Role of Inflammatory and Coagulation Biomarkers in Distinguishing Placenta Accreta from Placenta Previa and Associated Hemorrhage
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Eligibility Criteria
2.2. Data Collection
2.3. Calculation of Inflammatory Indices
2.4. Diagnosis of Placenta Accreta and Placenta Previa
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hessami, K.; Mitts, M.; Zargarzadeh, N.; Jamali, M.; Berghella, V.; Shamshirsaz, A.A. Ultrasonographic cervical length assessment in pregnancies with placenta previa and risk of perinatal adverse outcomes: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2024, 6, 101172. [Google Scholar] [CrossRef] [PubMed]
- Silver, R.M. Abnormal placentation: Placenta previa, vasa previa, and placenta accreta. Obstet. Gynecol. 2015, 126, 654–668. [Google Scholar] [CrossRef] [PubMed]
- Jauniaux, E.; Grønbeck, L.; Bunce, C.; Langhoff-Roos, J.; Collins, S.L. Epidemiology of placenta previa accreta: A systematic review and meta-analysis. BMJ Open 2019, 9, e031193. [Google Scholar] [CrossRef] [PubMed]
- Jauniaux, E.; Collins, S.; Burton, G.J. Placenta accreta spectrum: Pathophysiology and evidence-based anatomy for prenatal ultrasound imaging. Am. J. Obstet. Gynecol. 2018, 218, 75–87. [Google Scholar] [CrossRef]
- Heading, R.; Slade, L.; Kennedy-Andrews, S.; Atkinson, E.; Grivell, R. A comparison of praevia and non-praevia outcomes in placenta accreta spectrum cases: A single centre analysis. Aust. N. Z. J. Obstet. Gynaecol. 2022, 62, 487–493. [Google Scholar] [CrossRef]
- Jauniaux, E.; Jurkovic, D. Placenta accreta: Pathogenesis of a 20th century iatrogenic uterine disease. Placenta 2012, 33, 244–251. [Google Scholar] [CrossRef]
- Silver, R.M.; Branch, D.W. Placenta accreta spectrum. N. Eng. J. Med. 2018, 378, 1529–1536. [Google Scholar] [CrossRef]
- Hall, T.; Wax, J.R.; Lucas, F.L.; Cartin, A.; Jones, M.; Pinette, M.G. Prenatal sonographic diagnosis of placenta accreta—Impact on maternal and neonatal outcomes. J. Clin. Ultrasound 2014, 42, 449–455. [Google Scholar] [CrossRef]
- Marcellin, L.; Delorme, P.; Bonnet, M.P.; Grange, G.; Kayem, G.; Tsatsaris, V.; Goffinet, F. Placenta percreta is associated with more frequent severe maternal morbidity than placenta accreta. Am. J. Obstet. Gynecol. 2018, 219, 193.e1–193.e9. [Google Scholar] [CrossRef]
- D’Antonio, F.; Iacovella, C.; Bhide, A. Prenatal identification of invasive placentation using ultrasound: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2013, 42, 509–517. [Google Scholar] [CrossRef]
- D’Antonio, F.; Iacovella, C.; Palacios-Jaraquemada, J.; Bruno, C.H.; Manzoli, L.; Bhide, A. Prenatal identification of invasive placentation using magnetic resonance imaging: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2014, 44, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Jauniaux, E.; Jurkovic, D.; Hussein, A.M.; Burton, G.J. New Insights into the Etiopathology of Placenta Accreta Spectrum. Am. J. Obstet. Gynecol. 2022, 227, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Bartels, H.C.; Postle, J.D.; Downey, P.; Brennan, D.J. Placenta accreta spectrum: A review of pathology, molecular biology, and biomarkers. Dis. Markers 2018, 2018, 1507674. [Google Scholar] [CrossRef]
