Liver-Kidney Crosstalk in Major Pediatric Diseases: Unraveling the Complexities and Clinical Challenges
Abstract
1. Introduction
2. Hepatorenal Syndrome
3. Genetic and Metabolic Disorders
4. Metabolic Dysfunction-Associated Steatotic Liver Disease
5. Potential Mechanisms Linking MASLD to CKD
5.1. IR and Dysmetabolism
5.2. Genetics
5.3. Oxidative Stress
5.4. Lipid Metabolism
5.5. Fructose Metabolism
5.6. Adipose Tissue and PPAR-γ Dysfunction
5.7. Gut Dysbiosis
6. Evidence on MASLD and KD in Childhood
7. New Treatment Perspectives for MASLD
8. Clinical Implications for the Practical Management of KD
9. Conclusions
10. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CKD | Chronic kidney disease |
HR | Hepatorenal syndrome |
IR | Insulin resistance |
KD | Kidney damage |
MASLD | Metabolic Dysfunction-Associated Steatotic Liver Disease |
MetS | Metabolic syndrome |
NAFLD | Non-alcoholic fatty liver disease |
OR | Odds ratio |
References
- Truong, E.; Noureddin, M. The Interplay Between Nonalcoholic Fatty Liver Disease and Kidney Disease. Clin. Liver Dis. 2022, 26, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Byrne, C.D. Non-alcoholic fatty liver disease: An emerging driving force in chronic kidney disease. Nat. Rev. Nephrol. 2017, 13, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Bonavia, A.; Stiles, N. Renohepatic crosstalk: A review of the effects of acute kidney injury on the liver. Nephrol. Dial. Transplant. 2022, 37, 1218–1228. [Google Scholar] [CrossRef] [PubMed]
- Bilson, J.; Mantovani, A.; Byrne, C.D.; Targher, G. Steatotic liver disease, MASLD and risk of chronic kidney disease. Diabetes Metab. 2024, 50, 101506. [Google Scholar] [CrossRef]
- Capalbo, O.; Giuliani, S.; Ferrero-Fernández, A.; Casciato, P.; Musso, C.G. Kidney–liver pathophysiological crosstalk: Its characteristics and importance. Int. Urol. Nephrol. 2019, 51, 2203–2207. [Google Scholar] [CrossRef]
- Matloff, R.G.; Arnon, R. The Kidney in Pediatric Liver Disease. Curr. Gastroenterol. Rep. 2015, 17, 36. [Google Scholar] [CrossRef]
- Van Hoeve, K.; Mekahli, D.; Morava, E.; Levtchenko, E.; Witters, P. Liver involvement in kidney disease and vice versa. Pediatr. Nephrol. 2018, 33, 957–971. [Google Scholar] [CrossRef]
- Kiani, C.; Zori, A.G. Recent advances in pathophysiology, diagnosis and management of hepatorenal syndrome: A review. World J. Hepatol. 2023, 15, 741–754. [Google Scholar] [CrossRef]
- Liu, P.M.F.; de Carvalho, S.T.; Fradico, P.F.; Cazumbá, M.L.B.; Campos, R.G.B.; Simões e Silva, A.C. Hepatorenal syndrome in children: A review. Pediatr. Nephrol. 2021, 36, 2203–2215. [Google Scholar] [CrossRef]
- Hasper, D.; Jörres, A. New insights into the management of hepato-renal syndrome. Liver Int. 2011, 31 (Suppl. S3), S27–S30. [Google Scholar] [CrossRef]
- Mannion, R.; Fitzpatrick, E. Systemic Complications Secondary to Chronic Liver Disease. Indian J. Pediatr. 2024, 91, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Velez, J.C.Q.; Therapondos, G.; Juncos, L.A. Reappraising the spectrum of AKI and hepatorenal syndrome in patients with cirrhosis. Nat. Rev. Nephrol. 2020, 16, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Fukazawa, K.; Lee, H.T. Updates on Hepato-Renal Syndrome. J. Anesth. Clin. Res. 2013, 4, 352. [Google Scholar] [CrossRef] [PubMed]
- Adebayo, D.; Wong, F. Pathophysiology of Hepatorenal Syndrome—Acute Kidney Injury. Clin. Gastroenterol. Hepatol. 2023, 21 (Suppl. S10), S1–S10. [Google Scholar] [CrossRef]
- Solé, C.; Solà, E.; Huelin, P.; Carol, M.; Moreira, R.; Cereijo, U.; Mas, J.M.; Graupera, I.; Pose, E.; Napoleone, L.; et al. Characterization of inflammatory response in hepatorenal syndrome: Relationship with kidney outcome and survival. Liver Int. 2019, 39, 1246–1255. [Google Scholar] [CrossRef]
- Ingviya, T.; Wasuwanich, P.; Scheimann, A.O.; Felix, G.; Laengvejkal, P.; Vasilescu, A.; Imteyaz, H.; Seaberg, E.C.; Karnsakul, W. Clinical Predictors of Morbidity and Mortality in Hospitalized Pediatric Patients with Ascites. J. Pediatr. Gastroenterol. Nutr. 2021, 73, 86–92. [Google Scholar] [CrossRef]
- Wasuwanich, P.; So, J.M.; Scheimann, A.O.; Spahic, H.; Laengvejkal, P.; Vasilescu, A.; Imteyaz, H.; Karnsakul, W. Hepatic and non-hepatic hydrothorax in pediatric ascites. Clin. Res. Hepatol. Gastroenterol. 2022, 46, 101868. [Google Scholar] [CrossRef]
- Luoto, T.T.; Koivusalo, A.I.; Pakarinen, M.P. Long-term Outcomes and Health Perceptions in Pediatric-onset Portal Hypertension Complicated by Varices. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 628–634. [Google Scholar] [CrossRef]
- Lal, B.B.; Alam, S.; Sood, V.; Rawat, D.; Khanna, R. Profile, risk factors and outcome of acute kidney injury in paediatric acute-on-chronic liver failure. Liver Int. 2018, 38, 1777–1784. [Google Scholar] [CrossRef]
- Lazarus, J.V.; Mark, H.E.; Allen, A.M.; Arab, J.P.; Carrieri, P.; Noureddin, M.; Alazawi, W.; Alkhouri, N.; Alqahtani, S.A.; Arrese, M.; et al. A global research priority agenda to advance public health responses to fatty liver disease. J. Hepatol. 2023, 79, 618–634. [Google Scholar] [CrossRef]
- Le, P.; Tatar, M.; Dasarathy, S.; Alkhouri, N.; Herman, W.H.; Taksler, G.B.; Deshpande, A.; Ye, W.; Adekunle, O.A.; McCullough, A.; et al. Estimated Burden of Metabolic Dysfunction–Associated Steatotic Liver Disease in US Adults, 2020 to 2050. JAMA Netw. Open 2025, 8, e2454707. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.-F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Alkhouri, N.; Vajro, P.; Baumann, U.; Weiss, R.; Socha, P.; Marcus, C.; Lee, W.S.; Kelly, D.; Porta, G.; et al. Defining paediatric metabolic (dysfunction)-associated fatty liver disease: An international expert consensus statement. Lancet Gastroenterol. Hepatol. 2021, 6, 864–873. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef]
