor complete spinal cord injury: A systematic review. Disabil. Rehabil. 2023, 45, 1433–1443. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, S.; King, J.A.; Fenton, J.; Kirk, N.; Willis, S.A.; Phillips, S.M.; Webborn, N.; Tolfrey, K.; Bosch, J.V.D.; Goosey-Tolfrey, V.L. The effect of home-based neuromuscular electrical stimulation-resistance training and protein supplementation on lean mass in persons with spinal cord injury: A pilot study. Physiol. Rep. 2024, 12, e70073. [Google Scholar] [CrossRef]
- Giudice, J.; Taylor, J.M. Muscle as a paracrine and endocrine organ. Curr. Opin. Pharmacol. 2017, 34, 49–55. [Google Scholar] [CrossRef]
- Severinsen, M.C.K.; Pedersen, B.K. Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocr. Rev. 2020, 41, 594–609. [Google Scholar] [CrossRef]
- Li, C.W.; Yu, K.; Shyh-Chang, N.; Jiang, Z.; Liu, T.; Ma, S.; Luo, L.; Guang, L.; Liang, K.; Ma, W.; et al. Pathogenesis of sarcopenia and the relationship with fat mass: Descriptive review. J. Cachexia Sarcopenia Muscle 2022, 13, 781–794. [Google Scholar] [CrossRef] [PubMed]
- Bickel, C.S.; Cross, J.M.; Bamman, M.M. Exercise dosing to retain resistance training adaptations in young and older adults. Med. Sci. Sports Exerc. 2011, 43, 1177–1187. [Google Scholar] [CrossRef]
- Graham, K.; Yarar-Fisher, C.; Li, J.; McCully, K.M.; Rimmer, J.H.; Powell, D.; Bickel, C.S.; Fisher, G. Effects of High-Intensity Interval Training Versus Moderate-Intensity Training on Cardiometabolic Health Markers in Individuals with Spinal Cord Injury: A Pilot Study. Top. Spinal Cord Inj. Rehabil. 2019, 25, 248–259. [Google Scholar] [CrossRef]
- Endo, Y.; Nourmahnad, A.; Sinha, I. Optimizing skeletal muscle anabolic response to resistance training in aging. Front. Physiol. 2020, 11, 874. [Google Scholar] [CrossRef]
- Ryan, T.E.; Brizendine, J.T.; Backus, D.; McCully, K.K. Electrically induced resistance training in individuals with motor complete spinal cord injury. Arch. Phys. Med. Rehabil. 2013, 94, 2166–2173. [Google Scholar] [CrossRef] [PubMed]
- Gorgey, A.S.; Abilmona, S.M.; Sima, A.; Khalil, R.E.; Khan, R.; Adler, R.A. A secondary analysis of testosterone and electrically evoked resistance training versus testosterone only (TEREX-SCI) on untrained muscles after spinal cord injury: A pilot randomized clinical trial. Spinal Cord 2020, 58, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Sköld, C.; Levi, R.; Seiger, Å. Spasticity after traumatic spinal cord injury: Nature, severity, and location. Arch. Phys. Med. Rehabil. 1999, 80, 1548–1557. [Google Scholar] [CrossRef]
- Maynard, F.; Karunas, R.; Waring, W., 3rd. Epidemiology of spasticity following traumatic spinal cord injury. Arch. Phys. Med. Rehabil. 1990, 71, 566–569. [Google Scholar]
- Lance, J.W. The control of muscle tone, reflexes, and movement: Robert Wartenbeg Lecture. Neurology 1980, 30, 1303. [Google Scholar] [CrossRef]
- Ivanhoe, C.B.; Reistetter, T.A. Spasticity: The misunderstood part of the upper motor neuron syndrome. Am. J. Phys. Med. Rehabil. 2004, 83, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Bye, E.; Harvey, L.; Gambhir, A.; Kataria, C.; Glinsky, J.; Bowden, J.; Malik, N.; E Tranter, K.; Lam, C.P.; White, J.S.; et al. Strength training for partially paralysed muscles in people with recent spinal cord injury: A within-participant randomised controlled trial. Spinal Cord 2017, 55, 460–465. [Google Scholar] [CrossRef]
