Respiratory Syncytial Virus: A Narrative Review of Updates and Recent Advances in Epidemiology, Pathogenesis, Diagnosis, Management and Prevention
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Exclusion Criteria
3. History of RSV
4. Epidemiology
4.1. Global and Regional Prevalence
4.2. Seasonal Variations
4.3. Risk Factors for Severe RSV Infection
- Age: While RSV can infect any age group, infants younger than 6 months old are at the highest risk of severe disease since their immune systems are not yet fully developed and their airways are smaller. Neonates, especially those that are premature, are most vulnerable to severe RSV infection [9]. Recently, several studies have reported that older adults (≥60 years) develop severe RSV, particularly those with cardiopulmonary comorbidity [36]. The proposed mechanisms of severe RSV among older adults include altered innate and adaptive immune response to viral infections.
- Prematurity and other conditions: Preterm infants with RSV are 2–3-times more likely to be hospitalized to the critical care [43]. Premature infants, especially those of gestational age < 35 weeks, have compromised surfactant production due to the underdevelopment of their lungs; in addition, maternal antibody transfer is less efficient. RSV outcomes, e.g., prolonged hospital stays and mortality, are also significantly elevated in children with congenital heart disease, chronic lung diseases such as bronchopulmonary dysplasia, or immunodeficiencies [20,45].
- Environmental factors: RSV disease severity is further exacerbated by environmental contributors, especially in LMICs. The following factors have known associations with RSV severity:
- Viral load: The association between RSV viral load and the disease severity of RSV is not well understood. El Saleeby et al. reported a significant correlation between RSV viral load and the duration of hospitalization, as well as the need for intensive care and mechanical ventilation [48]. Furthermore, in another study, after adjusting for potential confounders, including age, gestational age, sex, comorbidity, RSV subgroup, and the interval between symptom onset and sample acquisition, infants presenting with febrile RSV infection exhibited a significantly higher peak viral load compared to those with afebrile RSV infection (7.1 [SD 1.2] vs. 6.6 [SD 1.4] log10 copies/mL; p = 0.042) [49]. In contrast, another study did not show any association between viral load and RSV disease severity [50]. These contrasting results of association between RSV viral load and disease severity are likely due to the lack of tools that clearly assess RSV severity, variability in the timing of viral load quantification, and the complex interplay of host immune responses. In addition, the RSV viral load has also been associated with post-RSV wheezy episodes; however, longitudinal data beyond 3 years of age about this observation are ongoing [49].
- Genetic susceptibility and innate immune system: Polymorphisms in immune-related genes have been suggested to influence RSV disease severity; for example, variations in IL-8 are related to more prominent inflammatory responses and the increased prevalence of wheezing following severe RSV bronchiolitis, independent of atopy [51]. Additionally, studies have shown that the innate immune system is involved in RSV progression and plays a critical role in the clinical course of RSV infections [52,53].
4.4. Mode of Transmission
5. Pathogenesis
5.1. Viral Structure and Entry
5.2. Viral Replication and Spread
5.3. Host Immune Response
5.4. Immunopathogenesis
5.5. Genetic Variability and Immune Evasion
5.6. Pleiotropic Effects
6. Diagnosis
6.1. Clinical Assessment
6.2. Laboratory Diagnostic Methods
- Rapid Antigen Detection Tests (RADTs): These tests detect RSV antigens in respiratory specimens and provide rapid results that may be of immediate clinical value. However, the sensitivity of these tests differs depending on several practical and logistic factors. Specifically, RADTs have demonstrated greater sensitivity in young children, who typically shed more virus, and less sensitivity in older children and adults [77,78].
- Nucleic Acid Amplification Tests (NAATs): These tests are described as highly sensitive and specific for the detection of RSV RNA. A number of RNA detection techniques have been employed, e.g., reverse transcription–polymerase chain reaction (RT-PCR). NAATs are recognized as useful across the age spectrum of patients and can detect low viral load counts in both clinical and research settings [79,80].
- Virus culture: The cell culture isolation of RSV, although previously considered the gold standard for identifying the virus, is now recognized as time-consuming and, hence, is less commonly used as a routine diagnostic method [81].
- Nasopharyngeal swabs: Widely used due to the ease of collection and they mostly yield good sensitivity results.
- Nasopharyngeal aspirates: More sensitive than swabs but also more invasive; considered the gold standard for RSV detection.
- Nasal swabs: Less invasive and more comfortable, useful in outpatient settings.
6.3. Differential Diagnosis
6.4. Advances in RSV Diagnostic Approaches
- Biomarkers: Biomarker research may not only help differentiate RSV from other viral infections but also predict severity and guide treatment strategies [74].
7. Management
7.1. Supportive Care
- Oxygen therapy: This is given to children with hypoxemia (who have an oxygen saturation of less than 90%).
- Hydration: Sufficient fluid intake must be maintained to prevent dehydration, which may sometimes require intravenous fluids in severe cases.
- Nutritional support: Ensuring adequate nutrition is crucial, especially for infants experiencing feeding difficulties because of respiratory distress.
7.2. Pharmacological Interventions
- Antiviral agents: Many clinical trials have confirmed that the antiviral drug ribavirin has limited benefits; moreover, it is recommended for use solely in high-risk and severe cases because of the associated adverse effects [20,90,91,92,93]. However, in the absence of other effective antiviral agents, it is also considered a reasonable option for treating RSV patients with hematologic malignancy or who are recipients of haematopoietic stem cell transplants [94]. Therefore, addressing the urgent need for effective therapeutics targeting RSV must be recognized as a top global public health priority.