- Kang, S.H.; Cho, Y.; Jeong, S.W.; Kim, S.U.; Lee, J.-W.; Korean NAFLD Study Group. From nonalcoholic fatty liver disease to metabolic-associated fatty liver disease: Big wave or ripple? Clin. Mol. Hepatol. 2021, 27, 257–269. [Google Scholar] [CrossRef]
- Ramírez-Mejía, M.M.; Eslam, M.; Méndez-Sánchez, N. The MAFLD and MASLD conundrum: Is it reinvention of the wheel? J. Hepatol. 2024, 81, e22–e23. [Google Scholar] [CrossRef]
- Perumpail, B.J.; Manikat, R.; Wijarnpreecha, K.; Cholankeril, G.; Ahmed, A.; Kim, D. The prevalence and predictors of metabolic dysfunction-associated steatotic liver disease and fibrosis/cirrhosis among adolescents/young adults. J. Pediatr. Gastroenterol. Nutr. 2024, 79, 110–118. [Google Scholar] [CrossRef]
- Targher, G.; Byrne, C.D.; Tilg, H. MASLD: A systemic metabolic disorder with cardiovascular and malignant complications. Gut 2024, 73, 691–702. [Google Scholar] [CrossRef]
- Goyal, N.P.; Xanthakos, S.; Schwimmer, J.B. Metabolic dysfunction-associated steatotic liver disease in children. Gut 2025, 74, 669–677. [Google Scholar] [CrossRef]
- Lee, H.-H.; Lee, H.A.; Kim, E.-J.; Kim, H.Y.; Kim, H.C.; Ahn, S.H.; Lee, H.; Kim, S.U. Metabolic dysfunction-associated steatotic liver disease and risk of cardiovascular disease. Gut 2024, 73, 533–540. [Google Scholar] [CrossRef]
- Choe, H.J.; Moon, J.H.; Kim, W.; Koo, B.K.; Cho, N.H. Steatotic liver disease predicts cardiovascular disease and advanced liver fibrosis: A community-dwelling cohort study with 20-year follow-up. Metabolism 2024, 153, 155800. [Google Scholar] [CrossRef] [PubMed]
- Theofilis, P.; Vordoni, A.; Kalaitzidis, R.G. Interplay between metabolic dysfunction-associated fatty liver disease and chronic kidney disease: Epidemiology, pathophysiologic mechanisms, and treatment considerations. World J. Gastroenterol. 2022, 28, 5691–5706. [Google Scholar] [CrossRef] [PubMed]
- Nardolillo, M.; Rescigno, F.; Bartiromo, M.; Piatto, D.; Guarino, S.; Marzuillo, P.; del Giudice, E.M.; Di Sessa, A. Interplay between metabolic dysfunction-associated fatty liver disease and renal function: An intriguing pediatric perspective. World J. Gastroenterol. 2024, 30, 2081–2086. [Google Scholar] [CrossRef] [PubMed]
- Musso, G.; Cassader, M.; Cohney, S.; De Michieli, F.; Pinach, S.; Saba, F.; Gambino, R. Fatty Liver and Chronic Kidney Disease: Novel Mechanistic Insights and Therapeutic Opportunities. Diabetes Care 2016, 39, 1830–1845. [Google Scholar] [CrossRef]
- McCullough, K.; Sharma, P.; Ali, T.; Khan, I.; Smith, W.C.; MacLeod, A.; Black, C. Measuring the population burden of chronic kidney disease: A systematic literature review of the estimated prevalence of impaired kidney function. Nephrol. Dial. Transplant. 2012, 27, 1812–1821. [Google Scholar] [CrossRef]
- Pan, Z.; Alqahtani, S.A.; Eslam, M. MAFLD and chronic kidney disease: Two sides of the same coin? Hepatol Int. 2023, 17, 519–521. [Google Scholar] [CrossRef]
- Pacifico, L.; Bonci, E.; Andreoli, G.M.; Di Martino, M.; Gallozzi, A.; De Luca, E.; Chiesa, C. The Impact of Nonalcoholic Fatty Liver Disease on Renal Function in Children with Overweight/Obesity. Int. J. Mol. Sci. 2016, 17, 1218. [Google Scholar] [CrossRef]
- Sesti, G.; Fiorentino, T.V.; Arturi, F.; Perticone, M.; Sciacqua, A.; Perticone, F. Association between Noninvasive Fibrosis Markers and Chronic Kidney Disease among Adults with Nonalcoholic Fatty Liver Disease. PLoS ONE 2014, 9, e88569. [Google Scholar] [CrossRef]
- Musso, G.; Gambino, R.; Tabibian, J.H.; Ekstedt, M.; Kechagias, S.; Hamaguchi, M.; Hultcrantz, R.; Hagström, H.; Yoon, S.K.; Charatcharoenwitthaya, P.; et al. Association of Non-alcoholic Fatty Liver Disease with Chronic Kidney Disease: A Systematic Review and Meta-analysis. PLoS Med. 2014, 11, e1001680. [Google Scholar] [CrossRef]
- Targher, G.; Mantovani, A.; Pichiri, I.; Mingolla, L.; Cavalieri, V.; Mantovani, W.; Pancheri, S.; Trombetta, M.; Zoppini, G.; Chonchol, M.; et al. Nonalcoholic Fatty Liver Disease Is Independently Associated with an Increased Incidence of Chronic Kidney Disease in Patients with Type 1 Diabetes. Diabetes Care 2014, 37, 1729–1736. [Google Scholar] [CrossRef]
- Palatini, P. Glomerular hyperfiltration: A marker of early renal damage in pre-diabetes and pre-hypertension. Nephrol. Dial. Transplant. 2012, 27, 1708–1714. [Google Scholar] [CrossRef] [PubMed]
- Di Sessa, A.; Zarrilli, S.; Forcina, G.; Frattolillo, V.; Camponesco, O.; Migliaccio, C.; Ferrara, S.; Umano, G.R.; Cirillo, G.; Miraglia del Giudice, E.; et al. Role of metabolic dysfunction-associated steatotic liver disease and of its genetics on kidney function in childhood obesity. Int. J. Obes. 2024, 49, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Mouzaki, M.; Yates, K.P.; Arce-Clachar, A.C.; Behling, C.; Blondet, N.M.; Fishbein, M.H.; Flores, F.; Adams, K.H.; Hertel, P.; Jain, A.K.; et al. Renal impairment is prevalent in pediatric NAFLD/MASLD and associated with disease severity. J. Pediatr. Gastroenterol. Nutr. 2024, 79, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Barlabà, A.; Grella, C.; Tammaro, M.; Petrone, D.; Guarino, S.; Miraglia del Giudice, E.; Marzuillo, P.; Di Sessa, A. Kidney function evaluation in children and adolescents with obesity: A not-negligible need. Eur. J. Pediatr. 2024, 183, 3655–3664. [Google Scholar] [CrossRef]
- Mantovani, A.; Petracca, G.; Beatrice, G.; Csermely, A.; Tilg, H.; Byrne, C.D.; Targher, G. Non-alcoholic fatty liver disease and increased risk of incident extrahepatic cancers: A meta-analysis of observational cohort studies. Gut 2022, 71, 778–788. [Google Scholar] [CrossRef]
