Monocyte-to-Neutrophil Ratio as an Immunological Marker of Left Ventricular Hypertrophy in Children with Primary Hypertension
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, P.; Zhang, Y.; Yu, J.; Zha, M.; Zhu, Y.; Rahimi, K.; Rudan, I. Global Prevalence of Hypertension in Children: A Systematic Review and Meta-analysis. JAMA Pediatr. 2019, 173, 1154–1163. [Google Scholar] [CrossRef] [PubMed]
- Symonides, B.; Jędrusik, P.; Artyszuk, L.; Gryboś, A.; Dziliński, P.; Gaciong, Z. Different diagnostic criteria significantly affect the rates of hypertension in 18-year-old high school students. Arch. Med. Sci. 2010, 6, 689–694. [Google Scholar] [CrossRef]
- Delalić, Đ.; Jug, J.; Prkačin, I. Arterial Hypertension Following COVID-19: A Retrospective Study of Patients in a Central European Tertiary Care Center. Acta Clin. Croat. 2022, 61, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Gupta-Malhotra, M.; Banker, A.; Shete, S.; Hashmi, S.S.; Tyson, J.E.; Barratt, M.S.; Hecht, J.T.; Milewicz, D.M.; Boerwinkle, E. Essential hypertension vs. secondary hypertension among children. Am. J. Hypertens. 2015, 28, 73–80. [Google Scholar] [PubMed]
- Litwin, M.; Feber, J.; Niemirska, A.; Michałkiewicz, J. Primary hypertension is a disease of premature vascular aging associated with neuro-immuno-metabolic abnormalities. Pediatr. Nephrol. 2016, 31, 185–194. [Google Scholar] [CrossRef]
- Trott, D.W.; Harrison, D.G. The immune system in hypertension. Adv. Physiol. Educ. 2014, 38, 20–24. [Google Scholar] [CrossRef]
- Paszynska, E.; Dmitrzak-Weglarz, M.; Ostalska-Nowicka, D.; Nowicki, M.; Gawriolek, M.; Zachwieja, J. Association of Oral Status and Early Primary Hypertension Biomarkers among Children and Adolescents. Int. J. Environ. Res. Public Health 2020, 17, 7981. [Google Scholar] [CrossRef]
- Brands, M.W.; Banes-Berceli, A.K.; Inscho, E.W.; Al-Azawi, H.; Allen, A.J.; Labazi, H. Interleukin 6 knockout prevents angiotensin II hypertension: Role of renal vasoconstriction and janus kinase 2/signal transducer and activator of transcription 3 activation. Hypertension 2010, 56, 879–884. [Google Scholar] [CrossRef]
- Liu, H.H.; Cao, Y.X.; Sun, D.; Jin, J.L.; Zhang, H.W.; Guo, Y.L.; Zhu, C.G.; Wu, N.Q.; Gao, Y.; Dong, Q.T.; et al. High-sensitivity C-reactive protein and hypertension: Combined effects on coronary severity and cardiovascular outcomes. Hypertens. Res. 2019, 42, 1783–1793. [Google Scholar] [CrossRef]
- Kurtul, A.; Ornek, E. Platelet to Lymphocyte Ratio in Cardiovascular Diseases: A Systematic Review. Angiology 2019, 70, 802–818. [Google Scholar] [CrossRef]
- Rabkin, S.W. The role of interleukin 18 in the pathogenesis of hypertension-induced vascular disease. Nat. Clin. Pract. Cardiovasc. Med. 2009, 6, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Yamagami, H.; Kitagawa, K.; Hoshi, T.; Furukado, S.; Hougaku, H.; Nagai, Y.; Hori, M. Associations of serum IL-18 levels with carotid intima-media thickness. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1458–1462. [Google Scholar] [CrossRef] [PubMed]
- Pathak, A.; Agrawal, A. Evolution of C-Reactive Protein. Front. Immunol. 2019, 10, 943. [Google Scholar] [CrossRef] [PubMed]
- Jayedi, A.; Rahimi, K.; Bautista, L.E.; Nazarzadeh, M.; Zargar, M.S.; Shab-Bidar, S. Inflammation markers and risk of developing hypertension: A meta-analysis of cohort studies. Heart 2019, 105, 686–692. [Google Scholar] [CrossRef]
- Trojanek, J.B.; Niemirska, A.; Grzywa, R.; Wierzbicka, A.; Obrycki, Ł.; Kułaga, Z.; Szalecki, M.; Michałkiewicz, J.; Litwin, M. Leukocyte matrix metalloproteinase and tissue inhibitor gene expression patterns in children with primary hypertension. J. Hum. Hypertens. 2020, 34, 355–363. [Google Scholar] [CrossRef]