- Feng, Z.; Wen, H.; Bi, R.; Ju, X.; Chen, X.; Yang, W.; Wu, X. Preoperative neutrophil-to-lymphocyte ratio as a predictive and prognostic factor for high-grade serous ovarian cancer. PLoS ONE 2016, 11, e0156101. [Google Scholar] [CrossRef]
- Akın, M.N.; Harmandar Kasap, B.; Uslu Yuvacı, H. Neutrophil-to-lymphocyte ratio and platelet distribution in patients with endometrial cancer. J. Obstet. Gynaecol. Res. 2015, 41, 1499. [Google Scholar] [CrossRef]
- Kim, H.S.; Han, K.H.; Chung, H.H.; Kim, J.W.; Park, N.H.; Song, Y.S.; Kang, S.B. Neutrophil to Lymphocyte Ratio for Preoperative Diagnosis of Uterine Sarcomas: A Case-Matched Comparison. Eur. J. Surg. Oncol. 2010, 36, 691–698. [Google Scholar] [CrossRef]
- Shamshirsaz, A.A.; Fox, K.A.; Erfani, H.; Clark, S.L.; Hui, S.K.; Shamshirsaz, A.A.; Rezaei, A.; Nassr, A.A.; Lake, Y.N.; Teruya, J.; et al. Coagulopathy in surgical management of placenta accreta spectrum. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 237, 126–130. [Google Scholar] [CrossRef]
- Jauniaux, E.; Hussein, A.M.; Elbarmelgy, R.M.; Elbarmelgy, R.A.; Burton, G.J. Failure of placental detachment in accreta placentation is associated with excessive fibrinoid deposition at the utero-placental interface. Am. J. Obstet. Gynecol. 2022, 226, 243.e1–243.e10. [Google Scholar] [CrossRef]
- Schorn, M.N. Measurement of blood loss: Review of the literature. J. Midwifery Women’s Health 2010, 55, 20–27. [Google Scholar] [CrossRef]
- Park, J.H.; Byeon, H.J.; Lee, K.H.; Lee, J.W.; Kronbichler, A.; Eisenhut, M.; Shin, J.I. Delta neutrophil index (DNI) as a novel diagnostic and prognostic marker of infection: A systematic review and meta-analysis. Inflamm. Res. 2017, 66, 863–870. [Google Scholar] [CrossRef]
- Reddy, U.M.; Abuhamad, A.Z.; Levine, D.; Saade, G.R. Fetal imaging: Executive summary of a joint Eunice Kennedy Shriver National Institute of Child Health and Human Development, Society for Maternal-Fetal Medicine, American Institute of Ultrasound in Medicine, American College of Obstetricians and Gynecologists, American College of Radiology, Society for Pediatric Radiology, and Society of Radiologists in Ultrasound Fetal Imaging Workshop. J. Ultrasound Med. 2014, 33, 745–757. [Google Scholar] [PubMed]
- Collins, S.L.; Ashcroft, A.; Braun, T.; Calda, P.; Langhoff-Roos, J.; Morel, O.; Stefanovic, V.; Tutschek, B.; Chantraine, F. Proposal for standardized ultrasound descriptors of abnormally invasive placenta (AIP). Ultrasound Obstet. Gynecol. 2015, 47, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Jauniaux, E.; Ayres-de-Campos, D.; Langhoff-Roos, J.; Fox, K.A.; Collins, S. FIGO classification for the clinical diagnosis of placenta accreta spectrum disorders. Int. J. Gynaecol. Obstet. 2019, 146, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Jha, P.; Pōder, L.; Bourgioti, C.; Bharwani, N.; Lewis, S.; Kamath, A.; Nougaret, S.; Soyer, P.; Weston, M.; Castillo, R.P.; et al. Society of Abdominal Radiology (SAR) and European Society of Urogenital Radiology (ESUR) joint consensus statement for MR imaging of placenta accreta spectrum disorders. Eur. Radiol. 2020, 30, 2604–2615. [Google Scholar] [CrossRef]