- Chan, K.E.; Ong, E.Y.H.; Chung, C.H.; Ong, C.E.Y.; Koh, B.; Tan, D.J.H.; Lim, W.H.; Yong, J.N.; Xiao, J.; Wong, Z.Y.; et al. Longitudinal Outcomes Associated with Metabolic Dysfunction-Associated Steatotic Liver Disease: A Meta-analysis of 129 Studies. Clin. Gastroenterol. Hepatol. 2024, 22, 488–498.e14. [Google Scholar] [CrossRef]
- Byrne, C.D.; Targher, G. NAFLD as a driver of chronic kidney disease. J. Hepatol. 2020, 72, 785–801. [Google Scholar] [CrossRef]
- Yodoshi, T.; Arce-Clachar, A.C.; Sun, Q.; Fei, L.; Bramlage, K.; Xanthakos, S.A.; Flores, F.; Mouzaki, M. Glomerular Hyperfiltration Is Associated with Liver Disease Severity in Children with Nonalcoholic Fatty Liver Disease. J. Pediatr. 2020, 222, 127–133. [Google Scholar] [CrossRef]
- Gehrke, N.; Schattenberg, J.M. Metabolic Inflammation—A Role for Hepatic Inflammatory Pathways as Drivers of Comorbidities in Nonalcoholic Fatty Liver Disease? Gastroenterology 2020, 158, 1929–1947.e6. [Google Scholar] [CrossRef]
- Di Sessa, A.; Guarino, S.; Passaro, A.P.; Liguori, L.; Umano, G.R.; Cirillo, G.; Miraglia del Giudice, E.; Marzuillo, P. NAFLD and renal function in children: Is there a genetic link? Expert Rev. Gastroenterol. Hepatol. 2021, 15, 975–984. [Google Scholar] [CrossRef]
- Manco, M.; Ciampalini, P.; DeVito, R.; Vania, A.; Cappa, M.; Nobili, V. Albuminuria and insulin resistance in children with biopsy proven non-alcoholic fatty liver disease. Pediatr. Nephrol. 2009, 24, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.M.; Charlton, J.R.; Carmody, J.B.; Gurka, M.J.; DeBoer, M.D. Metabolic risk factors in nondiabetic adolescents with glomerular hyperfiltration. Nephrol. Dial. Transplant. 2017, 32, 1517–1524. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewski, M.; Charchar, F.; Maric, C.; McClure, J.; Crawford, L.; Grzeszczak, W.; Sattar, N.; Zukowska-Szczechowska, E.; Dominiczak, A. Glomerular hyperfiltration: A new marker of metabolic risk. Kidney Int. 2007, 71, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Noels, H.; Lehrke, M.; Vanholder, R.; Jankowski, J. Lipoproteins and fatty acids in chronic kidney disease: Molecular and metabolic alterations. Nat. Rev. Nephrol. 2021, 17, 528–542. [Google Scholar] [CrossRef]
- Lonardo, A.; Mantovani, A.; Targher, G.; Baffy, G. Nonalcoholic Fatty Liver Disease and Chronic Kidney Disease: Epidemiology, Pathogenesis, and Clinical and Research Implications. Int. J. Mol. Sci. 2022, 23, 13320. [Google Scholar] [CrossRef]
- Baffy, G.; Bosch, J. Overlooked subclinical portal hypertension in non-cirrhotic NAFLD: Is it real and how to measure it? J. Hepatol. 2022, 76, 458–463. [Google Scholar] [CrossRef]
- Cheung, A.; Ahmed, A. Nonalcoholic Fatty Liver Disease and Chronic Kidney Disease: A Review of Links and Risks. Clin. Exp. Gastroenterol. 2021, 14, 457–465. [Google Scholar] [CrossRef]
- Yang, M.; Luo, S.; Yang, J.; Chen, W.; He, L.; Liu, D.; Zhao, L.; Wang, X. Crosstalk between the liver and kidney in diabetic nephropathy. Eur. J. Pharmacol. 2022, 931, 175219. [Google Scholar] [CrossRef]
- Post, A.; Dam, W.A.; Sokooti, S.; Groothof, D.; Gloerich, J.; van Gool, A.J.; Kremer, D.; Gansevoort, R.T.; van den Born, J.; Kema, I.P.; et al. Circulating FGF21 Concentration, Fasting Plasma Glucose, and the Risk of Type 2 Diabetes: Results from the PREVEND Study. J. Clin. Endocrinol. Metab. 2023, 108, 1387–1393. [Google Scholar] [CrossRef]
- Salgado, J.V.; Goes, M.A.; Salgado Filho, N. FGF21 and Chronic Kidney Disease. Metabolism 2021, 118, 154738. [Google Scholar] [CrossRef]
- Tucker, B.; Li, H.; Long, X.; Rye, K.-A.; Ong, K.L. Fibroblast growth factor 21 in non-alcoholic fatty liver disease. Metabolism 2019, 101, 153994. [Google Scholar] [CrossRef] [PubMed]
- Velingkar, A.; Vuree, S.; Prabhakar, P.K.; Kalashikam, R.R.; Banerjee, A.; Kondeti, S. Fibroblast growth factor 21 as a potential master regulator in metabolic disorders. Am. J. Physiol. Endocrinol. Metab. 2023, 324, E409–E424. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Goh, G.B.-B. Genetic Risk Factors for Metabolic Dysfunction-Associated Steatotic Liver Disease. Gut Liver 2025, 19, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.; Al-Sharif, L.; Diaz, I.; Mantovani, A.; Villela-Nogueira, C.A. Global Epidemiology and Implications of PNPLA3 I148M Variant in Metabolic Dysfunction–Associated Steatotic Liver Disease: A Systematic Review and Meta-analysis. J. Clin. Exp. Hepatol. 2024, 15, 102495. [Google Scholar] [CrossRef]
- Speliotes, E.K.; Schneider, C.V. PNPLA3 I148M Interacts with Environmental Triggers to Cause Human Disease. Liver Int. 2025, 45, e16106. [Google Scholar] [CrossRef]
- Rashu, E.B.; Werge, M.P.; Hetland, L.E.; Thing, M.; Nabilou, P.; Kimer, N.; Junker, A.E.; Jensen, A.-S.H.; Nordestgaard, B.G.; Stender, S.; et al. Use of PNPLA3, TM6SF2, and HSD17B13 for detection of fibrosis in MASLD in the general population. Clin. Res. Hepatol. Gastroenterol. 2024, 48, 102389. [Google Scholar] [CrossRef]
- Santoro, N.; Kursawe, R.; D’Adamo, E.; Dykas, D.J.; Zhang, C.K.; Bale, A.E.; Calí, A.M.; Narayan, D.; Shaw, M.M.; Pierpont, B.; et al. A Common Variant in the Patatin-Like Phospholipase 3 Gene (PNPLA3) Is Associated with Fatty Liver Disease in Obese Children and Adolescents. Hepatology 2010, 52, 1281–1290. [Google Scholar] [CrossRef]