- Wasilewska, A.; Tenderenda, E.; Taranta-Janusz, K.; Zoch-Zwierz, W. High-sensitivity C-reactive protein and mean platelet volume in paediatric hypertension. Pediatr. Nephrol. 2010, 25, 1519–1527. [Google Scholar] [CrossRef]
- Hou, M.; Cao, L.; Ding, Y.; Chen, Y.; Wang, B.; Shen, J.; Zhou, W.; Huang, J.; Xu, Q.; Lv, H.; et al. Neutrophil to Lymphocyte Ratio Is Increased and Associated with Left Ventricular Diastolic Function in Newly Diagnosed Essential Hypertension Children. Front. Pediatr. 2021, 9, 576005. [Google Scholar] [CrossRef]
- Dziedzic-Jankowska, K.; Bujanowicz, A.; Szyszka, M.; Stelmaszczyk-Emmel, A.; Skrzypczyk, P. Subclinical inflammation in paediatric patients with primary hypertension and white coat hypertension. Pediatr. Med. Rodz. 2024, 20, 215–224. [Google Scholar] [CrossRef]
- Gerdes, N.; Sukhova, G.K.; Libby, P.; Reynolds, R.S.; Young, J.L.; Schönbeck, U. Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: Implications for atherogenesis. J. Exp. Med. 2002, 195, 245–257. [Google Scholar] [CrossRef]
- Bhat, T.; Teli, S.; Rijal, J.; Bhat, H.; Raza, M.; Khoueiry, G.; Meghani, M.; Akhtar, M.; Costantino, T. Neutrophil to lymphocyte ratio and cardiovascular diseases: A review. Expert. Rev. Cardiovasc. Ther. 2013, 11, 55–59. [Google Scholar] [CrossRef]
- Skrzypczyk, P.; Zacharzewska, A.; Szyszka, M.; Ofiara, A.; Pańczyk-Tomaszewska, M. Arterial stiffness in children with primary hypertension is related to subclinical inflammation. Cent. Eur. J. Immunol. 2021, 46, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Musiał, K.; Bargenda-Lange, A.; Mazurkiewicz, P.; Gaik, M.; Gralec, S.; Zwolińska, D. Lymphocyte to monocyte ratio and blood pressure variability in childhood hypertension-a pilot study. Pediatr. Res. 2023, 93, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Litwin, M.; Niemirska, A.; Sladowska, J.; Antoniewicz, J.; Daszkowska, J.; Wierzbicka, A.; Wawer, Z.T.; Grenda, R. Left ventricular hypertrophy and arterial wall thickening in children with essential hypertension. Pediatr. Nephrol. 2006, 21, 811–819. [Google Scholar] [CrossRef]
- Stabouli, S.; Kotsis, V.; Rizos, Z.; Toumanidis, S.; Karagianni, C.; Constantopoulos, A.; Zakopoulos, N. Left ventricular mass in normotensive, prehypertensive and hypertensive children and adolescents. Pediatr. Nephrol. 2009, 24, 1545–1551. [Google Scholar] [CrossRef]
- Litwin, M.; Sladowska, J.; Antoniewicz, J.; Niemirska, A.; Wierzbicka, A.; Daszkowska, J.; Wawer, Z.T.; Janas, R.; Grenda, R. Metabolic abnormalities, insulin resistance, and metabolic syndrome in children with primary hypertension. Am. J. Hypertens. 2007, 20, 875–882. [Google Scholar] [CrossRef]
- Chung, J.; Robinson, C.H.; Yu, A.; Bamhraz, A.A.; Ewusie, J.E.; Sanger, S.; Mitsnefes, M.; Parekh, R.S.; Raina, R.; Thabane, L.; et al. Risk of Target Organ Damage in Children With Primary Ambulatory Hypertension: A Systematic Review and Meta-Analysis. Hypertension 2023, 80, 1183–1196. [Google Scholar] [CrossRef] [PubMed]
- Sinha, M.D.; Azukaitis, K.; Sladowska-Kozłowska, J.; Bårdsen, T.; Merkevicius, K.; Karlsen Sletten, I.S.; Obrycki, Ł.; Pac, M.; Fernández-Aranda, F.; Bjelakovic, B.; et al. Prevalence of left ventricular hypertrophy in children and young people with primary hypertension: Meta-analysis and meta-regression. Front. Cardiovasc. Med. 2022, 9, 993513. [Google Scholar] [CrossRef]