- Wright, J.D.; Pri-Paz, S.; Herzog, T.J.; Shah, M.; Bonanno, C.; Lewin, S.N.; Simpson, L.L.; Gaddipati, S.; Sun, X.; D’Alton, M.E.; et al. Predictors of massive blood loss in women with placenta accreta. Am. J. Obstet. Gynecol. 2011, 205, 38.e1–38.e6. [Google Scholar] [CrossRef]
- Buca, D.; Liberati, M.; Cali, G.; Forlani, F.; Caisutti, C.; Flacco, M.E.; Manzoli, L.; Familiari, A.; Scambia, G.; D’Antonio, F. Influence of prenatal diagnosis of abnormally invasive placenta on maternal outcome: A systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2018, 52, 304–309. [Google Scholar] [CrossRef]
- Hasegawa, J.; Matsuoka, R.; Ichizuka, K.; Mimura, T.; Sekizawa, A.; Farina, A.; Okai, T. Predisposing Factors for Massive Hemorrhage during Cesarean Section in Patients with Placenta Previa. Ultrasound Obstet. Gynecol. 2009, 34, 80–84. [Google Scholar] [CrossRef]
- Fonseca, A.; Ayres de Campos, D. Maternal morbidity and mortality due to placenta accreta spectrum disorders. Best Pract. Res. Clin. Obstet. Gynaecol. 2021, 72, 84–91. [Google Scholar] [CrossRef]
- Ali, H.; Chandraharan, E. Etiopathogenesis and risk factors for placental accreta spectrum disorders. Best Pract. Res. Clin. Obstet. Gynaecol. 2021, 72, 4–12. [Google Scholar] [CrossRef]
- Templeton, A.J.; Mcnamara, M.G.; Šeruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocaña, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.; Tran, B.; et al. Prognostic Role of Neutrophil-to-Lymphocyte Ratio in Solid Tumors: A Systematic Review and Meta-Analysis. J. Natl. Cancer Inst. 2014, 106, dju124. [Google Scholar] [CrossRef]
- Nie, D.; Gong, H.; Mao, X.; Li, Z. Systemic immune-inflammation index predicts prognosis in patients with epithelial ovarian cancer: A retrospective study. Gynecol. Oncol. 2019, 152, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Ji, K.; Chen, Y.; Pan, X.; Chen, L.; Wang, X.; Wen, B.; Bao, J.; Zhong, J.; Lv, Z.; Zheng, Z.; et al. Single-cell and spatial transcriptomics reveal alterations in trophoblasts at invasion sites and disturbed myometrial immune microenvironment in placenta accreta spectrum disorders. Biomark. Res. 2024, 12, 55. [Google Scholar] [CrossRef]
- Ferretti, C.; Bruni, L.; Dangles-Marie, V.; Pecking, A.P.; Bellet, D. Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum. Reprod. Update 2007, 13, 121–141. [Google Scholar] [CrossRef]
- Tantbirojn, P.; Crum, C.P.; Parast, M.M. Pathophysiology of Placenta Creta: The Role of Decidua and Extravillous Trophoblast. Placenta 2008, 29, 639–645. [Google Scholar] [CrossRef]
- Yayla, C.A.; Ozkaya, E.; Tayyar, A.; Senol, T.; Senturk, M.B.; Karateke, A. Predictive value of complete blood count parameters for placental invasion anomalies. J. Matern. Fetal Neonatal. Med. 2017, 30, 2324–2328. [Google Scholar] [CrossRef] [PubMed]