- Mantovani, A.; Targher, G. PNPLA3 variation and kidney disease. Liver Int. 2025, 45, e16010. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Zhao, W.; Ma, J.; Toshiyoshi, M.M. Patatin-like phospholipase domain-containing 3 gene (PNPLA3) polymorphic (rs738409) single nucleotide polymorphisms and susceptibility to nonalcoholic fatty liver disease: A meta-analysis of twenty studies. Medicine 2023, 102, e33110. [Google Scholar] [CrossRef]
- Mantovani, A.; Pelusi, S.; Margarita, S.; Malvestiti, F.; Dell’Alma, M.; Bianco, C.; Ronzoni, L.; Prati, D.; Targher, G.; Valenti, L. Adverse effect of PNPLA3 p.I148M genetic variant on kidney function in middle-aged individuals with metabolic dysfunction. Aliment. Pharmacol. Ther. 2023, 57, 1093–1102. [Google Scholar] [CrossRef]
- Chen, S.; Pang, J.; Huang, R.; Xue, H.; Chen, X. Association of MAFLD with end-stage kidney disease: A prospective study of 337,783 UK Biobank participants. Hepatol. Int. 2023, 17, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Taliento, A.; Zusi, C.; Baselli, G.; Prati, D.; Granata, S.; Zaza, G.; Colecchia, A.; Maffeis, C.; Byrne, C.D.; et al. PNPLA3I148M gene variant and chronic kidney disease in type 2 diabetic patients with NAFLD: Clinical and experimental findings. Liver Int. 2020, 40, 1130–1141. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.Q.; Zheng, K.I.; Xu, G.; Ma, H.L.; Zhang, H.Y.; Pan, X.Y.; Zhu, P.W.; Wang, X.D.; Targher, G.; Byrne, C.D.; et al. PNPLA3 rs738409 is associated with renal glomerular and tubular injury in NAFLD patients with persistently normal ALT levels. Liver Int. 2020, 40, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Qi, W.; Wang, S.; Zhang, Y.; Wang, X.; Sun, D.; Xu, Y.; Shi, J.; Duan, H.; Zhang, Q.; et al. Metabolic disorders induced by PNPLA3 and TM6SF2 gene variants affect chronic kidney disease in patients infected with non-genotype 3 hepatitis C virus. Lipids Health Dis. 2023, 22, 91. [Google Scholar] [CrossRef]
- Marzuillo, P.; Di Sessa, A.; Guarino, S.; Capalbo, D.; Umano, G.R.; Pedullà, M.; La Manna, A.; Cirillo, G.; Miraglia del Giudice, E. Nonalcoholic fatty liver disease and eGFR levels could be linked by the PNPLA3 I148M polymorphism in children with obesity. Pediatr. Obes. 2019, 14, e12539. [Google Scholar] [CrossRef]
- Targher, G.; Mantovani, A.; Alisi, A.; Mosca, A.; Panera, N.; Byrne, C.D.; Nobili, V. Relationship Between PNPLA3 rs738409 Polymorphism and Decreased Kidney Function in Children with NAFLD. Hepatology 2019, 70, 142–153. [Google Scholar] [CrossRef]
- Di Sessa, A.; Russo, M.C.; Arienzo, M.R.; Umano, G.R.; Cozzolino, D.; Cirillo, G.; Guarino, S.; Miraglia del Giudice, E.; Marzuillo, P. PNPLA3 I148M Polymorphism Influences Renal Function in Children with Obesity and Prediabetes. J. Ren. Nutr. 2022, 32, 670–676. [Google Scholar] [CrossRef]
- Xia, M.F.; Lin, H.D.; Chen, L.Y.; Wu, L.; Ma, H.; Li, Q.; Aleteng, Q.; Hu, Y.; He, W.Y.; Gao, J.; et al. The PNPLA3 rs738409 C>G variant interacts with changes in body weight over time to aggravate liver steatosis, but reduces the risk of incident type 2 diabetes. Diabetologia. 2019, 62, 644–654. [Google Scholar] [CrossRef]
- Seko, Y.; Lin, H.; Wong, V.W.S.; Okanoue, T. Impact of PNPLA3 in Lean Individuals and in Cryptogenic Steatotic Liver Disease. Liver Int. 2024, 45, e16164. [Google Scholar] [CrossRef]
- Bril, F.; Kalavalapalli, S.; Lomonaco, R.; Frye, R.; Godinez Leiva, E.; Cusi, K. Insulin resistance is an integral feature of MASLD even in the presence of PNPLA3 variants. JHEP Rep. 2024, 6, 101092. [Google Scholar] [CrossRef]
- Sato, S.; Iino, C.; Sasada, T.; Soma, G.; Furusawa, K.; Yoshida, K.; Sawada, K.; Mikami, T.; Nakaji, S.; Sakuraba, H.; et al. Epidemiological Study on the Interaction between the PNPLA3 (rs738409) and Gut Microbiota in Metabolic Dysfunction-Associated Steatotic Liver Disease. Genes 2024, 15, 1172. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.; Wong, V.W.-S.; Zhang, X.; Yu, J. Interplay between gut microbiome, host genetic and epigenetic modifications in MASLD and MASLD-related hepatocellular carcinoma. Gut 2024, 74, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, S.; Dong, Q.; Xin, Y.; Xuan, S. The Genetics of Clinical Liver Diseases: Insight into the TM6SF2 E167K Variant. J. Clin. Transl. Hepatol. 2018, 6, 326. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.-Y.; Zhang, L.; Liu, C.-M.; Gao, Y.; Li, S.-J.; Huai, Z.-Y.; Dai, J.; Wang, Y.-Y. Research progress on the relationship between TM6SF2 rs58542926 polymorphism and non-alcoholic fatty liver disease. Expert Rev. Gastroenterol. Hepatol. 2022, 16, 97–107. [Google Scholar] [CrossRef]
- Huang, G.; Wallace, D.F.; Powell, E.E.; Rahman, T.; Clark, P.J.; Subramaniam, V.N. Gene Variants Implicated in Steatotic Liver Disease: Opportunities for Diagnostics and Therapeutics. Biomedicines 2023, 11, 2809. [Google Scholar] [CrossRef]
- Seko, Y.; Yamaguchi, K.; Shima, T.; Iwaki, M.; Takahashi, H.; Kawanaka, M.; Tanaka, S.; Mitsumoto, Y.; Yoneda, M.; Nakajima, A.; et al. Clinical Utility of Genetic Variants in PNPLA3 and TM6SF2 to Predict Liver-Related Events in Metabolic Dysfunction-Associated Steatotic Liver Disease. Liver Int. 2024, 45, e16124. [Google Scholar] [CrossRef]
- Martin, K.; Hatab, A.; Athwal, V.S.; Jokl, E.; Piper Hanley, K. Genetic Contribution to Non-alcoholic Fatty Liver Disease and Prognostic Implications. Curr. Diabetes Rep. 2021, 21, 8. [Google Scholar] [CrossRef]
- Di Sessa, A.; Umano, G.R.; Cirillo, G.; Passaro, A.P.; Verde, V.; Cozzolino, D.; Guarino, S.; Marzuillo, P.; del Giudice, E.M. Pediatric non-alcoholic fatty liver disease and kidney function: Effect of HSD17B13 variant. World J. Gastroenterol. 2020, 26, 5474–5483. [Google Scholar] [CrossRef]