- Rus, R.R.; Pac, M.; Obrycki, Ł.; Sağsak, E.; Azukaitis, K.; Sinha, M.D.; Jankauskiene, A.; Litwin, M. Systolic and diastolic left ventricular function in children with primary hypertension: A systematic review and meta-analysis. J. Hypertens. 2023, 41, 51–62. [Google Scholar] [CrossRef]
- Lurbe, E.; Agabiti-Rosei, E.; Cruickshank, J.K.; Dominiczak, A.; Erdine, S.; Hirth, A.; Invitti, C.; Litwin, M.; Mancia, G.; Pall, D.; et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J. Hypertens. 2016, 34, 1887–1920. [Google Scholar] [CrossRef]
- Kulaga, Z.; Litwin, M.; Tkaczyk, M.; Rózdzyńska, A.; Barwicka, K.; Grajda, A.; Swiader, A.; Gurzkowska, B.; Napieralska, E.; Pan, H. The height-, weight-, and BMI-for-age of Polish school-aged children and adolescents relative to international and local growth references. BMC Public Health 2010, 10, 109. [Google Scholar] [CrossRef]
- de Onis, M. 4.1 The WHO Child Growth Standards. World Rev. Nutr. Diet. 2015, 113, 278–294. [Google Scholar] [PubMed]
- Kułaga, Z.; Litwin, M.; Grajda, A.; Kułaga, K.; Gurzkowska, B.; Góźdź, M.; Pan, H. Oscillometric blood pressure percentiles for Polish normal-weight school-aged children and adolescents. J. Hypertens. 2012, 30, 1942–1954. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.T.; Urbina, E.M.; Brady, T.M.; Baker-Smith, C.; Daniels, S.R.; Hayman, L.L.; Mitsnefes, M.; Tran, A.; Zachariah, J.P. Ambulatory Blood Pressure Monitoring in Children and Adolescents: 2022 Update: A Scientific Statement from the American Heart Association. Hypertension 2022, 79, e114–e124. [Google Scholar] [CrossRef]
- Skrzypczyk, P.; Okarska-Napierała, M.; Pietrzak, R.; Pawlik, K.; Waścińska, K.; Werner, B.; Pańczyk-Tomaszewska, M. NT-proBNP as a Potential Marker of Cardiovascular Damage in Children with Chronic Kidney Disease. J. Clin. Med. 2021, 10, 4344. [Google Scholar] [CrossRef]
- Szyszka, M.; Skrzypczyk, P.; Ofiara, A.; Wabik, A.M.; Pietrzak, R.; Werner, B.; Pańczyk-Tomaszewska, M. Circadian Blood Pressure Profile in Pediatric Patients with Primary Hypertension. J. Clin. Med. 2022, 11, 5325. [Google Scholar] [CrossRef]
- Overbeek, L.I.; Kapusta, L.; Peer, P.G.; de Korte, C.L.; Thijssen, J.M.; Daniels, O. New reference values for echocardiographic dimensions of healthy Dutch children. Eur. J. Echocardiogr. 2006, 7, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Marwick, T.H.; Gillebert, T.C.; Aurigemma, G.; Chirinos, J.; Derumeaux, G.; Galderisi, M.; Gottdiener, J.; Haluska, B.; Ofili, E.; Segers, P.; et al. Recommendations on the Use of Echocardiography in Adult Hypertension: A Report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE). J. Am. Soc. Echocardiogr. 2015, 28, 727–754. [Google Scholar] [CrossRef]
- de Simone, G.; Daniels, S.R.; Devereux, R.B.; Meyer, R.A.; Roman, M.J.; de Divitiis, O.; Alderman, M.H. Left ventricular mass and body size in normotensive children and adults: Assessment of allometric relations and impact of overweight. J. Am. Coll. Cardiol. 1992, 20, 1251–1260. [Google Scholar] [CrossRef]
- Chinali, M.; Emma, F.; Esposito, C.; Rinelli, G.; Franceschini, A.; Doyon, A.; Raimondi, F.; Pongiglione, G.; Schaefer, F.; Matteucci, M.C. Left Ventricular Mass Indexing in Infants, Children, and Adolescents: A Simplified Approach for the Identification of Left Ventricular Hypertrophy in Clinical Practice. J. Pediatr. 2016, 170, 193–198. [Google Scholar] [CrossRef]
- Foster, B.J.; Khoury, P.R.; Kimball, T.R.; Mackie, A.S.; Mitsnefes, M. New Reference Centiles for Left Ventricular Mass Relative to Lean Body Mass in Children. J. Am. Soc. Echocardiogr. 2016, 29, 441–447.e442. [Google Scholar] [CrossRef]