- Ersoy, A.O.; Ozler, S.; Oztas, E.; Ersoy, E.; Kirbas, A.; Danisman, N. The association between placenta previa and leukocyte and platelet indices—A case control study. Ginekol. Pol. 2016, 87, 367–371. [Google Scholar] [CrossRef]
- Tasgoz, F.N.; Temur, M.; Korkmazer, E.; Cift, T.; Saygı, A.I.; Serpim, G.; Cakmak, B.; Ustunyurt, E. Plasenta previa olgularında tam kan sayımı parametrelerinin değerlendirilmesi. Cagdas Tıp Derg. 2018, 8, 117–121. [Google Scholar]
- Karakoc, G.; Yalcin, S.E.; Sarsmaz, K.; Sengul, M.; Yucel, A. Delta neutrophil index as a promising biomarker for placental implantation disorders. Z. Geburtshilfe Neonatol. 2021, 225, 412–417. [Google Scholar] [CrossRef]
- Keles, A.; Dagdeviren, G.; Celik, O.Y.; Karatas Sahin, E.; Obut, M.; Cayonu Kahraman, N.; Celen, S. Systemic immune-inflammation index to predict placenta accreta spectrum and its histological subtypes. J. Obstet. Gynaecol. Res. 2022, 48, 1675–1682. [Google Scholar] [CrossRef]
- Nurden, A.T. Platelets, inflammation and tissue regeneration. Thromb. Haemost. 2011, 105, S13–S33. [Google Scholar] [CrossRef]
- Tazzyman, S.; Lewis, C.E.; Murdoch, C. Neutrophils: Key mediators of tumour angiogenesis. Int. J. Exp. Pathol. 2009, 90, 222–231. [Google Scholar] [CrossRef]
- Martínez-Lostao, L.; Anel, A.; Pardo, J. How do cytotoxic lymphocytes kill cancer cells? Clin. Cancer Res. 2015, 21, 5047–5056. [Google Scholar] [CrossRef] [PubMed]
- Nahm, C.H.; Choi, J.W.; Lee, J. Delta neutrophil index in automated immature granulocyte counts for assessing disease severity of patients with sepsis. Ann. Clin. Lab. Sci. 2008, 38, 241–246. [Google Scholar] [PubMed]
- Guo, Z.; Han, X.; Zhang, H.; Zheng, W.; Yang, H.; Ma, J. Association between pre-delivery coagulation indicators and invasive placenta accreta spectrum. Clin. App. Thromb. Hemost. 2022, 28, 10760296211070580. [Google Scholar] [CrossRef] [PubMed]
- Kong, T.; Lee, H.S.; Jeon, S.Y.; You, S.Y.; Lee, J.W.; Chung, H.S.; Chung, S.P. Delta neutrophil index and shock index can stratify risk for the requirement for massive transfusion in patients with primary postpartum hemorrhage in the emergency department. PLoS ONE 2021, 16, e0258619. [Google Scholar] [CrossRef]
Control (n = 251) | Placenta Previa (n = 246) | Previa and Accreta (n = 18) | Previa and Increta (n = 27) | Previa and Percrata (n = 33) | p | |
---|---|---|---|---|---|---|
Maternal age (year) (mean ± SD) | 25.5 ± 2.3 | 27.4 ± 1.7 | 29 ± 3.5 | 30.1 ± 4.4 | 34.5 ± 5.3 | <0.001 * |
BMI (kg/m2) (mean ± SD) | 27.1 ± 0.8 | 27.3 ± 1.2 | 27.7 ± 1.3 | 28.2 ± 1.6 | 29.5 ± 1.8 | <0.001 * |
Gravidity ≥ 3 (n, %) | 129 (51.4%) a | 137 (55.7%) a | 12 (66.6%) a | 27 (100%) b | 33 (100%) b | <0.001 |
Parity ≥ 2 (n, %) | 56 (22.3%) a | 77 (31.3%) a | 6 (33.3%) a | 27 (100%) b | 33 (100%) b | <0.001 |
Number of C-sections (n, %) | <0.001 | |||||
1 | 25 (10%) a | 128 (52%) b | 2 (11.1%) a | 0 (0%) a | 0 (0%) a | |
2 | 0 (0%) a | 79 (32.1%) b | 10 (55.5) b | 8 (29.6%) b | 0 (0%) a | |