- Sheean, G. The pathophysiology of spasticity. Eur. J. Neurol. 2002, 9, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, S.; Ward, A.B. The diagnosis and management of adults with spasticity. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2013; pp. 145–160. [Google Scholar]
- Gorgey, A.S.; Cirnigliaro, C.M.; Bauman, W.A.; Adler, R.A. Estimates of the precision of regional and whole body composition by dual-energy x-ray absorptiometry in persons with chronic spinal cord injury. Spinal Cord 2018, 56, 987–995. [Google Scholar] [CrossRef]
- Gorgey, A.S.; Poarch, H.; Harnish, C.; Miller, J.M.; Dolbow, D.; Gater, D.R. Acute effects of locomotor training on neuromuscular and metabolic profile after incomplete spinal cord injury. NeuroRehabilitation 2011, 29, 79–83. [Google Scholar] [CrossRef]
- Hornby, T.G.; Kahn, J.H.; Wu, M.; Schmit, B.D. Temporal facilitation of spastic stretch reflexes following human spinal cord injury. J. Physiol. 2006, 571 Pt 3, 593–604. [Google Scholar] [CrossRef]
- van den Noort, J.C.; Scholtes, V.A.; Becher, J.G.; Harlaar, J. Evaluation of the catch in spasticity assessment in children with cerebral palsy. Arch. Phys. Med. Rehabil. 2010, 91, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Hutton, R.S.; Atwater, S.W. Acute and chronic adaptations of muscle proprioceptors in response to increased use. Sports Med. 1992, 14, 406–421. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.; Ng, G. Resistance training alters the sensorimotor control of vasti muscles. J. Electromyogr. Kinesiol. 2010, 20, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.B.; Crone, C.; Hultborn, H. The spinal pathophysiology of spasticity–from a basic science point of view. Acta Physiol. 2007, 189, 171–180. [Google Scholar] [CrossRef]
- Gorgey, A.; Chiodo, A.; Gater, D. Oral baclofen administration in persons with chronic spinal cord injury does not prevent the protective effects of spasticity on body composition and glucose homeostasis. Spinal Cord 2010, 48, 160–165. [Google Scholar] [CrossRef]
- Thomas, C.K.; Häger-Ross, C.K.; Klein, C.S. Effects of baclofen on motor units paralysed by chronic cervical spinal cord injury. Brain 2010, 133, 117–125. [Google Scholar] [CrossRef]
- Ifon, D.E.; Ghatas, M.P.; Davis, J.C.; Khalil, R.E.; Adler, R.A.; Gorgey, A.S. Long-term effect of intrathecal baclofen treatment on bone health and body composition after spinal cord injury: A case matched report. World J. Orthop. 2020, 11, 453. [Google Scholar] [CrossRef] [PubMed]
- Gorgey, A.; Dudley, G. Spasticity may defend skeletal muscle size and composition after incomplete spinal cord injury. Spinal Cord 2008, 46, 96–102. [Google Scholar] [CrossRef]
- Gorgey, A.S.; Chiodo, A.E.; Zemper, E.D.; Hornyak, J.E.; Rodriguez, G.M.; Gater, D.R. Relationship of spasticity to soft tissue body composition and the metabolic profile in persons with chronic motor complete spinal cord injury. J. Spinal Cord Med. 2010, 33, 6–15. [Google Scholar] [CrossRef]