- Khoury, P.R.; Mitsnefes, M.; Daniels, S.R.; Kimball, T.R. Age-specific reference intervals for indexed left ventricular mass in children. J. Am. Soc. Echocardiogr. 2009, 22, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Płudowski, P.; Kos-Kudła, B.; Walczak, M.; Fal, A.; Zozulińska-Ziółkiewicz, D.; Sieroszewski, P.; Peregud-Pogorzelski, J.; Lauterbach, R.; Targowski, T.; Lewiński, A.; et al. Guidelines for Preventing and Treating Vitamin D Deficiency: A 2023 Update in Poland. Nutrients 2023, 15, 695. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.J.; Muñoz, A.; Schneider, M.F.; Mak, R.H.; Kaskel, F.; Warady, B.A.; Furth, S.L. New equations to estimate GFR in children with CKD. J. Am. Soc. Nephrol. 2009, 20, 629–637. [Google Scholar] [CrossRef]
- Feig, D.I.; Kang, D.H.; Johnson, R.J. Uric acid and cardiovascular risk. N. Engl. J. Med. 2008, 359, 1811–1821. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.; McCallin, T.; Martinez, J.; Chacko, S.; Yusuf, S. Hyperlipidemia. Pediatr. Rev. 2020, 41, 393–402. [Google Scholar] [CrossRef]
- Mehta, S.K.; Rame, J.E.; Khera, A.; Murphy, S.A.; Canham, R.M.; Peshock, R.M.; de Lemos, J.A.; Drazner, M.H. Left ventricular hypertrophy, subclinical atherosclerosis, and inflammation. Hypertension 2007, 49, 1385–1391. [Google Scholar] [CrossRef]
- Cantero-Navarro, E.; Fernández-Fernández, B.; Ramos, A.M.; Rayego-Mateos, S.; Rodrigues-Diez, R.R.; Sánchez-Niño, M.D.; Sanz, A.B.; Ruiz-Ortega, M.; Ortiz, A. Renin-angiotensin system and inflammation update. Mol. Cell Endocrinol. 2021, 529, 111254. [Google Scholar] [CrossRef]
- Song, W.; Zhang, C.; Tang, J.; Li, Y.; Jiao, T.; Lin, X.; Wang, Y.; Fang, J.; Sha, J.; Ding, T.; et al. Hypersensitive C-reactive protein as a potential indicator for predicting left ventricular hypertrophy in elderly community-dwelling patients with hypertension. BMC Cardiovasc. Disord. 2023, 23, 480. [Google Scholar] [CrossRef]
- Yu, X.; Xue, Y.; Bian, B.; Wu, X.; Wang, Z.; Huang, J.; Huang, L.; Sun, Y. NLR-A Simple Indicator of Inflammation for the Diagnosis of Left Ventricular Hypertrophy in Patients with Hypertension. Int. Heart J. 2020, 61, 373–379. [Google Scholar] [CrossRef]
- Salles, G.F.; Fiszman, R.; Cardoso, C.R.; Muxfeldt, E.S. Relation of left ventricular hypertrophy with systemic inflammation and endothelial damage in resistant hypertension. Hypertension 2007, 50, 723–728. [Google Scholar] [CrossRef]
- Monfared, A.; Salari, A.; Kazemnezhad, E.; Lebadi, M.; Khosravi, M.; Mehrjardi, N.K.; Rahimifar, S.; Amini, N. Association of left ventricular hypertrophy with high-sensitive C-reactive protein in hemodialysis patients. Int. Urol. Nephrol. 2013, 45, 1679–1686. [Google Scholar] [CrossRef] [PubMed]
- Assadi, F. C-reactive protein and incident left ventricular hypertrophy in essential hypertension. Pediatr. Cardiol. 2007, 28, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Assadi, F. Relation of left ventricular hypertrophy to microalbuminuria and C-reactive protein in children and adolescents with essential hypertension. Pediatr. Cardiol. 2008, 29, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Litwin, M.; Niemirska, A.; Sladowska-Kozlowska, J.; Wierzbicka, A.; Janas, R.; Wawer, Z.T.; Wisniewski, A.; Feber, J. Regression of target organ damage in children and adolescents with primary hypertension. Pediatr. Nephrol. 2010, 25, 2489–2499. [Google Scholar] [CrossRef]
- ÖZzbïçer, S.; Uluçam, Z.M. Association Between Interleukin-18 Level and Left Ventricular Mass Index in Hypertensive Patients. Korean Circ. J. 2017, 47, 238–244. [Google Scholar] [CrossRef]