8. Prevention
8.1. Immunoprophylaxis
8.1.1. Palivizumab
8.1.2. Nirsevimab
8.1.3. Clesrovimab and Next-Generation Antibodies
8.2. Vaccination
8.2.1. Maternal Vaccination
8.2.2. Pediatric Vaccination
9. Prognosis and Long-Term Outcomes
9.1. Acute and Critical Infection Outcomes
9.2. Long-Term Respiratory Complications
9.2.1. Recurrent Wheezing and Asthma
9.2.2. Impaired Lung Function
10. Implications for Clinical Practice
11. Future Directions
12. Research Gaps and Future Directions
12.1. Gaps in RSV Epidemiology
12.2. Gaps in RSV Vaccine Development and Preventive Strategies
12.3. Gaps in Treatment Options
13. Future Directions and Emerging Technologies
14. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Hall, C.B.; Weinberg, G.A.; Iwane, M.K.; Blumkin, A.K.; Edwards, K.M.; Staat, M.A.; Auinger, P.; Griffin, M.R.; Poehling, K.A.; Erdman, D. The Burden of Respiratory Syncytial Virus Infection in Young Children. N. Engl. J. Med. 2009, 360, 588–598. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X.; Blau, D.M.; Caballero, M.T.; Feikin, D.R.; Gill, C.J.; Madhi, S.A.; Omer, S.B.; Simões, E.A.F.; Campbell, H.; et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: A systematic analysis. Lancet 2022, 399, 2047–2064. [Google Scholar] [CrossRef] [PubMed]
- Azzari, C.; Baraldi, E.; Bonanni, P.; Bozzola, E.; Coscia, A.; Lanari, M.; Manzoni, P.; Mazzone, T.; Sandri, F.; Checcucci Lisi, G.; et al. Epidemiology and prevention of respiratory syncytial virus infections in children in Italy. Ital. J. Pediatr. 2021, 47, 198. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, T.; McAllister, D.A.; O’Brien, K.L.; Simoes, E.A.F.; Madhi, S.A.; Gessner, B.D.; Polack, F.P.; Balsells, E.; Acacio, S.; Aguayo, C.; et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: A systematic review and modelling study. Lancet 2017, 390, 946–958. [Google Scholar] [CrossRef]
- Chatterjee, A.; Mavunda, K.; Krilov, L.R. Current State of Respiratory Syncytial Virus Disease and Management. Infect. Dis. Ther. 2021, 10 (Suppl. S1), 5–16. [Google Scholar] [CrossRef]
- Zar, H.J. New advances in RSV: Is prevention attainable? Pediatr. Pulmonol. 2024, 60, S120–S122. [Google Scholar] [CrossRef]
- Esposito, S.; Abu Raya, B.; Baraldi, E.; Flanagan, K.; Martinon Torres, F.; Tsolia, M.; Zielen, S. RSV Prevention in All Infants: Which Is the Most Preferable Strategy? Front. Immunol. 2022, 13, 880368. [Google Scholar] [CrossRef]
- Mao, Z.; Li, X.; Dacosta-Urbieta, A.; Billard, M.N.; Wildenbeest, J.; Korsten, K.; Martinón-Torres, F.; Heikkinen, T.; Cunningham, S.; Snape, M.D.; et al. Economic burden and health-related quality-of-life among infants with respiratory syncytial virus infection: A multi-country prospective cohort study in Europe. Vaccine 2023, 41, 2707–2715. [Google Scholar] [CrossRef]
- Soni, A.; Kabra, S.K.; Lodha, R. Respiratory Syncytial Virus Infection: An Update. Indian J. Pediatr. 2023, 90, 1245–1253. [Google Scholar] [CrossRef]
- Fauroux, B.; Simões, E.A.F.; Checchia, P.A.; Paes, B.; Figueras-Aloy, J.; Manzoni, P.; Bont, L.; Carbonell-Estrany, X. The Burden and Long-term Respiratory Morbidity Associated with Respiratory Syncytial Virus Infection in Early Childhood. Infect. Dis. Ther. 2017, 6, 173–197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chadha, M.; Hirve, S.; Bancej, C.; Barr, I.; Baumeister, E.; Caetano, B.; Chittaganpitch, M.; Darmaa, B.; Ellis, J.; Fasce, R.; et al. Human respiratory syncytial virus and influenza seasonality patterns-Early findings from the WHO global respiratory syncytial virus surveillance. Influenza Other Respir. Viruses 2020, 14, 638–646. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hamid, S.; Winn, A.; Parikh, R.; Jones, J.M.; McMorrow, M.; Prill, M.M.; Silk, B.J.; Scobie, H.M.; Hall, A.J. Seasonality of Respiratory Syncytial Virus—United States, 2017–2023. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 355–361. [Google Scholar] [CrossRef]
- Bell, C.; Goss, M.; Norton, D.; Barlow, S.; Temte, E.; He, C.; Hamer, C.; Walters, S.; Sabry, A.; Johnson, K.; et al. Descriptive Epidemiology of Pathogens Associated with Acute Respiratory Infection in a Community-Based Study of K-12 School Children (2015–2023). Pathogens 2024, 13, 340. [Google Scholar] [CrossRef] [PubMed]
- Bueno, S.M.; González, P.A.; Pacheco, R.; Leiva, E.D.; Cautivo, K.M.; Tobar, H.E.; Mora, J.E.; Prado, C.E.; Zúñiga, J.P.; Jiménez, J.; et al. Host immunity during RSV pathogenesis. Int. Immunopharmacol. 2008, 8, 1320–1329. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, J.J.; Avellaneda, A.M.; Salazar-Ardiles, C.; Maya, J.E.; Kalergis, A.M.; Lay, M.K. Host Components Contributing to Respiratory Syncytial Virus Pathogenesis. Front. Immunol. 2019, 10, 2152. [Google Scholar] [CrossRef]