3 | 0 (0%) a | 39 (15.9%) b | 5 (27.8%) b | 13 (48.2%) c | 22 (66.7%) c | |
4 | 0 (0%) a | 0 (0%) a | 1 (5.6%) a | 6 (22.2%) b | 11 (33.3%) b | |
History of abortion (n, %) | 15 (6) a | 26 (10.6) a,b | 5 (27.7) b,c | 14 (51.8) c | 18 (54.5) c | <0.001 |
Prior uterine curettage (n, %) | 13 (5.2) a | 37 (15) b | 5 (27.7) b,c | 11 (40.7) c | 13 (39.4) c | <0.001 |
Delivery week (mean ± SD) | 39.2 ± 0.7 | 36.4 ± 0.9 | 37.1 ± 1.1 | 34.7 ± 0.6 | 34.6 ± 0.9 | <0.001 * |
Birth weight (g) (mean ± SD) | 3184 ± 100 | 2795 ± 182 | 2759 ± 202 | 2419 ± 79 | 2382 ± 124 | <0.001 * |
Hysterectomy (n, %) | 0 (0.0%) a | 1 (0.4%) a | 0 (0.0%) a | 18 (66.7%) b | 33 (100%) c | <0.001 |
Operation time (min) (mean ± SD) | 35.5 ± 5.7 | 52.3 ± 8.7 | 73.7 ± 8.0 | 99.2 ± 12.4 | 162.9 ± 27.5 | <0.001 * |
Blood loss (mL) (mean ± SD) | 433.4 ± 176.1 | 851.6 ± 147.4 | 910 ± 135.4 | 1348 ± 193.3 | 2908.0 ± 672.0 | <0.001 * |
Blood transfusion (n, %) | 3 (1.2%) a | 73 (29.7%) b | 17 (94.4%) c | 24 (88.9%) c | 33 (100%) c | <0.001 |
Length of stay (day), (mean ± SD) | 2.1 ± 0.3 | 2.3 ± 0.7 | 3.3 ± 0.6 | 4.4 ± 1.3 | 8.1 ± 1.0 | <0.001 * |
Control 1 | Previa 2 | Previa and Accreta 3 | Previa and Increta 4 | Previa and Percrata 5 | p | p * | |
---|---|---|---|---|---|---|---|
PT (s) median (IQR) | 10.1 (9.8–10.3) | 10.2 (9.9–10.5) | 10.3 (10.1–10.4) | 10.5 (9.8–10.6) | 11.1 (10.9–11.3) | <0.001 | 5 > 4 > 3 > 2 > 1 |
APTT (s) median (IQR) | 26.6 (25.6–27.1) | 26.5 (25.7–26.8) | 26.4 (25.8–27.9) | 26.3 (25.4–26.6) | 25.9 (24.2–27.8) | 0.024 | 1, 2, 3, 4 > 5 |
TT (s) median (IQR) | 13.1 (12.5–14.1) | 13.1 (12.8–13.7) | 13.0 (12.6–13.8) | 13.1 (12.4–14.1) | 13.2 (12.4–14.8) | 0.015 | 5 > 1, 2, 3, 4 |
Neutrophil (×109/L) (mean ± SD) | 8.3 ± 0.5 | 8.4 ± 0.7 | 8.5 ± 0.3 | 8.9 ± 0.2 | 9.2 ± 0.2 | <0.001 | 5, 4 > 1, 2, 3 |
Lymphocyte (×109/L) (mean ± SD) | 1.9 ± 0.3 | 1.7 ± 0.8 | 1.6 ± 0.5 | 1.5 ± 0.6 | 1.5 ± 0.9 | <0.001 | 1 > 2, 3 > 4, 5 |
Platelet (×109/L) (mean ± SD) | 207.5 ± 76.4 | 223.9 ± 62.8 | 216.9 ± 10.6 | 227.2 ± 10.9 | 282.3 ± 13.6 | <0.001 | 5 > 4 > 2 > 3 > 1 |
D-dimer (mg/L) median (IQR) | 0.44 (0.33–0.55) | 0.42 (0.35–0.62) | 0.46 (0.39–0.72) | 0.65 (0.58–0.74) | 1.05 (0.85–1.35) | <0.001 | 5 > 4 > 1, 2, 3 |
FDP (mg/L) median (IQR) | 3.15 (2.15–4.52) | 3.65 (2.84–4.85) | 3.55 (2.90–5.15) | 3.75 (2.64–4.94) | 4.85 (3.55–7.85) | <0.001 | 5 > 2, 3, 4 > 1 |
NLR (mean ± SD) | 3.68 ± 0.1 | 3.94 ± 0.1 | 4.07 ± 0.2 | 4.2 ± 0.1 | 4.9 ± 0.2 | <0.001 | 5 > 3, 4 > 1, 2 |
PLR (mean ± SD) | 116.6 ± 3.8 | 123.0 ± 7.1 | 128.4 ± 6.4 | 135.7± 6.1 | 141 ± 5.8 | < 0.001 | 5 > 4 > 2, 3 > 1 |
SII (mean ± SD) | 766.92 ± 33.73 | 869.11 ± 54.12 | 870.31 ± 52.61 | 970 ± 94.65 | 1122.58 ± 92.05 | <0.001 | 5 > 4 > 2, 3 > 1 |
SIRI (mean ± SD) | 1.62 ± 0.08 | 2.2 ± 0.21 | 2.41 ± 0.11 | 2.76 ± 0.23 | 3.29 ± 0.32 | <0.001 | 5 > 4 > 3 > 2 > 1 |
DNI (mean ± SD) | 1.8 ± 0.25 | 3.01 ± 0.25 | 3.34 ± 0.39 | 6.27 ± 0.56 | 8.74 ± 0.6 | <0.001 | 5 > 4 > 2, 3 > 1 |
Cut-Off Value | Sensitivity | Specificity | AUC | 95%CI | p | |