- Badawy, A.; Nigm, D.A.; Ezzat, G.M.; Gamal, Y. Interleukin 18 as a new inflammatory mediator in left ventricular hypertrophy in children with end-stage renal disease. Saudi J. Kidney Dis. Transpl. 2020, 31, 1206–1216. [Google Scholar] [CrossRef]
- Bulum, T.; Prkacin, I.; Blaslov, K.; Zibar, K.; Duvnjak, L. Association between red blood cell count and renal function exist in type 1 diabetic patients in the absence of nephropathy. Coll. Antropol. 2013, 37, 777–782. [Google Scholar]
- Hu, X.; Arthur Vithran, D.T.; Yang, Z.; Zou, T.; Tang, R.; Li, H. Investigating the role of age, admission systolic blood pressure, and neutrophil-to-lymphocyte ratio in predicting left ventricular hypertrophy among patients with primary hypertension. J. Int. Med. Res. 2025, 53, 3000605241310159. [Google Scholar] [CrossRef]
- Chu, S.G.; Becker, R.C.; Berger, P.B.; Bhatt, D.L.; Eikelboom, J.W.; Konkle, B.; Mohler, E.R.; Reilly, M.P.; Berger, J.S. Mean platelet volume as a predictor of cardiovascular risk: A systematic review and meta-analysis. J. Thromb. Haemost. 2010, 8, 148–156. [Google Scholar] [CrossRef]
- Sansanayudh, N.; Anothaisintawee, T.; Muntham, D.; McEvoy, M.; Attia, J.; Thakkinstian, A. Mean platelet volume and coronary artery disease: A systematic review and meta-analysis. Int. J. Cardiol. 2014, 175, 433–440. [Google Scholar] [CrossRef]
- Varol, E.; Akcay, S.; Icli, A.; Yucel, H.; Ozkan, E.; Erdogan, D.; Ozaydin, M. Mean platelet volume in patients with prehypertension and hypertension. Clin. Hemorheol. Microcirc. 2010, 45, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Bellos, I.; Fitrou, G.; Pergialiotis, V.; Papantoniou, N.; Daskalakis, G. Mean platelet volume values in preeclampsia: A systematic review and meta-analysis. Pregnancy Hypertens. 2018, 13, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Yavuzkir, M.F.; Kurtoğlu, E.; Yilmaz, M.; Korkmaz, H.; Çakmak, T.; Dogdu, O.; Dagli, N.; Uysal, A.; Özgüler, M.; Gürel, A.; et al. Relationship between mean platelet volume elevation and left ventricular mass index in hypertensive patients. J. Int. Med. Res. 2014, 42, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Pusuroglu, H.; Cakmak, H.A.; Erturk, M.; Akgul, O.; Akkaya, E.; Tosu, A.R.; Celik, O.; Gul, M.; Yildirim, A. Assessment of the relation between mean platelet volume, non-dipping blood pressure pattern, and left ventricular mass index in sustained hypertension. Med. Sci. Monit. 2014, 20, 2020–2026. [Google Scholar]
- Gheissari, A.; Dehghan, B.; Ghaed Sharafi, B.; Abedini, A.; Merrikhi, A.; Madihi, Y.; Mehrkash, M. Importance of Mean Platelet Volume in Predicting Cardiac Mechanics Parameters and Carotid-Intima Media Thickness in Children with End-Stage Renal Disease and Comparison with Healthy Children. Ther. Apher. Dial. 2019, 23, 451–459. [Google Scholar] [CrossRef]
- Özkan, E.A.; Khosroshahi, H.E.; Serin, H.; Özdemir, Z.T.; Kılıç, M.; Ekim, M.; Geçit, U.A.; Domur, E. The evaluation of carotid intima-media thickness and mean platelet volume values and correlation with cardiac functions in obese children. Int. J. Clin. Exp. Med. 2015, 8, 22557–22563. [Google Scholar]
- Yang, S.; Pan, K.; Hua, Q.; Su, H.; Hou, J.; Liu, K.; Zhao, J. Correlation analysis of patients with diabetic foot ulcers treated with tibial cortex transverse transport surgery and platelet-to-lymphocyte ratio and monocyte-to-neutrophil ratio. Adv. Clin. Exp. Med. 2024, 34, 549–559. [Google Scholar] [CrossRef]