- Su, W.; Wang, Y.; Jia, X.; Wu, W.; Li, L.; Tian, X.; Li, S.; Wang, C.; Xu, H.; Cao, J.; et al. Comparative proteomic study reveals 17β-HSD13 as a pathogenic protein in nonalcoholic fatty liver disease. Proc. Natl. Acad. Sci. USA 2014, 111, 11437–11442. [Google Scholar] [CrossRef]
- Jakubek, P.; Kalinowski, P.; Karkucinska-Wieckowska, A.; Kaikini, A.; Simões, I.C.M.; Potes, Y.; Kruk, B.; Grajkowska, W.; Pinton, P.; Milkiewicz, P.; et al. Oxidative stress in metabolic dysfunction-associated steatotic liver disease (MASLD): How does the animal model resemble human disease? FASEB J. 2024, 38, e23466. [Google Scholar] [CrossRef]
- Duni, A.; Liakopoulos, V.; Roumeliotis, S.; Peschos, D.; Dounousi, E. Oxidative Stress in the Pathogenesis and Evolution of Chronic Kidney Disease: Untangling Ariadne’s Thread. Int. J. Mol. Sci. 2019, 20, 3711. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, P.; Ye, J.; Xu, Q.; Wu, J.; Wang, Y. Updated mechanisms of MASLD pathogenesis. Lipids Health Dis. 2024, 23, 117. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Hao, L.; Li, S.; Deng, J.; Yu, F.; Zhang, J.; Nie, A.; Hu, X. The NRF-2/HO-1 Signaling Pathway: A Promising Therapeutic Target for Metabolic Dysfunction-Associated Steatotic Liver Disease. J. Inflamm. Res. 2024, 17, 8061–8083. [Google Scholar] [CrossRef] [PubMed]
- Chambel, S.S.; Santos-Gonçalves, A.; Duarte, T.L. The Dual Role of Nrf2 in Nonalcoholic Fatty Liver Disease: Regulation of Antioxidant Defenses and Hepatic Lipid Metabolism. BioMed Res. Int. 2015, 2015, 597134. [Google Scholar] [CrossRef]
- Biswas, C.; Shah, N.; Muthu, M.; La, P.; Fernando, A.P.; Sengupta, S.; Yang, G.; Dennery, P.A. Nuclear Heme Oxygenase-1 (HO-1) Modulates Subcellular Distribution and Activation of Nrf2, Impacting Metabolic and Anti-oxidant Defenses. J. Biol. Chem. 2014, 289, 26882–26894. [Google Scholar] [CrossRef]
- Yang, K.; Du, C.; Wang, X.; Li, F.; Xu, Y.; Wang, S.; Chen, S.; Chen, F.; Shen, M.; Chen, M.; et al. Indoxyl sulfate induces platelet hyperactivity and contributes to chronic kidney disease–associated thrombosis in mice. Blood 2017, 129, 2667–2679. [Google Scholar] [CrossRef]
- Carli, F.; Della Pepa, G.; Sabatini, S.; Vidal Puig, A.; Gastaldelli, A. Lipid metabolism in MASLD and MASH: From mechanism to the clinic. JHEP Rep. 2024, 6, 101185. [Google Scholar] [CrossRef]
- Deprince, A.; Haas, J.T.; Staels, B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Mol Metab. 2020, 42, 101092. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, T.; Liu, W.; Zhao, H.; Li, P. Research hotspots and future trends in lipid metabolism in chronic kidney disease: A bibliometric and visualization analysis from 2004 to 2023. Front. Pharmacol. 2024, 15, 1401939. [Google Scholar] [CrossRef]
- Chen, S.-C.; Hung, C.-C.; Kuo, M.-C.; Lee, J.-J.; Chiu, Y.-W.; Chang, J.-M.; Hwang, S.-J.; Chen, H.-C. Association of Dyslipidemia with Renal Outcomes in Chronic Kidney Disease. PLoS ONE 2013, 8, e55643. [Google Scholar] [CrossRef]
- Baragetti, A.; Norata, G.D.; Sarcina, C.; Rastelli, F.; Grigore, L.; Garlaschelli, K.; Uboldi, P.; Baragetti, I.; Pozzi, C.; Catapano, A.L. High density lipoprotein cholesterol levels are an independent predictor of the progression of chronic kidney disease. J. Intern. Med. 2013, 274, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Baragetti, A.; Ossoli, A.; Strazzella, A.; Simonelli, S.; Baragetti, I.; Grigore, L.; Pellegatta, F.; Catapano, A.L.; Norata, G.D.; Calabresi, L. Low Plasma Lecithin: Cholesterol Acyltransferase (LCAT) Concentration Predicts Chronic Kidney Disease. J. Clin. Med. 2020, 9, 2289. [Google Scholar] [CrossRef] [PubMed]
- Guerra, S.; Mocciaro, G.; Gastaldelli, A. Adipose tissue insulin resistance and lipidome alterations as the characterizing factors of non-alcoholic steatohepatitis. Eur. J. Clin. Investig. 2022, 52, e13695. [Google Scholar] [CrossRef] [PubMed]
- Dorotea, D.; Koya, D.; Ha, H. Recent Insights Into SREBP as a Direct Mediator of Kidney Fibrosis via Lipid-Independent Pathways. Front. Pharmacol. 2020, 11, 265. [Google Scholar] [CrossRef]
- Softic, S.; Stanhope, K.L.; Boucher, J.; Divanovic, S.; Lanaspa, M.A.; Johnson, R.J.; Kahn, C.R. Fructose and hepatic insulin resistance. Crit. Rev. Clin. Lab. Sci. 2020, 57, 308–322. [Google Scholar] [CrossRef]
- Jensen, T.; Abdelmalek, M.F.; Sullivan, S.; Nadeau, K.J.; Green, M.; Roncal, C.; Nakagawa, T.; Kuwabara, M.; Sato, Y.; Kang, D.-H.; et al. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J. Hepatol. 2018, 68, 1063–1075. [Google Scholar] [CrossRef]
- Caliceti, C.; Calabria, D.; Roda, A.; Cicero, A.F.G. Fructose Intake, Serum Uric Acid, and Cardiometabolic Disorders: A Critical Review. Nutrients 2017, 9, 395. [Google Scholar] [CrossRef]
- Sharaf El Din, U.A.; Salem, M.M.; Abdulazim, D.O. Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: A review. J. Adv. Res. 2017, 8, 537–548. [Google Scholar] [CrossRef]
- Schwimmer, J.B.; Ugalde-Nicalo, P.; Welsh, J.A.; Angeles, J.E.; Cordero, M.; Harlow, K.E.; Alazraki, A.; Durelle, J.; Knight-Scott, J.; Newton, K.P.; et al. Effect of a Low Free Sugar Diet vs Usual Diet on Nonalcoholic Fatty Liver Disease in Adolescent Boys: A Randomized Clinical Trial. JAMA 2019, 321, 256–265. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Zhang, J.-H.; Chen, L.-L.; Byrne, C.D.; Targher, G.; Luo, L.; Ni, Y.; Zheng, M.-H.; Sun, D.-Q. Bioactive metabolites: A clue to the link between MASLD and CKD? Clin. Mol. Hepatol. 2025, 31, 56–73. [Google Scholar] [CrossRef]
- Gutierrez, J.A.; Liu, W.; Perez, S.; Xing, G.; Sonnenberg, G.; Kou, K.; Blatnik, M.; Allen, R.; Weng, Y.; Vera, N.B.; et al. Pharmacologic inhibition of ketohexokinase prevents fructose-induced metabolic dysfunction. Mol. Metab. 2021, 48, 101196. [Google Scholar] [CrossRef] [PubMed]