- Piralla, A.; Chen, Z.; Zaraket, H. An update on respiratory syncytial virus. BMC Infect. Dis. 2023, 23, 734. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taleb, S.A.; Al Thani, A.A.; Al Ansari, K.; Yassine, H.M. Human respiratory syncytial virus: Pathogenesis, immune responses, and current vaccine approaches. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1817–1827. [Google Scholar] [CrossRef] [PubMed]
- Brenes-Chacon, H.; Garcia-Mauriño, C.; Moore-Clingenpeel, M.; Mertz, S.; Ye, F.; Cohen, D.M.; Ramilo, O.; Mejias, A. Age-dependent Interactions Among Clinical Characteristics, Viral Loads and Disease Severity in Young Children with Respiratory Syncytial Virus Infection. Pediatr. Infect. Dis. J. 2021, 40, 116–122. [Google Scholar] [CrossRef]
- Shaw, E.R.; Su, H.C. The Influence of Immune Immaturity on Outcome After Virus Infections. J. Allergy Clin. Immunol. Pract. 2021, 9, 641–650. [Google Scholar] [CrossRef]
- Verwey, C.; Dangor, Z.; Madhi, S.A. Approaches to the Prevention and Treatment of Respiratory Syncytial Virus Infection in Children: Rationale and Progress to Date. Paediatr. Drugs 2024, 26, 101–112. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Virgili, F.; Nenna, R.; Di Mattia, G.; Matera, L.; Petrarca, L.; Conti, M.G.; Midulla, F. Acute Bronchiolitis: The Less, the Better? Curr. Pediatr. Rev. 2024, 20, 216–223. [Google Scholar] [CrossRef]
- Alharbi, A.S.; Alzahrani, M.; Alodayani, A.N.; Alhindi, M.Y.; Alharbi, S.; Alnemri, A. Saudi experts’ recommendation for RSV prophylaxis in the era of COVID-19: Consensus from the Saudi Pediatric Pulmonology Association. Saudi Med. J. 2021, 42, 355–362. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alharbi, A.; Yousef, A.; Zubani, A.; Alzahrani, M.; Al-Hindi, M.; Alharbi, S.; Alahmadi, T.; Alabdulkarim, H.; Kazmierska, P.; Beuvelet, M. Respiratory Syncytial Virus (RSV) Burden in Infants in the Kingdom of Saudi Arabia and the Impact of All-Infant RSV Protection: A Modeling Study. Adv. Ther. 2024, 41, 1419–1435. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blount, R.E., Jr.; Morris, J.A.; Savage, R.E. Recovery of cytopathogenic agent from chimpanzees with coryza. Proc. Soc. Exp. Biol. Med. 1956, 92, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Canchola, J.G.; Brandt, C.D.; Pyles, G.; Chanock, R.M.; Jensen, K.; Parrott, R.H. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol. 1969, 89, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Chin, J.; Magoffin, R.L.; Shearer, L.A.; Schieble, J.H.; Lennette, E.H. Field evaluation of a respiratory syncytial virus vaccine and a trivalent parainfluenza virus vaccine in a pediatric population. Am. J. Epidemiol. 1969, 89, 449–463. [Google Scholar] [CrossRef]
- Johnson, S.; Oliver, C.; Prince, G.A.; Hemming, V.G.; Pfarr, D.S.; Wang, S.C.; Dormitzer, M.; O’Grady, J.; Koenig, S.; Tamura, J.K.; et al. Development of a humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity against respiratory syncytial virus. J. Infect. Dis. 1997, 176, 1215–1224. [Google Scholar] [CrossRef] [PubMed]
- Hammitt, L.L.; Dagan, R.; Yuan, Y.; Baca Cots, M.; Bosheva, M.; Madhi, S.A.; Muller, W.J.; Zar, H.J.; Brooks, D.; Grenham, A.; et al. Nirsevimab for Prevention of RSV in Healthy Late-Preterm and Term Infants. N. Engl. J. Med. 2022, 386, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Vennard, S.; Mahdy, S.; Nair, H.; RESCEU Investigators. Risk Factors for Poor Outcome or Death in Young Children with Respiratory Syncytial Virus-Associated Acute Lower Respiratory Tract Infection: A Systematic Review and Meta-Analysis. J. Infect. Dis. 2022, 226 (Suppl. S1), S10–S16. [Google Scholar] [CrossRef] [PubMed]
- Laudanno, S.L.; Sánchez Yanotti, C.I.; Polack, F.P. RSV Lower Respiratory Tract Illness in Infants of Low- and Middle-income Countries. Acta Med. Acad. 2020, 49, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Kelabi, H.M.; Alharbi, A.S.; Alshamrani, A.S.; Baqais, K.; Alenazi, A.M.; Alqwaiee, M.M. Impact of COVID-19 Pandemic on Respiratory Syncytial Virus (RSV) Prophylaxis Program: A Tertiary-Care Center Experience. Cureus 2023, 15, e42563. [Google Scholar] [CrossRef] [PubMed]
- Del Riccio, M.; Caini, S.; Bonaccorsi, G.; Lorini, C.; Paget, J.; van der Velden, K.; Meijer, A.; Haag, M.; McGovern, I.; Zanobini, P. Global analysis of respiratory viral circulation and timing of epidemics in the pre-COVID-19 and COVID-19 pandemic eras, based on data from the Global Influenza Surveillance and Response System (GISRS). Int. J. Infect. Dis. 2024, 144, 107052. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.C. Use of mathematical modelling to assess respiratory syncytial virus epidemiology and interventions: A literature review. J. Math. Biol. 2022, 84, 26. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wildenbeest, J.G.; Billard, M.N.; Zuurbier, R.P.; Korsten, K.; Langedijk, A.C.; van de Ven, P.M.; Snape, M.D.; Drysdale, S.B.; Pollard, A.J.; Robinson, H.; et al. The burden of respiratory syncytial virus in healthy term-born infants in Europe: A prospective birth cohort study. Lancet Respir. Med. 2023, 11, 341–353. [Google Scholar] [CrossRef]