- Dukić, V.; Muršić, D.; Popović Grle, S.; Jakopović, M.; Ružić, A.; Vukić Dugac, A. Monocyte-related hematological indices in acute exacerbations of chronic obstructive pulmonary disease—A new biomarker? Monaldi Arch. Chest Dis. 2023, 94. [Google Scholar]
- Kilercik, M.; Demirelce, Ö.; Serdar, M.A.; Mikailova, P.; Serteser, M. A new haematocytometric index: Predicting severity and mortality risk value in COVID-19 patients. PLoS ONE 2021, 16, e0254073. [Google Scholar] [CrossRef]
- Guan, Y.; Xu, F.; Tian, J.; Wang, Y.; Guo, N.; Wan, Z.; He, M.; Gao, M.; Gao, K.; Chong, T. Prognostic value of circulating tumor cells and immune-inflammatory cells in patients with renal cell carcinoma. Urol. Oncol. 2022, 40, e121–e167. [Google Scholar] [CrossRef]
- Mika, T.; Ladigan, S.; Schork, K.; Turewicz, M.; Eisenacher, M.; Schmiegel, W.; Schroers, R.; Baraniskin, A. Monocytes-neutrophils-ratio as predictive marker for failure of first induction therapy in AML. Blood Cells Mol. Dis. 2019, 77, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Sato, H.; Shimajiri, S.; Umehara, T.; Noguchi, H.; Niino, D.; Nakayama, T. Association of troponin I and macrophages in cardiac tamponade with Stanford type A aortic dissection. Heliyon 2023, 9, e20791. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Pan, W.; Hu, X.; Huang, H.; Ren, J.; Yang, C.; Zhou, X.; Zeng, T.; Hu, J.; Li, S.; et al. Neutrophil-Related Ratios Predict the 90-Day Outcome in Acute Ischemic Stroke Patients After Intravenous Thrombolysis. Front. Physiol. 2021, 12, 670323. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wu, Q.; Gao, L.; Lv, Y.; Wu, Z. Macrophage Polarization in Left Ventricular Structural Remodeling Induced by Hypertension. Rev. Cardiovasc. Med. 2024, 25, 121. [Google Scholar] [CrossRef]
- Tsai, C.H.; Pan, C.T.; Chang, Y.Y.; Chen, Z.W.; Wu, V.C.; Hung, C.S.; Lin, Y.H. Left ventricular remodeling and dysfunction in primary aldosteronism. J. Hum. Hypertens. 2021, 35, 131–147. [Google Scholar] [CrossRef]
- Zhou, M.; Li, T.; Lv, S.; Gan, W.; Zhang, F.; Che, Y.; Yang, L.; Hou, Y.; Yan, Z.; Zeng, Z.; et al. Identification of immune-related genes and small-molecule drugs in hypertension-induced left ventricular hypertrophy based on machine learning algorithms and molecular docking. Front. Immunol. 2024, 15, 1351945. [Google Scholar] [CrossRef]
- Silva, L.R.; Stefanello, J.M.; Pizzi, J.; Timossi, L.S.; Leite, N. Atherosclerosis subclinical and inflammatory markers in obese and nonobese children and adolescents. Rev. Bras. Epidemiol. 2012, 15, 804–816. [Google Scholar] [CrossRef]
Parameter | Value ± SD [Quartiles] |
---|---|
Number of patients (n) | 34 |
Boys/girls (n, %) | 26/8 (76%/24%) |
Age (years) | 15.1 ± 2.1 (from 10.9 to 17.9) [13.8–16.8] |
Duration of gestation (weeks) | 38.9 ± 2.5 [38–40] |
Birth weight (g) | 3079 ± 696 [2620–3685] |
Duration of hypertension (months) | 13.2 ± 13.0 [3–24] |
BMI Z-score | 1.49 ± 0.82 [0.99–2.01] |
Overweight patients (BMI 85–95 c) (n, %) | 7 (21%) |
Obese patients (BMI > 95 c) (n, %) | 17 (50%) |
GFR (mL/min/1.73 m2) | 98.2 ±19.8 [85.4–110.8] |
Total cholesterol (mg/dL) | 166.7 ± 25.3 [150–181] |
LDL-cholesterol (mg/dL) | 93.2 ± 24.0 [72–109] |
HDL-cholesterol (mg/dL) | 50.5 ± 14.6 [40–60] |
Triglycerides (mg/dL) | 114.0 ± 58.9 [65–145] |
Uric acid (mg/dL) | 6.3 ± 1.8 [5.2–7.2] |
25OHD (ng/mL) | 18.4 ± 7.9 [12.2–21.5] |
ACR (mg/g) | 18.9 ± 58.0 [5.3–12.8] |
Parameter | Value ± SD [Quartiles] |
---|---|
High-sensitivity C-reactive protein (hs-CRP) (mg/L) | 4.9 ± 5.4 [1.5–6.9] |
Interleukin-18 (IL-18) (pg/mL) | 81.5 ± 80.8 [34.5–110.1] |
Neutrophil count (1000/µL) | 4.0 ± 1.3 [3.1–4.8] |