- Bekhet, A.H.; Bochkezanian, V.; Saab, I.M.; Gorgey, A.S. The effects of electrical stimulation parameters in managing spasticity after spinal cord injury: A systematic review. Am. J. Phys. Med. Rehabil. 2019, 98, 484–499. [Google Scholar] [CrossRef]
- De Santis, D.; Perez, M.A. A portable system to measure knee extensor spasticity after spinal cord injury. J. Neuroeng. Rehabil. 2024, 21, 50. [Google Scholar] [CrossRef]
- Sangari, S.; Chen, B.; Grover, F.; Salsabili, H.; Sheth, M.; Gohil, K.; Hobbs, S.; Olson, A.; Eisner-Janowicz, I.; Anschel, A.; et al. Spasticity predicts motor recovery for patients with subacute motor complete spinal cord injury. Ann. Neurol. 2024, 95, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Löfvenmark, I.; Werhagen, L.; Norrbrink, C. Spasticity and bone density after a spinal cord injury. J. Rehabil. Med. 2009, 41, 1080–1084. [Google Scholar] [CrossRef] [PubMed]
- Farkas, G.J.; Sneij, A.; McMillan, D.W.; Tiozzo, E.; Nash, M.S.; Gater, D.R. Energy expenditure and nutrient intake after spinal cord injury: A comprehensive review and practical recommendations. Br. J. Nutr. 2021, 128, 863–887. [Google Scholar] [CrossRef] [PubMed]
- Jung, I.; Kim, H.; Chun, S.; Leigh, J.; Shin, H. Severe spasticity in lower extremities is associated with reduced adiposity and lower fasting plasma glucose level in persons with spinal cord injury. Spinal Cord 2017, 55, 378–382. [Google Scholar] [CrossRef]
- Gorgey, A.S.; Gater, D.R. Insulin growth factors may explain relationship between spasticity and skeletal muscle size in men with spinal cord injury. J. Rehabil. Res. Dev. 2012, 49, 373–380. [Google Scholar] [CrossRef]
- Hornby, T.; Rymer, W.; Benz, E.; Schmit, B. Windup of flexion reflexes in chronic human spinal cord injury: A marker for neuronal plateau potentials? J. Neurophysiol. 2003, 89, 416–426. [Google Scholar] [CrossRef]
- Bhagwani, A.; Chopra, M.; Kumar, H. Spinal cord injury provoked neuropathic pain and spasticity, and their GABAergic connection. Neurospine 2022, 19, 646–668. [Google Scholar] [CrossRef]
- Little, C.M.; Coons, K.D.; Sengelaub, D.R. Neuroprotective effects of testosterone on the morphology and function of somatic motoneurons following the death of neighboring motoneurons. J. Comp. Neurol. 2009, 512, 359–372. [Google Scholar] [CrossRef]
- Byers, J.S.; Huguenard, A.L.; Kuruppu, D.; Liu, N.; Xu, X.; Sengelaub, D.R. Neuroprotective effects of testosterone on motoneuron and muscle morphology following spinal cord injury. J. Comp. Neurol. 2012, 520, 2683–2696. [Google Scholar] [CrossRef]
- Bauman, W.A.; La Fountaine, M.F.; Spungen, A.M. Age-related prevalence of low testosterone in men with spinal cord injury. J. Spinal Cord Med. 2014, 37, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Barbonetti, A.; Vassallo, M.; Pacca, F.; Cavallo, F.; Costanzo, M.; Felzani, G.; Francavilla, S.; Francavilla, F. Correlates of low testosterone in men with chronic spinal cord injury. Andrology 2014, 2, 721–728. [Google Scholar] [CrossRef] [PubMed]
Group | ID | Gender | Age (yrs) | Ethnicity | Weight (kg) | Height (cm) | BMI (kg/m2) | TSI (yrs.) | LOI | Class. | ASIA Class. |