- Elshaer, A.; Chascsa, D.M.H.; Lizaola-Mayo, B.C. Exploring Varied Treatment Strategies for Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Life 2024, 14, 844. [Google Scholar] [CrossRef] [PubMed]
- Mitrofanova, A.; Merscher, S.; Fornoni, A. Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease. Nat. Rev. Nephrol. 2023, 19, 629–645. [Google Scholar] [CrossRef] [PubMed]
- Hammoud, S.H.; AlZaim, I.; Al-Dhaheri, Y.; Eid, A.H.; El-Yazbi, A.F. Perirenal Adipose Tissue Inflammation: Novel Insights Linking Metabolic Dysfunction to Renal Diseases. Front. Endocrinol. 2021, 12, 707126. [Google Scholar] [CrossRef]
- Chen, X.; Mao, Y.; Hu, J.; Han, S.; Gong, L.; Luo, T.; Yang, S.; Qing, H.; Wang, Y.; Du, Z.; et al. Perirenal Fat Thickness Is Significantly Associated with the Risk for Development of Chronic Kidney Disease in Patients with Diabetes. Diabetes 2021, 70, 2322–2332. [Google Scholar] [CrossRef]
- Reid, M.V.; Fredickson, G.; Mashek, D.G. Mechanisms coupling lipid droplets to MASLD pathophysiology. Hepatology 2024. [Google Scholar] [CrossRef]
- Chen, H.; Tan, H.; Wan, J.; Zeng, Y.; Wang, J.; Wang, H.; Lu, X. PPAR-γ signaling in nonalcoholic fatty liver disease: Pathogenesis and therapeutic targets. Pharmacol. Ther. 2023, 245, 108391. [Google Scholar] [CrossRef]
- Tsuchida, T.; Friedman, S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 397–411. [Google Scholar] [CrossRef]
- Ma, Y.; Shi, M.; Wang, Y.; Liu, J. PPARγ and Its Agonists in Chronic Kidney Disease. Int. J. Nephrol. 2020, 2020, 2917474. [Google Scholar] [CrossRef]
- Zhou, M.; Lv, J.; Chen, X.; Shi, Y.; Chao, G.; Zhang, S. From gut to liver: Exploring the crosstalk between gut-liver axis and oxidative stress in metabolic dysfunction-associated steatotic liver disease. Ann. Hepatol. 2025, 30, 101777. [Google Scholar] [CrossRef]
- Raj, D.; Tomar, B.; Lahiri, A.; Mulay, S.R. The gut-liver-kidney axis: Novel regulator of fatty liver associated chronic kidney disease. Pharmacol Res. 2020, 152, 104617. [Google Scholar] [CrossRef] [PubMed]
- Benedé-Ubieto, R.; Cubero, F.J.; Nevzorova, Y.A. Breaking the barriers: The role of gut homeostasis in Metabolic-Associated Steatotic Liver Disease (MASLD). Gut Microbes 2024, 16, 2331460. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, A. Association of NAFLD/NASH, and MAFLD/MASLD with chronic kidney disease: An updated narrative review. Metab. Target Organ Damage 2024, 4, 16. [Google Scholar] [CrossRef]
- Cao, C.; Zhu, H.; Yao, Y.; Zeng, R. Gut Dysbiosis and Kidney Diseases. Front. Med. 2022, 9, 829349. [Google Scholar] [CrossRef]
- Zeng, Y.; Guo, M.; Fang, X.; Teng, F.; Tan, X.; Li, X.; Wang, M.; Long, Y.; Xu, Y. Gut Microbiota-Derived Trimethylamine N-Oxide and Kidney Function: A Systematic Review and Meta-Analysis. Adv. Nutr. Int. Rev. J. 2021, 12, 1286–1304. [Google Scholar] [CrossRef]
- Jia, L.; Dong, X.; Li, X.; Jia, R.; Zhang, H.-L. Benefits of resistant starch type 2 for patients with end-stage renal disease under maintenance hemodialysis: A systematic review and meta-analysis. Int. J. Med. Sci. 2021, 18, 811–820. [Google Scholar] [CrossRef]
- Marzocco, S.; Fazeli, G.; Di Micco, L.; Autore, G.; Adesso, S.; Dal Piaz, F.; Heidland, A.; Di Iorio, B. Supplementation of Short-Chain Fatty Acid, Sodium Propionate, in Patients on Maintenance Hemodialysis: Beneficial Effects on Inflammatory Parameters and Gut-Derived Uremic Toxins, A Pilot Study (PLAN Study). J. Clin. Med. 2018, 7, 315. [Google Scholar] [CrossRef]
- Mori, K.; Tanaka, M.; Sato, T.; Akiyama, Y.; Endo, K.; Ogawa, T.; Suzuki, T.; Aida, H.; Kawaharata, W.; Nakata, K.; et al. Metabolic dysfunction-associated steatotic liver disease (SLD) and alcohol-associated liver disease, but not SLD without metabolic dysfunction, are independently associated with new onset of chronic kidney disease during a 10-year follow-up period. Hepatol. Res. 2025, 55, 34–45. [Google Scholar] [CrossRef]
- Gurun, M.; Brennan, P.; Handjiev, S.; Khatib, A.; Leith, D.; Dillon, J.F.; Byrne, C.J. Increased risk of chronic kidney disease and mortality in a cohort of people diagnosed with metabolic dysfunction associated steatotic liver disease with hepatic fibrosis. PLoS ONE 2024, 19, e0299507. [Google Scholar] [CrossRef]
- Dalbeni, A.; Garbin, M.; Zoncapè, M.; Romeo, S.; Cattazzo, F.; Mantovani, A.; Cespiati, A.; Fracanzani, A.L.; Tsochatzis, E.; Sacerdoti, D.; et al. Glomerular Hyperfiltration: A Marker of Fibrosis Severity in Metabolic Associated Steatotic Liver Disease in an Adult Population. Int. J. Mol. Sci. 2023, 24, 15837. [Google Scholar] [CrossRef]
- Di Sessa, A.; Guarino, S.; Umano, G.R.; Miraglia del Giudice, E.; Marzuillo, P. MASLD vs. NAFLD: A better definition for children with obesity at higher risk of kidney damage. J. Hepatol. 2024, 80, e87–e89. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, G.; Infantino, G.; Celsa, C.; Di Maria, G.; Enea, M.; Vaccaro, M.; Cannella, R.; Ciccioli, C.; La Mantia, C.; Mantovani, A.; et al. Clinical outcomes of MAFLD versus NAFLD: A meta-analysis of observational studies. Liver Int. 2024, 44, 2939–2949. [Google Scholar] [CrossRef] [PubMed]
- Bilson, J.; Hydes, T.J.; McDonnell, D.; Buchanan, R.M.; Scorletti, E.; Mantovani, A.; Targher, G.; Byrne, C.D. Impact of Metabolic Syndrome Traits on Kidney Disease Risk in Individuals with MASLD: A UK Biobank Study. Liver Int. 2024, 45, e16159. [Google Scholar] [CrossRef] [PubMed]
- Vivante, A.; Golan, E.; Tzur, D.; Leiba, A.; Tirosh, A.; Skorecki, K.; Calderon-Margalit, R. Body Mass Index in 1.2 Million Adolescents and Risk for End-Stage Renal Disease. Arch. Intern. Med. 2012, 172, 1644–1650. [Google Scholar] [CrossRef]