- Rabarison, J.H.; Tempia, S.; Harimanana, A.; Guillebaud, J.; Razanajatovo, N.H.; Ratsitorahina, M.; Heraud, J.M. Burden and epidemiology of influenza- and respiratory syncytial virus-associated severe acute respiratory illness hospitalization in Madagascar, 2011–2016. Influenza Other Respir. Viruses 2019, 13, 138–147. [Google Scholar] [CrossRef]
- Günen, H.; Alzaabi, A.; Bakhatar, A.; Al Mutairi, S.; Maneechotesuwan, K.; Tan, D.; Zeitouni, M.; Aggarwal, B.; Berzanskis, A.; Cintra, O. Key Challenges to Understanding the Burden of Respiratory Syncytial Virus in Older Adults in Southeast Asia, the Middle East, and North Africa: An Expert Perspective. Adv. Ther. 2024, 41, 4312–4334. [Google Scholar] [CrossRef]
- Park, S.; Lee, H.; Park, J.Y.; Choi, S.; Kim, H.J.; Bertizzolo, L.; Lee, Y.H.; Choe, Y.J. Trends in Proportions of Respiratory Syncytial Virus Infections Among Reported Respiratory Tract Infection Cases in Children Aged 0 to 5 Years in Western Pacific and Southeast Asia Regions: A Systematic Review and Meta-Analysis. Influenza Other Respir. Viruses 2025, 19, e70077. [Google Scholar] [CrossRef]
- Nørgaard, S.K.; Nielsen, J.; Nordholm, A.C.; Richter, L.; Chalupka, A.; Sierra, N.B.; Braeye, T.; Athanasiadou, M.; Lytras, T.; Denissov, G.; et al. Excess mortality in Europe coincides with peaks of COVID-19, influenza and respiratory syncytial virus (RSV), November 2023 to February 2024. Eurosurveillance 2024, 29, 2400178. [Google Scholar] [CrossRef] [PubMed]
- Del Riccio, M.; Spreeuwenberg, P.; Osei-Yeboah, R.; Johannesen, C.K.; Fernandez, L.V.; Teirlinck, A.C.; Wang, X.; Heikkinen, T.; Bangert, M.; Caini, S.; et al. Burden of Respiratory Syncytial Virus in the European Union: Estimation of RSV-associated hospitalizations in children under 5 years. J. Infect. Dis. 2023, 228, 1528–1538. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pangesti, K.N.A.; El Ghany, M.A.; Kesson, A.M.; Hill-Cawthorne, G.A. Respiratory syncytial virus in the Western Pacific Region: A systematic review and meta-analysis. J. Glob. Health 2019, 9, 020431. [Google Scholar] [CrossRef]
- Saravanos, G.L.; Hu, N.; Homaira, N.; Muscatello, D.J.; Jaffe, A.; Bartlett, A.W.; Wood, N.J.; Rawlinson, W.; Kesson, A.; Lingam, R.; et al. RSV Epidemiology in Australia Before and During COVID-19. Pediatrics 2022, 149, e2021053537. [Google Scholar] [CrossRef] [PubMed]
- Eden, J.S.; Sikazwe, C.; Xie, R.; Deng, Y.M.; Sullivan, S.G.; Michie, A.; Levy, A.; Cutmore, E.; Blyth, C.C.; Britton, P.N.; et al. Off-season RSV epidemics in Australia after easing of COVID-19 restrictions. Nat. Commun. 2022, 13, 2884. [Google Scholar] [CrossRef]
- Asseri, A.A.; Al-Qahtani, S.M.; Alzaydani, I.A.; Al-Jarie, A.; Alyazidi, N.S.; Alqahtani, A.M.; Alsulayyim, R.S.; Alzailaie, A.K.; Abdullah, D.M.; Ali, A.S. Clinical and epidemiological characteristics of respiratory syncytial virus, SARS-CoV-2 and influenza paediatric viral respiratory infections in southwest Saudi Arabia. Ann. Med. 2025, 57, 2445791. [Google Scholar] [CrossRef]
- Reicherz, F.; Viñeta Paramo, M.; Bone, J.N.; Lavoie, A.; Li, S.; Golding, L.; Jassem, A.; Watts, A.; Abu-Raya, B.; Lavoie, P.M. Recovery of Antibody Immunity After a Resurgence of Respiratory Syncytial Virus Infections. J. Infect. Dis. 2025, jiaf101. [Google Scholar] [CrossRef] [PubMed]
- Del Vecchio, A.; Franco, C.; Del Vecchio, K.; Umbaldo, A.; Capasso, L.; Raimondi, F. RSV prophylaxis in premature infants. Minerva Pediatr. 2018, 70, 579–588. [Google Scholar] [CrossRef]
- DiFranza, J.R.; Masaquel, A.; Barrett, A.M.; Colosia, A.D.; Mahadevia, P.J. Systematic literature review assessing tobacco smoke exposure as a risk factor for serious respiratory syncytial virus disease among infants and young children. BMC Pediatr. 2012, 12, 81. [Google Scholar] [CrossRef]
- Divarathne, M.V.M.; Ahamed, R.R.; Noordeen, F. The Impact of RSV-Associated Respiratory Disease on Children in Asia. J. Pediatr. Infect. Dis. 2019, 14, 79–88. [Google Scholar] [CrossRef] [PubMed]
- El Saleeby, C.M.; Bush, A.J.; Harrison, L.M.; Aitken, J.A.; Devincenzo, J.P. Respiratory syncytial virus load, viral dynamics, and disease severity in previously healthy naturally infected children. J. Infect. Dis. 2011, 204, 996–1002. [Google Scholar] [CrossRef]
- McGinley, J.P.; Lin, G.L.; Öner, D.; Golubchik, T.; O’Connor, D.; Snape, M.D.; Gruselle, O.; Langedijk, A.C.; Wildenbeest, J.; Openshaw, P.; et al. Clinical and Viral Factors Associated with Disease Severity and Subsequent Wheezing in Infants with Respiratory Syncytial Virus Infection. J. Infect. Dis. 2022, 226, S45–S54. [Google Scholar] [CrossRef]
- Garcia-Mauriño, C.; Moore-Clingenpeel, M.; Thomas, J.; Mertz, S.; Cohen, D.M.; Ramilo, O.; Mejias, A. Viral Load Dynamics and Clinical Disease Severity in Infants with Respiratory Syncytial Virus Infection. J. Infect. Dis. 2019, 219, 1207–1215. [Google Scholar] [CrossRef]