Monocyte count (1000/µL) | 0.6 ± 0.2 [0.5–0.7] |
Lymphocyte count (1000/µL) | 2.5 ± 0.7 [2.0–2.8] |
Platelet count (1000/µL) | 270.2 ± 56.7 [233–300] |
Mean platelet volume (fL) | 10.4 ± 1.4 [9.8–11.4] |
Neutrophil-to-lymphocyte ratio (NLR) | 1.7 ± 0.5 [1.4–1.9] |
Platelet-to-lymphocyte ratio (PLR) | 115.6 ± 31.5 [88.9–133.6] |
Monocyte-to-lymphocyte ratio (MLR) | 0.3 ± 0.1 [0.2–0.3] |
Monocyte-to-neutrophil ratio (MNR) | 0.2 ± 0.1 [0.1–0.2] |
Platelet-to-mean platelet volume ratio (PMPVR) (1012/fL) | 26.5 ± 7.1 [21.0–31.0] |
Parameter | Value ± SD [Quartiles] |
---|---|
Office systolic blood pressure (mm Hg) | 141.7 ± 9.8 [133–148] |
Office systolic blood pressure Z-score | 2.3 ± 0.8 [1.9–3.0] |
Office diastolic blood pressure (mm Hg) | 84.2 ± 10.7 [78–94] |
Office diastolic blood pressure Z-score | 2.6 ± 1.4 [1.6–3.8] |
Office pulse pressure (mm Hg) | 57.4 ± 8.8 [51–63] |
24 h ABPM systolic blood pressure (mm Hg) | 134.5 ± 5.1 [132–139] |
24 h ABPM systolic blood pressure Z-score | 2.3 ± 0.8 [1.8–2.6] |
24 h ABPM diastolic blood pressure (mm Hg) | 73.1 ± 6.8 [70–76] |
24 h ABPM diastolic blood pressure Z-score | 0.9 ±1.2 [0.4–1.4] |
24 h ABPM mean blood pressure (mm Hg) | 92.7 ± 5.9 [89–96] |
24 h ABPM mean blood pressure Z-score | 1.6 ± 1.2 [0.8–1.9] |
24 h ABPM systolic blood pressure load (%) | 56.9 ± 17.9 [44–69] |
24 h ABPM diastolic blood pressure load (%) | 26.2 ± 20.8 [14–34] |
ABPM systolic blood pressure dipping (%) | 11.3 ± 5.6 [7.2–14.9] |
ABPM diastolic blood pressure dipping (%) | 15.9 ± 7.9 [10.5–20.0] |
Parameter | Value ± SD [Quartiles] |
---|---|
IVSd (mm) | 0.82 ± 0.16 [0.70–0.93] |
IVSd Z-score | 1.1 ± 0.9 [0.5–1.9] |
LVEDd (mm) | 5.02 ± 0.57 [4.70–5.40] |
LVEDd Z-score | −0.9 ± 1.0 [−1.6–−0.1] |
LVPWd (mm) | 0.83 ± 0.17 [0.70–0.96] |
LVPWd Z-score | 0.5 ± 0.9 [0.0–1.1] |
LVM (g) | 146.3 ± 46.6 [116.6–188.1] |
LVM for lean body mass Z-score | 0.17 ± 1.35 [−0.93–1.32] |
LVM for height Z-score | −0.40 ± 1.52 [−1.43–0.99] |
LVMI (g/m2) | 75.7 ± 21.2 [59.0–90.0] |
LVMI (g/m2.7) | 34.1 ± 9.0 [27.0–42.0] |
LVMI (g/m2.16) | 44.2 ± 11.9 [34.0–54.0] |
RWT (2 x LVPWd/LVEDd) | 0.34 ± 0.07 [0.30–0.39] |
RWT (2 x IVSd/LVEDd) | 0.33 ± 0.06 [0.27–0.37] |
RWT (IVSd + LVPWd)/LVEDd) | 0.33 ± 31.6 [64–103] |
Analyzed Parameter | Normal Left Ventricular Mass Value ± SD [Quartiles] | Left Ventricular Hypertrophy Value ± SD [Quartiles] | p |
---|---|---|---|
Number of patients | 22 | 12 | - |
Boys/girls (n, %) | 16/6 | 10/2 | 0.681 |
Age (years) | 15.1 ± 2.0 [14.1–16.8] | 15.0 ± 2.2 [13.7–16.7] | 0.524 |
Gestation (weeks) | 38.5 ± 2.9 [37–40] | 39.9 ± 0.8 [40–40] | 0.268 |
Birth weight (g) | 3058 ± 760 [2540–3770] | 3173 ± 389 [2840–3600] | 0.905 |
Duration of PH (months) | 13.5 ± 14.0 [2–24] | 12.8 ± 11.7 [3–21] | 0.943 |
BMI Z-score | 1.46 ± 0.82 [0.93–1.84] | 1.54 ± 0.87 [1.00–2.36] | 0.430 |
Total cholesterol (mg/dL) | 166.4 ± 22.0 [151–177] | 167.1 ± 31.6 [144–198] | 0.418 |
LDL-cholesterol (mg/dL) | 93.9 ± 20.8 [75–104] | 92.0 ± 30.0 [68–127] | 0.462 |
HDL-cholesterol (mg/dL) | 52.1 ± 16.3 [38–61] | 47.7 ± 10.7 [43–54] | 0.204 |
Triglycerides (mg/dL) | 102.2 ± 53.3 [63–119] | 135.6 ± 64.7 [91–160] | 0.126 |
Uric acid (mg/dL) | 6.4 ± 1.8 [5.2–7.8] | 6.2 ± 1.8 [5.1–6.6] | 0.751 |
25OHD (ng/mL) | 18.3 ± 7.2 [13.7–21.3] | 18.5 ± 9.3 [11.1–23.3] | 0.182 |
ACR (mg/g) | 24.5 ± 72.0 [5.3–14.2] | 8.7 ± 4.7 [5.3–12.1] | 0.928 |
Office SBP (mm Hg) | 143.1 ± 10.7 [138–152] | 138.9 ± 7.6 [133–143] | 0.238 |
Office SBP Z-score | 2.4 ± 0.9 [1.6–3.2] | 2.1 ± 0.6 [1.9–2.3] | 0.255 |