- Valerio, G.; Di Bonito, P.; Calcaterra, V.; Cherubini, V.; Corica, D.; De Sanctis, L.; Di Sessa, A.; Faienza, M.F.; Fornari, E.; Iughetti, L.; et al. Cardiometabolic risk in children and adolescents with obesity: A position paper of the Italian Society for Pediatric Endocrinology and Diabetology. Ital. J. Pediatr. 2024, 50, 205. [Google Scholar] [CrossRef]
- Stroes, A.-S.R.; Vos, M.; Benninga, M.A.; Koot, B.G.P. Pediatric MASLD: Current understanding and practical approach. Eur. J. Pediatr. 2024, 184, 29. [Google Scholar] [CrossRef]
- Forcina, G.; Luciano, M.; Frattolillo, V.; Mori, S.; Monaco, N.; Guarino, S.; Marzuillo, P.; Miraglia del Giudice, E.; Di Sessa, A. Kidney Damage in Pediatric Obesity: Insights from an Emerging Perspective. J. Clin. Med. 2024, 13, 7025. [Google Scholar] [CrossRef]
- Nehus, E.; Mitsnefes, M. Kidney consequences of obesity. Pediatr. Nephrol. 2024, 40, 1879–1893. [Google Scholar] [CrossRef]
- Wang, C.-W.; Huang, P.-C.; Dai, C.-Y.; Huang, J.-F.; Yu, M.-L. Comparative evaluation of pediatric fatty liver disease criteria: MASLD, ESPGHAN, NASPGHAN, and NAFLD—Identifying the optimal pediatric label. J. Hepatol. 2024, 80, e157–e159. [Google Scholar] [CrossRef]
- Petta, S.; Targher, G.; Romeo, S.; Pajvani, U.B.; Zheng, M.H.; Aghemo, A.; Valenti, L.V.C. The first MASH drug therapy on the horizon: Current perspectives of resmetirom. Liver Int. 2024, 44, 1526–1536. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Razavi, H.; Sherman, M.; Allen, A.M.; Anstee, Q.M.; Cusi, K.; Friedman, S.L.; Lawitz, E.; Lazarus, J.V.; Schuppan, D.; et al. Addressing the High and Rising Global Burden of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Metabolic Dysfunction-Associated Steatohepatitis (MASH): From the Growing Prevalence to Payors’ Perspective. Aliment. Pharmacol. Ther. 2025. [Google Scholar] [CrossRef] [PubMed]
- Mitsinikos, T.; Aw, M.M.; Bandsma, R.; Godoy, M.; Ibrahim, S.H.; Mann, J.P.; Memon, I.; Mohan, N.; Mouane, N.; Porta, G.; et al. FISPGHAN statement on the global public health impact of metabolic dysfunction-associated steatotic liver disease. J. Pediatr. Gastroenterol. Nutr. 2025, 80, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Panganiban, J.; Kehar, M.; Ibrahim, S.H.; Hartmann, P.; Sood, S.; Hassan, S.; Ramirez, C.M.; Kohli, R.; Censani, M.; Mauney, E.; et al. Metabolic dysfunction-associated steatotic liver disease (MASLD) in children with obesity: An Obesity Medicine Association (OMA) and expert joint perspective 2025. Obes Pillars. 2025, 14, 100164. [Google Scholar] [CrossRef] [PubMed]
- Omaña-Guzmán, I.; Rosas-Diaz, M.; Martínez-López, Y.E.; Perez-Navarro, L.M.; Diaz-Badillo, A.; Alanis, A.; Bustamante, A.; Castillo-Ruiz, O.; del Toro-Cisneros, N.; Esquivel-Hernandez, D.A.; et al. Strategic interventions in clinical randomized trials for metabolic dysfunction-associated steatotic liver disease (MASLD) and obesity in the pediatric population: A systematic review with meta-analysis and bibliometric analysis. BMC Med. 2024, 22, 548. [Google Scholar] [CrossRef]
- Smith, M.R.; Yu, E.L.; Malki, G.J.; Newton, K.P.; Goyal, N.P.; Heskett, K.M.; Schwimmer, J.B. Systematic review of exercise for the treatment of pediatric metabolic dysfunction-associated steatotic liver disease. PLoS ONE 2024, 19, e0314542. [Google Scholar] [CrossRef]
- Brichta, C.; Fishbein, M.; Ryder, J.R. Outcomes of adolescent bariatric surgery: Liver disease. Surg Obes Relat Dis. 2025, 21, 9–15. [Google Scholar] [CrossRef]
- Stefan, N.; Yki-Järvinen, H.; A Neuschwander-Tetri, B. Metabolic dysfunction-associated steatotic liver disease: Heterogeneous pathomechanisms and effectiveness of metabolism-based treatment. Lancet Diabetes Endocrinol. 2025, 13, 134–148. [Google Scholar] [CrossRef]
- Israelsen, M.; Francque, S.; Tsochatzis, E.A.; Krag, A. Steatotic liver disease. Lancet 2024, 404, 1761–1778. [Google Scholar] [CrossRef]
- Harrison, S.A.; Bedossa, P.; Guy, C.D.; Schattenberg, J.M.; Loomba, R.; Taub, R.; Labriola, D.; Moussa, S.E.; Neff, G.W.; Rinella, M.E.; et al. A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis. N. Engl. J. Med. 2024, 390, 497–509. [Google Scholar] [CrossRef]
- Stott, D.J.; Rodondi, N.; Kearney, P.M.; Ford, I.; Westendorp, R.G.; Mooijaart, S.P.; Sattar, N.; Aubert, C.E.; Aujesky, D.; Bauer, D.C.; et al. Thyroid Hormone Therapy for Older Adults with Subclinical Hypothyroidism. N. Engl. J. Med. 2017, 376, 1024. [Google Scholar] [CrossRef]
- Ratziu, V.; Scanlan, T.S.; Bruinstroop, E. Thyroid hormone receptor-β analogues for the treatment of metabolic dysfunction-associated steatohepatitis (MASH). J. Hepatol. 2025, 82, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Pu, S.; Zhao, B.; Jiang, Y.; Cui, X. Hypothyroidism/subclinical hypothyroidism and metabolic dysfunction-associated steatotic liver disease: Advances in mechanism and treatment. Lipids Health Dis. 2025, 24, 75. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.K.; Barrientos-Pérez, M.; Bomberg, E.M.; Dcruz, J.; Gies, I.; Harder-Lauridsen, N.M.; Jalaludin, M.Y.; Sahu, K.; Weimers, P.; Zueger, T.; et al. Liraglutide for Children 6 to <12 Years of Age with Obesity—A Randomized Trial. N. Engl. J. Med. 2024, 392, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Abou Jaoudeh, R.A.R.; Hartmann, P.; Olson, O.; Gupta, O.; Kumar, S.; Ibrahim, S.H.; Fawaz, R.; Aqul, A.; Hassan, S. Pharmacological management of pediatric metabolic dysfunction-associated steatotic liver disease. J. Pediatr. Gastroenterol. Nutr. 2025, 80, 14–24. [Google Scholar] [CrossRef]