- Goetghebuer, T.; Isles, K.; Moore, C.; Thomson, A.; Kwiatkowski, D.; Hull, J. Genetic predisposition to wheeze following respiratory syncytial virus bronchiolitis. Clin. Exp. Allergy 2004, 34, 801–803. [Google Scholar] [CrossRef]
- Ahout, I.M.; Jans, J.; Haroutiounian, L.; Simonetti, E.R.; van der Gaast-de Jongh, C.; Diavatopoulos, D.A.; de Jonge, M.I.; de Groot, R.; Ferwerda, G. Reduced Expression of HLA-DR on Monocytes During Severe Respiratory Syncytial Virus Infections. Pediatr. Infect. Dis. J. 2016, 35, e89–e96. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, H.C.; Tripp, R.A. Immunopathology of RSV: An Updated Review. Viruses 2021, 13, 2478. [Google Scholar] [CrossRef] [PubMed]
- Salas, A.; Pardo-Seco, J.; Cebey-López, M.; Gómez-Carballa, A.; Obando-Pacheco, P.; Rivero-Calle, I.; Currás-Tuala, M.J.; Amigo, J.; Gómez-Rial, J.; Martinón-Torres, F.; et al. Whole Exome Sequencing reveals new candidate genes in host genomic susceptibility to Respiratory Syncytial Virus Disease. Sci. Rep. 2017, 7, 15888. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.D.; Rhinehart, E.; Jackson, M.; Chiarello, L. 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Health Care Settings. Am. J. Infect. Control. 2007, 35, S65–S164. [Google Scholar] [CrossRef]
- Cheng, C.H.; Chow, C.L.; Chow, W.K. Trajectories of large respiratory droplets in indoor environment: A simplified approach. Build. Env. 2020, 183, 107196. [Google Scholar] [CrossRef]
- Manti, S.; Spoto, G.; Nicotera, A.G.; Di Rosa, G.; Piedimonte, G. Impact of respiratory viral infections during pregnancy on the neurological outcomes of the newborn: Current knowledge. Front. Neurosci. 2023, 17, 1320319. [Google Scholar] [CrossRef]
- Collins, P.L.; Fearns, R.; Graham, B.S. Respiratory syncytial virus: Virology, reverse genetics, and pathogenesis of disease. Curr. Top. Microbiol. Immunol. 2013, 372, 3–38. [Google Scholar]
- King, T.; Mejias, A.; Ramilo, O.; Peeples, M.E. The larger attachment glycoprotein of respiratory syncytial virus produced in primary human bronchial epithelial cultures reduces infectivity for cell lines. PLoS Pathog. 2021, 17, e1009469. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Griffiths, C.D.; Bilawchuk, L.M.; McDonough, J.E.; Jamieson, K.C.; Elawar, F.; Cen, Y.; Duan, W.; Lin, C.; Song, H.; Casanova, J.L.; et al. IGF1R is an entry receptor for respiratory syncytial virus. Nature 2020, 583, 615–619, Erratum in Nature 2020, 583, E22. https://doi.org/10.1038/s41586-020-2437-z. [Google Scholar] [CrossRef] [PubMed]
- Pierangeli, A.; Scagnolari, C.; Antonelli, G. Respiratory syncytial virus. Minerva Pediatr. 2018, 70, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.; Gonzales, R.; Olson, S.; Wright, P.; Graham, B. The Histopathology of Fatal Untreated Human Respiratory Syncytial Virus Infection. Mod. Pathol. 2007, 20, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Wright, P.F.; Ikizler, M.R.; Gonzales, R.A.; Carroll, K.N.; Johnson, J.E.; Werkhaven, J.A. Growth of respiratory syncytial virus in primary epithelial cells from the human respiratory tract. J. Virol. 2005, 79, 8651–8654. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Daniels, D. A Review of Respiratory Syncytial Virus Epidemiology Among Children: Linking Effective Prevention to Vulnerable Populations. J. Pediatr. Infect. Dis. Soc. 2024, 13 (Suppl. S2), S131–S136. [Google Scholar] [CrossRef] [PubMed]
- Rayavara, K.; Kurosky, A.; Stafford, S.J.; Garg, N.J.; Brasier, A.R.; Garofalo, R.P.; Hosakote, Y.M. Proinflammatory Effects of Respiratory Syncytial Virus-Induced Epithelial HMGB1 on Human Innate Immune Cell Activation. J. Immunol. 2018, 201, 2753–2766. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Silva, G.S.D.; Borges, S.G.; Pozzebon, B.B.; Souza, A.P.D. Immune Responses to Respiratory Syncytial Virus Vaccines: Advances and Challenges. Microorganisms 2024, 12, 2305. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Efstathiou, C.; Zhang, Y.; Kandwal, S.; Fayne, D.; Molloy, E.J.; Stevenson, N.J. Respir-atory syncytial virus NS1 inhibits anti-viral Interferon-α-induced JAK/STAT signal-ing, by limiting the nuclear translocation of STAT1. Front. Immunol. 2024, 15, 1395809. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Liao, H.; Hu, Y.; Luo, K.; Hu, S.; Zhu, H. Innate Immune Evasion by Human Respiratory Syncytial Virus. Front. Microbiol. 2022, 13, 865592. [Google Scholar] [CrossRef] [PubMed]
- Russell, C.D.; Unger, S.A.; Walton, M.; Schwarze, J. The Human Immune Response to Respiratory Syncytial Virus Infection. Clin. Microbiol. Rev. 2017, 30, 481–502. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parveen, S.; Broor, S.; Kapoor, S.K.; Fowler, K.; Sullender, W.M. Genetic diversity among respiratory syncytial viruses that have caused repeated infections in children from rural India. J. Med. Virol. 2006, 78, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Eisenhut, M. Extrapulmonary manifestations of severe respiratory syncytial virus infection—A systematic review. Crit. Care 2006, 10, R107. [Google Scholar] [CrossRef] [PubMed]