---|---|---|---|---|---|---|
PT | 10.25 | 0.972 | 0.984 | 0.996 | 0.991–1.00 | <0.001 |
APTT | 26.15 | 0.528 | 0.777 | 0.699 | 0.63–0.769 | <0.001 |
D-dimer | 0.445 | 0.750 | 0.669 | 0.764 | 0.669–0.859 | <0.001 |
FDP | 3.3 | 0.959 | 1.00 | 0.982 | 0.959–1.00 | <0.001 |
TT | 13.05 | 0.736 | 0.434 | 0.677 | 0.599–0.756 | <0.001 |
NLR | 3.85 | 0.986 | 0.996 | 0.997 | 0.992–1.00 | <0.001 |
PLR | 122.5 | 0.958 | 1.00 | 0.991 | 0.98–1.00 | <0.001 |
SII | 817.5 | 0.972 | 0.92 | 0.987 | 0.966–1.00 | <0.001 |
SIRI | 2.01 | 1.00 | 1.00 | 1.00 | 1.00–1.00 | <0.001 |
DNI | 2.45 | 1.00 | 1.00 | 1.00 | 1.00–1.00 | <0.001 |
Cut-Off Value | Sensitivity | Specificity | AUC | 95%CI | p | |
---|---|---|---|---|---|---|
PT | 10.25 | 0.649 | 0.844 | 0.811 | 0.754–0.868 | <0.001 |
APTT | 26.15 | 0.426 | 0.731 | 0.598 | 0.535–0.661 | 0.003 |
D-dimer | 0.45 | 0.532 | 0.528 | 0.605 | 0.522–0.688 | 0.001 |
FDP | 3.45 | 0.713 | 0.667 | 0.761 | 0.701–0.821 | <0.001 |
TT | 13.05 | 0.66 | 0.436 | 0.607 | 0.539–0.676 | 0.001 |
NLR | 3.95 | 0.702 | 0.739 | 0.797 | 0.739–0.855 | <0.001 |
PLR | 122.5 | 0.766 | 0.726 | 0.820 | 0.739–0.855 | <0.001 |
SII | 875 | 0.67 | 0.731 | 0.763 | 0.739–0.855 | <0.001 |
SIRI | 2.25 | 0.734 | 0.741 | 0.798 | 0.737–0.859 | <0.001 |
DNI | 2.95 | 0.66 | 0.68 | 0.799 | 0.741–0.857 | <0.001 |
Model A | Model B | |||
---|---|---|---|---|
β | p | β | p | |
PT | 0.142 | 0.001 | 0.153 | <0.001 |
APTT | 0.015 | 0.44 | ||
D-dimer | 0.067 | 0.026 | 0.066 | 0.027 |
FDP | 0.229 | <0.001 | 0.233 | <0.001 |
TT | 0.016 | 0.408 | ||
NLR | 0.141 | 0.001 | 0.148 | 0.001 |
PLR | 0.022 | 0.433 | ||
SII | 0.043 | 0.221 | ||
SIRI | −0.007 | 0.878 | ||
DNI | 0.292 | <0.001 | 0.299 | <0.001 |
Maternal age | 0.03 | 0.227 | ||
BMI | 0,021 | 0.323 | ||
Gravidity ≥ 3 | −0.024 | 0.216 | ||
Parity ≥ 2 | −0.008 | 0.719 | ||
Number of C-sections | 0.086 | 0.012 | ||
Abortus | −0.007 | 0.749 | ||
D&C | −0.011 | 0.603 | ||
Gestational age | 0.055 | 0.092 | ||
F = 135.172 | F = 240.442 | |||
R2 = 0.816 | R2 = 0.812 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balkaş, G.; Çelen, Ş. Role of Inflammatory and Coagulation Biomarkers in Distinguishing Placenta Accreta from Placenta Previa and Associated Hemorrhage. J. Clin. Med. 2025, 14, 3884. https://doi.org/10.3390/jcm14113884
Balkaş G, Çelen Ş. Role of Inflammatory and Coagulation Biomarkers in Distinguishing Placenta Accreta from Placenta Previa and Associated Hemorrhage. Journal of Clinical Medicine. 2025; 14(11):3884. https://doi.org/10.3390/jcm14113884
Chicago/Turabian StyleBalkaş, Gülay, and Şevki Çelen. 2025. "Role of Inflammatory and Coagulation Biomarkers in Distinguishing Placenta Accreta from Placenta Previa and Associated Hemorrhage" Journal of Clinical Medicine 14, no. 11: 3884. https://doi.org/10.3390/jcm14113884
APA StyleBalkaş, G., & Çelen, Ş. (2025). Role of Inflammatory and Coagulation Biomarkers in Distinguishing Placenta Accreta from Placenta Previa and Associated Hemorrhage. Journal of Clinical Medicine, 14(11), 3884. https://doi.org/10.3390/jcm14113884