---|---|---|---|---|---|---|---|---|---|---|---|
NMES-RT+TT | 001 | M | 49 | AA | 107.5 | 188.6 | 30.0 | 24 | T4 | Para | A |
004 | M | 45 | AA | 90.5 | 183.2 | 27.0 | 14 | T4 | Para | A | |
005 | M | 48 | W | 70.5 | 166.5 | 25.4 | 28 | T4 | Para | A | |
014 | M | 34 | W | 74.8 | 178.3 | 23.5 | 14 | T8-T9 | Para | B | |
017 | M | 19 | W | 69.0 | 174.8 | 22.6 | 2 | T10 | Para | A | |
021 | M | 49 | AA | 81.5 | 168.2 | 28.8 | 6 | T6 | Para | B | |
025 | M | 33 | W | 105.5 | 182.7 | 31.5 | 3 | C5 | Tetra | A | |
Mean ± SD | 40 ± 11 | 3 AA: 4 W | 86 ± 16 | 177.5 ± 8.0 | 27.0 ± 3.4 | 13 ± 10 | C5-T10 | 6 Para: 1Tetra | 5A:2B | ||
TT only | 002 | M | 49 | AA | 79.2 | 171.36 | 27.0 | 4 | C6 | Tetra | B |
003 | M | 40 | AA | 60.5 | 185.55 | 17.6 | 14 | C6 | Tetra | B | |
008 | M | 30 | AA | 88.0 | 180.5 | 27.0 | 4 | T6 | Para | A | |
012 | M | 34 | W | 62.3 | 179.8 | 19.3 | 6 | C6 | Tetra | A | |
016 | M | 31 | W | 76.7 | 175.9 | 24.8 | 7 | T5 | Para | A | |
022 | M | 27 | W | 80.5 | 181.56 | 24.4 | 2 | C6 | Tetra | A | |
Mean ± SD | 35 ± 8 | 3 AA: 3 W | 74.5 ± 11 | 179 ± 5.0 | 23.5 ± 4.0 | 6 ± 4 | C6-T6 | 2 Para: 4 Tetra | 4A:2B |
Group | ID | Modified Ashworth Scores of Knee Extensors | Anti-Spastic Medications | Dosages (mg) |
---|---|---|---|---|
NMES-RT+TT | 001 | 1 | Baclofen | 20 |
004 | 1 | None | - | |
005 | 0 | None | - | |
014 | 3 | None | - | |
017 | 4 | None | - | |
021 | 0 | Baclofen | 10 | |
025 | 2 | Baclofen | 10 | |
Mean ± SD | 1.6 ± 1.6 | 13 ± 6 | ||
TT only | 002 | 3 | Baclofen | 10 |
003 | 2 | None | - | |
008 | 1 | None | - | |
012 | 3 | None | 20 | |
016 | 0 | None | 20 | |
022 | 1 | Baclofen | 20 | |
Mean ± SD | 1.8 ± 1.3 | Baclofen | 17.5 ± 10 | |
Grades | Description | |||
0 | No increase in muscle tone | |||
1 | Slight increase in muscle tone with slight catch and release or minimal resistance at end of stretch | |||
1+ | Slight increase in muscle tone with minimal resistance after catch that lasts throughout remainder of range of motion | |||
2 | Moderate increase in muscle tone but affected part still easily moved | |||
3 | Considerable increase in muscle tone with difficulty in passive range of motion | |||
4 | Affected part is rigid in flexion (bent) or extension (straight) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wasim, M.A.; Alazzam, A.M.; Gorgey, A.S. Role of Electrically Evoked Muscle Hypertrophy on Spasticity in Persons with Spinal Cord Injury. J. Clin. Med. 2025, 14, 3972. https://doi.org/10.3390/jcm14113972
Wasim MA, Alazzam AM, Gorgey AS. Role of Electrically Evoked Muscle Hypertrophy on Spasticity in Persons with Spinal Cord Injury. Journal of Clinical Medicine. 2025; 14(11):3972. https://doi.org/10.3390/jcm14113972
Chicago/Turabian StyleWasim, Momal A., Ahmad M. Alazzam, and Ashraf S. Gorgey. 2025. "Role of Electrically Evoked Muscle Hypertrophy on Spasticity in Persons with Spinal Cord Injury" Journal of Clinical Medicine 14, no. 11: 3972. https://doi.org/10.3390/jcm14113972
APA StyleWasim, M. A., Alazzam, A. M., & Gorgey, A. S. (2025). Role of Electrically Evoked Muscle Hypertrophy on Spasticity in Persons with Spinal Cord Injury. Journal of Clinical Medicine, 14(11), 3972. https://doi.org/10.3390/jcm14113972