Office DBP (mm Hg) | 86.5 ± 11.6 [80–97] | 80.1 ± 7.8 [73–84] | 0.096 |
Office DBP Z-score | 2.9 ± 1.6 [2.0–4.3] | 2.0 ± 1.0 [1.1–2.6] | 0.091 |
Office PP (mm Hg) | 56.6 ± 9.3 [50–60] | 58.8 ± 7.9 [55–66] | 0.495 |
24 h ABPM SBP (mm Hg) | 134.2 ± 5.2 [132–139] | 135.0 ± 5.2 [132–138] | 0.732 |
24 h ABPM SBP Z-score | 2.3 ± 0.8 [1.8–2.6] | 2.3 ± 0.8 [1.8–2.6] | 0.349 |
24 h ABPM DBP (mm Hg) | 73.7 ± 7.4 [71–77] | 72.0 ± 5.9 [69–75] | 0.489 |
24 h ABPM DBP Z-score | 0.9 ±1.2 [0.4–1.4] | 0.9 ±1.2 [0.4–1.4] | 0.495 |
24 h ABPM MAP (mm Hg) | 93.3 ± 5.7 [90–96] | 91.7 ± 6.3 [87–96] | 0.457 |
24 h ABPM MAP Z-score | 1.6 ± 1.2 [0.8–1.9] | 1.6 ± 1.2 [0.8–1.9] | 0.601 |
24 h ABPM SBP load (%) | 58.8 ± 19.5 [44–73] | 53.3 ± 14.8 [47–61] | 0.377 |
24 h ABPM DBP load (%) | 29.2 ± 20.8 [14–34] | 20.5 ± 16.3 [11–22] | 0.248 |
ABPM SBP dipping (%) | 11.9 ± 6.1 [7.6–15.1] | 10.4 ± 4.8 [4.7–14.8] | 0.705 |
ABPM DBP dipping (%) | 17.0 ± 8.4 [11.0–20.0] | 13.8 ± 6.9 [8.6–20.0] | 0.449 |
hs-CRP (mg/L) | 4.4 ± 4.6 [1.2–6.8] | 5.8 ± 6.8 [1.6–7.2] | 0.449 |
IL-18 (pg/mL) | 91.2 ± 93.6 [34.5–136.3] | 63.5 ± 47.9 [19.2–94.2] | 0.552 |
Neutrophil count (1000/µL) | 4.1 ± 1.2 [3.4–4.8] | 3.7 ± 1.6 [2.8–4.4] | 0.360 |
Monocyte count (1000/µL) | 0.6 ± 0.2 [0.5–0.7] | 0.6 ± 0.3 [0.5–0.7] | 0.759 |
Lymphocyte count (1000/µL) | 2.3 ± 0.4 [2.0–2.7] | 2.7 ± 1.0 [1.9–3.6] | 0.843 |
Platelet count (1000/µL) | 276.0 ± 65.9 [233–318] | 259.5 ± 34.1 [230–284] | 0.427 |
MPV (fL) | 10.1 ± 1.4 [9.2–11.1] | 11.0 ± 1.3 [10.7–11.9] | 0.065 |
NLR | 1.8 ± 0.5 [1.5–2.1] | 1.4 ± 0.4 [1.1–1.8] | 0.043 |
PLR | 119.8 ± 30.1 [92.0–140.2] | 108.0 ± 34.1 [70.2–131.9] | 0.302 |
MLR | 0.3 ± 0.1 [0.2–0.4] | 0.2 ± 0.1 [0.2–0.3] | 0.608 |
MNR | 0.1 ± 0.1 [0.1–0.2] | 0.2 ± 0.0 [0.2–0.2] | 0.042 |
PMPVR (1012/fL) | 27.9 ± 8.0 [22.5–33.0] | 23.9 ± 4.4 [20.8–26.1] | 0.112 |
Parameter | Area Under the Curve (95% CI) | p | Inflammatory Marker Cut-Off Value | Sensitivity | Specificity | ACC |
---|---|---|---|---|---|---|
MPV | 0.729 (0.546–0.912) | 0.014 | 10.6 | 0.833 | 0.682 | 0.735 |
NLR | 0.697 (0.509–0.885) | 0.040 | 1.321 | 0.955 | 0.417 | 0.765 |
MNR | 0.701 (0.525–0.877) | 0.025 | 0.163 | 0.750 | 0.682 | 0.706 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziedzic-Jankowska, K.; Pietrzak, R.; Szyszka, M.; Bujanowicz, A.; Stelmaszczyk-Emmel, A.; Werner, B.; Skrzypczyk, P. Monocyte-to-Neutrophil Ratio as an Immunological Marker of Left Ventricular Hypertrophy in Children with Primary Hypertension. J. Clin. Med. 2025, 14, 3896. https://doi.org/10.3390/jcm14113896
Dziedzic-Jankowska K, Pietrzak R, Szyszka M, Bujanowicz A, Stelmaszczyk-Emmel A, Werner B, Skrzypczyk P. Monocyte-to-Neutrophil Ratio as an Immunological Marker of Left Ventricular Hypertrophy in Children with Primary Hypertension. Journal of Clinical Medicine. 2025; 14(11):3896. https://doi.org/10.3390/jcm14113896
Chicago/Turabian StyleDziedzic-Jankowska, Katarzyna, Radosław Pietrzak, Michał Szyszka, Adam Bujanowicz, Anna Stelmaszczyk-Emmel, Bożena Werner, and Piotr Skrzypczyk. 2025. "Monocyte-to-Neutrophil Ratio as an Immunological Marker of Left Ventricular Hypertrophy in Children with Primary Hypertension" Journal of Clinical Medicine 14, no. 11: 3896. https://doi.org/10.3390/jcm14113896
APA StyleDziedzic-Jankowska, K., Pietrzak, R., Szyszka, M., Bujanowicz, A., Stelmaszczyk-Emmel, A., Werner, B., & Skrzypczyk, P. (2025). Monocyte-to-Neutrophil Ratio as an Immunological Marker of Left Ventricular Hypertrophy in Children with Primary Hypertension. Journal of Clinical Medicine, 14(11), 3896. https://doi.org/10.3390/jcm14113896