- Piedimonte, G.; Perez, M.K. Respiratory syncytial virus infection and bronchiolitis. Pediatr. Rev. 2014, 35, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Manti, S.; Baraldi, E. Learn from international recommendations and experiences of countries that have successfully implemented monoclonal antibody prophylaxis for prevention of RSV infection. Ital. J. Pediatr. 2025, 51, 26. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Ye, C.; Zhou, R.; Ji, Z. Diagnostic value of routine blood tests in differentiating between SARS-CoV-2, influenza A, and RSV infections in hospitalized children: A retrospective study. BMC Pediatr. 2024, 24, 328. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kubota, J.; Hirano, D.; Okabe, S.; Yamauchi, K.; Kimura, R.; Numata, H.; Suzuki, T.; Kakegawa, D.; Ito, A. Utility of the Global Respiratory Severity Score for predicting the need for respiratory support in infants with respiratory syncytial virus infection. PLoS ONE 2021, 16, e0253532. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Rose, D.U.; Maddaloni, C.; Martini, L.; Braguglia, A.; Dotta, A.; Auriti, C. Comparison of three clinical scoring tools for bronchiolitis to predict the need for respiratory support and length of stay in neonates and infants up to three months of age. Front. Pediatr. 2023, 11, 1040354. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jung, B.K.; Choi, S.H.; Lee, J.H.; Lee, J.; Lim, C.S. Performance evaluation of four rapid antigen tests for the detection of Respiratory syncytial virus. J. Med. Virol. 2016, 88, 1720–1724. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, F.D.S.; Oliveira, D.B.L.; Crema, D.; Pinez, C.M.N.; Colmanetti, T.C.; Thomazelli, L.M.; Gilio, A.E.; Vieira, S.E.; Martinez, M.B.; Botosso, V.F.; et al. Rapid antigen detection test for respiratory syncytial virus diagnosis as a diagnostic tool. J. Pediatr. 2017, 93, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Hassan, F.; Hays, L.M.; Bonner, A.; Bradford, B.J.; Franklin, R., Jr.; Hendry, P.; Kaminetsky, J.; Vaughn, M.; Cieslak, K.; Moffatt, M.E.; et al. Multicenter Clinical Evaluation of the Alere i Respiratory Syncytial Virus Isothermal Nucleic Acid Amplification Assay. J. Clin. Microbiol. 2018, 56, e01777-17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, C.Y.; Hwang, D.; Chiu, N.C.; Weng, L.C.; Liu, H.F.; Mu, J.J.; Liu, C.P.; Chi, H. Increased Detection of Viruses in Children with Respiratory Tract Infection Using PCR. Int. J. Environ. Res. Public. Health 2020, 17, 564. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Henrickson, K.J.; Hall, C.B. Diagnostic assays for respiratory syncytial virus disease. Pediatr. Infect. Dis. J. 2007, 26, S36–S40. [Google Scholar] [CrossRef] [PubMed]
- Onwuchekwa, C.; Atwell, J.; Moreo, L.M.; Menon, S.; Machado, B.; Siapka, M.; Agarwal, N.; Rubbrecht, M.; Aponte-Torres, Z.; Rozenbaum, M.; et al. Pediatric Respiratory Syncytial Virus Diagnostic Testing Performance: A Systematic Review and Meta-analysis. J. Infect. Dis. 2023, 228, 1516–1527. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chung, H.Y.; Jian, M.J.; Chang, C.K.; Lin, J.C.; Yeh, K.M.; Chen, C.W.; Chiu, S.K.; Wang, Y.H.; Liao, S.J.; Li, S.Y.; et al. Novel dual multiplex real-time RT-PCR assays for the rapid detection of SARS-CoV-2, influenza A/B, and respiratory syncytial virus using the BD MAX open system. Emerg. Microbes Infect. 2021, 10, 161–166. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Domnich, A.; Bruzzone, B.; Trombetta, C.S.; De Pace, V.; Ricucci, V.; Varesano, S.; Garzillo, G.; Ogliastro, M.; Orsi, A.; Icardi, G. Rapid differential diagnosis of SARS-CoV-2, influenza A/B and respiratory syncytial viruses: Validation of a novel RT-PCR assay. J. Clin. Virol. 2023, 161, 105402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wang, L.; Deng, X.; Liang, R.; Su, M.; He, C.; Hu, L.; Su, Y.; Ren, J.; Yu, F.; et al. Recent advances in the detection of respiratory virus infection in humans. J. Med. Virol. 2020, 92, 408–417. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Domnich, A.; Massaro, E.; Icardi, G.; Orsi, A. Multiplex molecular assays for the laboratory-based and point-of-care diagnosis of infections caused by seasonal influenza, COVID-19, and RSV. Expert. Rev. Mol. Diagn. 2024, 24, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.T.; Nörz, D.; Grunwald, M.; Giersch, K.; Pfefferle, S.; Fischer, N.; Aepfelbacher, M.; Rohde, H.; Lütgehetmann, M. Analytical and clinical validation of a novel, laboratory-developed, modular multiplex-PCR panel for fully automated high-throughput detection of 16 respiratory viruses. J. Clin. Virol. 2024, 173, 105693. [Google Scholar] [CrossRef] [PubMed]