- Schneider, K.M.; Cao, F.; Huang, H.Y.R.; Chen, L.; Chen, Y.; Gong, R.; Raptis, A.; Creasy, K.T.; Clusmann, J.; van Haag, F.; et al. The Lipidomic Profile Discriminates Between MASLD and MetALD. Aliment. Pharmacol. Ther. 2025, 61, 1357–1371. [Google Scholar] [CrossRef]
- Bourganou, M.V.; Chondrogianni, M.E.; Kyrou, I.; Flessa, C.-M.; Chatzigeorgiou, A.; Oikonomou, E.; Lambadiari, V.; Randeva, H.S.; Kassi, E. Unraveling Metabolic Dysfunction-Associated Steatotic Liver Disease Through the Use of Omics Technologies. Int. J. Mol. Sci. 2025, 26, 1589. [Google Scholar] [CrossRef]
- Hagström, H.; Shang, Y.; Hegmar, H.; Nasr, P. Natural history and progression of metabolic dysfunction-associated steatotic liver disease. Lancet Gastroenterol. Hepatol. 2024, 9, 944–956. [Google Scholar] [CrossRef]
Reference | Study Design | Population and Methods | Main Findings |
---|---|---|---|
[43] | Multicenter cohort study | 1164 children (mean age 13 ± 3 years) with biopsy-confirmed NAFLD/MASLD were prospectively enrolled. Genotyping for PNPLA3 gene polymorphism. Hyperfiltration was defined as cGFR > 135 mL/min/1.73 m2, while CKD stage 2 or higher as cGFR < 90 mL/min/1.73 m2. KD progression was defined as transition from normal to hyperfiltration or to CKD stage ≥ 2 or change in CKD by ≥1 stage. | Median cGFR of the study population was 121 mL/min/1.73 m2. A cGFR < 90 mL/min/1.73 m2 was found in 12% of patients, mostly with stage 2 CKD, while 27% showed hyperfiltration. KD was found in 39% of patients. Baseline kidney function did not correlate with the progression of liver disease over a 2-year period (n = 145). Hyperfiltration was independently associated with advanced liver fibrosis (OR 1.45). KD worsened in 19% of cases over the 2-year period, independent of other clinical risk factors, with a higher likelihood of progression observed in males. No association of progression of KD impairment with change in liver disease severity was observed. No significant differences in cardiometabolic comorbidities or PNPLA3 gene polymorphism were found. |
[42] | Retrospective cohort study | 1037 children and adolescents (mean age 10.57 ± 2.96 years) with BMI > 95th percentile and normal kidney function (eGFR > 90 mL/min/1.73 m2) were enrolled. Kidney function was assessed using the Schwarz formula, normalized to body surface area. Genotyping for the PNPLA3 I148M allele. Participants were categorized into three groups based on metabolic status: Group 1: obesity without hepatic steatosis, Group 2: obesity with hepatic steatosis (one MASLD criterion), and Group 3: obesity, hepatic steatosis, and metabolic dysregulation (≥1 MASLD criterion). | Group 3 exhibited higher ALT and HOMA-IR levels (both p < 0.0001) compared to other groups, with significant increases in ALT and decreases in eGFR from Group 1 to Group 3. Group 3 also had a higher frequency of the I148M allele compared to other groups (p < 0.0001). Carriers in group 3 showed higher diastolic BP-SDS, ALT, AST, total cholesterol, LDL, and glycemia, and lower eGFR (all p < 0.05). An inverse association between eGFR and both MASLD and PNPLA3 genotypes was found (p = 0.011 and p = 0.02). This association was confirmed also in patients carrying the I148M allele (p = 0.006). |
[131] | Cohort study | 396 children and adolescents with obesity (BMI > 95th percentile) were examined. Hepatic steatosis was detected by ultrasound. Patients were stratified according to NAFLD/MASLD presence. KD was defined by eGFR < 90 mL/min/1.73 m2 and/or albuminuria (ACR > 30 mg/g). eGFR was calculated using the Schwartz equation, normalized to body surface area. | Children with MASLD had higher systolic and diastolic BP-SDS compared to those with NAFLD (both p < 0.0001). HOMA-IR and uric acid levels were significantly higher in MASLD than NAFLD group (p < 0.0001 and p = 0.006, respectively). The TG/HDL-c ratio was also higher in MASLD than NAFLD group (2.51 ± 1.51 vs. 1.89 ± 1.08, p < 0.0001). Children with MASLD had reduced eGFR and higher ACR values than those with NAFLD (p = 0.005 and p = 0.001, respectively). KD was more prevalent in MASLD than NAFLD (44.4% vs. 29.2%, p = 0.002). The adjusted OR for KD was 3.03 for MASLD (95% CI 1.59–5.77, p = 0.001) and 1.51 for NAFLD (95% CI 1.01–2.30, p = 0.05). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piatto, D.; De Biasio, D.; Cesaro, F.G.; Forcina, G.; Frattolillo, V.; Colucci, A.; Lamberti, F.; Marzuillo, P.; Miraglia del Giudice, E.; Di Sessa, A. Liver-Kidney Crosstalk in Major Pediatric Diseases: Unraveling the Complexities and Clinical Challenges. J. Clin. Med. 2025, 14, 3911. https://doi.org/10.3390/jcm14113911
Piatto D, De Biasio D, Cesaro FG, Forcina G, Frattolillo V, Colucci A, Lamberti F, Marzuillo P, Miraglia del Giudice E, Di Sessa A. Liver-Kidney Crosstalk in Major Pediatric Diseases: Unraveling the Complexities and Clinical Challenges. Journal of Clinical Medicine. 2025; 14(11):3911. https://doi.org/10.3390/jcm14113911
Chicago/Turabian StylePiatto, Dario, Delia De Biasio, Francesco Giustino Cesaro, Gianmario Forcina, Vittoria Frattolillo, Antonio Colucci, Fabio Lamberti, Pierluigi Marzuillo, Emanuele Miraglia del Giudice, and Anna Di Sessa. 2025. "Liver-Kidney Crosstalk in Major Pediatric Diseases: Unraveling the Complexities and Clinical Challenges" Journal of Clinical Medicine 14, no. 11: 3911. https://doi.org/10.3390/jcm14113911
APA StylePiatto, D., De Biasio, D., Cesaro, F. G., Forcina, G., Frattolillo, V., Colucci, A., Lamberti, F., Marzuillo, P., Miraglia del Giudice, E., & Di Sessa, A. (2025). Liver-Kidney Crosstalk in Major Pediatric Diseases: Unraveling the Complexities and Clinical Challenges. Journal of Clinical Medicine, 14(11), 3911. https://doi.org/10.3390/jcm14113911