- Garzon, L.S.; Wiles, L. Management of respiratory syncytial virus with lower respiratory tract infection in infants and children. AACN Clin. Issues 2002, 13, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Krilov, L.R. Respiratory syncytial virus disease: Update on treatment and prevention. Expert. Rev. Anti-Infect. Ther. 2011, 9, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Kimberlin, D.W.; Barnett, E.D.; Lynfield, R.; Sawyer, M.H. Red Book: 2021–2024 Report of the Committee on Infectious Diseases; American Academy of Pediatrics: Itasca, IL, USA, 2021; 1146p. [Google Scholar]
- Smith, D.K.; Seales, S.; Budzik, C. Respiratory Syncytial Virus Bronchiolitis in Children. Am. Fam. Physician 2017, 95, 94–99. [Google Scholar] [PubMed]
- Hon, K.L.; Leung, A.K.C.; Wong, A.H.C.; Dudi, A.; Leung, K.K.Y. Respiratory Syncytial Virus is the Most Common Causative Agent of Viral Bronchiolitis in Young Children: An Updated Review. Curr. Pediatr. Rev. 2023, 19, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Tejada, S.; Martinez-Reviejo, R.; Karakoc, H.N.; Peña-López, Y.; Manuel, O.; Rello, J. Ribavirin for Treatment of Subjects with Respiratory Syncytial Virus-Related Infection: A Systematic Review and Meta-Analysis. Adv. Ther. 2022, 39, 4037–4051. [Google Scholar] [CrossRef] [PubMed]
- Manothummetha, K.; Mongkolkaew, T.; Tovichayathamrong, P.; Boonyawairote, R.; Meejun, T.; Srisurapanont, K.; Phongkhun, K.; Sanguankeo, A.; Torvorapanit, P.; Moonla, C.; et al. Ribavirin treatment for respiratory syncytial virus infection in patients with haematologic malignancy and haematopoietic stem cell transplant recipients: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2023, 29, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Luo, E.; Fan, L.; Zhang, W.; Yang, Y.; Du, Y.; Yang, X.; Xing, S. Clinical research on RSV prevention in children and pregnant women: Progress and perspectives. Front. Immunol. 2024, 14, 1329426. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pecenka, C.; Sparrow, E.; Feikin, D.R.; Srikantiah, P.; Darko, D.M.; Karikari-Boateng, E.; Baral, R.; Vizzotti, C.; Rearte, A.; Jalang’o, R.; et al. Respiratory syncytial virus vaccination and immunoprophylaxis: Realising the potential for protection of young children. Lancet 2024, 404, 1157–1170. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.; Tan, S.; Ma, D. Respiratory syncytial virus: From pathogenesis to potential therapeutic strategies. Int. J. Biol. Sci. 2021, 17, 4073–4091. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mohammed, M.H.A.; Agouba, R.; Obaidy, I.E.; Alhabshan, F.; Abu-Sulaiman, R. Palivizumab prophylaxis against respiratory syncytial virus infection in patients younger than 2 years of age with congenital heart disease. Ann. Saudi Med. 2021, 41, 31–35. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, D.; Cummins, C.; Bayliss, S.; Sandercock, J.; Burls, A. Immunoprophylaxis against respiratory syncytial virus (RSV) with palivizumab in children: A systematic review and economic evaluation. Health Technol. Assess. 2008, 12, 1–86. [Google Scholar] [CrossRef] [PubMed]
- Packnett, E.R.; Winer, I.H.; Larkin, H.; Oladapo, A.; Gonzales, T.; Wojdyla, M.; Goldstein, M.; Smith, V.C. RSV-related hospitalization and outpatient palivizumab use in very preterm (born at <29 wGA) infants: 2003–2020. Hum. Vaccines Immunother. 2022, 18, 2140533. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- See, K.C. Vaccination for Respiratory Syncytial Virus: A Narrative Review and Primer for Clinicians. Vaccines 2023, 11, 1809. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moline, H.L.; Tannis, A.; Toepfer, A.P.; Williams, J.V.; Boom, J.A.; Englund, J.A.; Halasa, N.B.; Staat, M.A.; Weinberg, G.A.; Selvarangan, R.; et al. Early Estimate of Nirsevimab Effectiveness for Prevention of Respiratory Syncytial Virus-Associated Hospitalization Among Infants Entering Their First Respiratory Syncytial Virus Season—New Vaccine Surveillance Network, October 2023–February 2024. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 209–214. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pérez Martín, J.J.; Zornoza Moreno, M. Implementation of the first respiratory syncytial (RSV) immunization campaign with nirsevimab in an autonomous community in Spain. Hum. Vaccines Immunother. 2024, 20, 2365804. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kieffer, A.; Beuvelet, M.; Moncayo, G.; Chetty, M.; Sardesai, A.; Musci, R.; Hudson, R. Disease Burden Associated with All Infants in Their First RSV Season in the UK: A Static Model of Universal Immunization with Nirsevimab Against RSV-Related Outcomes. Infect. Dis. Ther. 2024, 13, 2135–2153. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sevilla, J.P. Immunization, not vaccination: Monoclonal antibodies for infant RSV prevention and the US vaccines for children program. J. Med. Econ. 2023, 26, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Manolaridis, I.; Warren, C.; Tang, A.; O’Donnell, G.; Luo, B.; Staupe, R.P.; Vora, K.A.; Chen, Z. Anti-Idiotypic Antibody as a Booster Vaccine Against Respiratory Syncytial Virus. Vaccines 2025, 13, 35. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mazur, N.I.; Terstappen, J.; Baral, R.; Bardají, A.; Beutels, P.; Buchholz, U.J.; Cohen, C.; Crowe, J.E., Jr.; Cutland, C.L.; Eckert, L.; et al. Respiratory syncytial virus prevention within reach: The vaccine and monoclonal antibody landscape. Lancet Infect. Dis. 2023, 23, e2–e21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fleming-Dutra, K.E.; Jones, J.M.; Roper, L.E.; Prill, M.M.; Ortega-Sanchez, I.R.; Moulia, D.L.; Wallace, M.; Godfrey, M.; Broder, K.R.; Tepper, N.K.; et al. Use of the Pfizer Respiratory Syncytial Virus Vaccine During Pregnancy for the Prevention of Respiratory Syncytial Virus-Associated Lower Respiratory Tract Disease in Infants: Recommendations of the Advisory Committee on Immunization Practices—United States, 2023. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 1115–1122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Willemsen, J.E.; Borghans, J.A.M.; Bont, L.J.; Drylewicz, J. Maternal vaccination against RSV can substantially reduce childhood mortality in low-income and middle-income countries: A mathematical modeling study. Vaccine X 2023, 15, 100379. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kampmann, B.; Madhi, S.A.; Munjal, I.; Simões, E.A.F.; Pahud, B.A.; Llapur, C.; Baker, J.; Pérez Marc, G.; Radley, D.; Shittu, E.; et al. Bivalent Prefusion F Vaccine in Pregnancy to Prevent RSV Illness in Infants. N. Engl. J. Med. 2023, 388, 1451–1464. [Google Scholar] [CrossRef] [PubMed]
- Ishiwada, N.; Akaishi, R.; Kobayashi, Y.; Togo, K.; Yonemoto, N.; Matsuo, M.; Kaneko, S.; Law, A.W.; Kamei, K. Cost-Effectiveness Analysis of Maternal Respiratory Syncytial Virus Vaccine in Protecting Infants from RSV Infection in Japan. Infect. Dis. Ther. 2024, 13, 1665–1682. [Google Scholar] [CrossRef]
- Espeseth, A.S.; Cejas, P.J.; Citron, M.P.; Wang, D.; DiStefano, D.J.; Callahan, C.; Donnell, G.O.; Galli, J.D.; Swoyer, R.; Touch, S.; et al. Modified mRNA/lipid nanoparticle-based vaccines expressing respiratory syncytial virus F protein variants are immunogenic and protective in rodent models of RSV infection. npj Vaccines 2020, 5, 16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Topalidou, X.; Kalergis, A.M.; Papazisis, G. Respiratory Syncytial Virus Vaccines: A Review of the Candidates and the Approved Vaccines. Pathogens 2023, 12, 1259. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Xu, S.; Lu, Y.; Luo, Z.; Yan, Y.; Wang, C.; Ji, J. Development of mRNA vaccines against respiratory syncytial virus (RSV). Cytokine Growth Factor Rev. 2022, 68, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Thompson, W.W.; Shay, D.K.; Weintraub, E.; Brammer, L.; Cox, N.; Anderson, L.J.; Fukuda, K. Mortality associated with influenza and respiratory syncytial virus in the United States. J. Am. Med. Assoc. 2003, 289, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Nair, H.; Nokes, D.J.; Gessner, B.D.; Dherani, M.; Madhi, S.A.; Singleton, R.J.; O’Brien, K.L.; Roca, A.; Wright, P.F.; Bruce, N.; et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: A systematic review and meta-analysis. Lancet 2010, 375, 1545–1555. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chehab, M.S.; Bafagih, H.A.; Al-Dabbagh, M.M. Overview of bronchiolitis. Saudi Med. J. 2005, 26, 177–190. [Google Scholar] [PubMed]
- Binns, E.; Tuckerman, J.; Licciardi, P.V.; Wurzel, D. Respiratory syncytial virus, recurrent wheeze and asthma: A narrative review of pathophysiology, prevention and future directions. J. Paediatr. Child. Health 2022, 58, 1741–1746. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hyvärinen, M.; Kotaniemi-Syrjänen, A.; Reijonen, T.; Korhonen, K.; Korppi, M. Lung Function and Bronchial Hyper-Responsiveness 11 Years after Hospitalization for Bronchiolitis. Acta Paediatr. 2007, 96, 1464–1469. [Google Scholar] [CrossRef]
- Kajosaari, M.; Syvänen, P.; Förars, M.; Juntunen-Backman, K. Inhaled Corticosteroids during and after Respiratory Syncytial Virus-Bronchiolitis May Decrease Subsequent Asthma. Pediatr. Allergy Immunol. 2000, 11, 198–202. [Google Scholar] [CrossRef]
- Meier, K.; Riepl, A.; Voitl, P.; Lischka, L.; Voitl, J.; Langer, K.; Kuzio, U.; Redlberger-Fritz, M.; Diesner-Treiber, S. Characterisation of RSV Infections in Children without Chronic Diseases Aged 0-36 Months during the Post-COVID-19 Winter Season 2022/2023. Front. Pediatr. 2024, 12, 1342399. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asseri, A.A. Respiratory Syncytial Virus: A Narrative Review of Updates and Recent Advances in Epidemiology, Pathogenesis, Diagnosis, Management and Prevention. J. Clin. Med. 2025, 14, 3880. https://doi.org/10.3390/jcm14113880
Asseri AA. Respiratory Syncytial Virus: A Narrative Review of Updates and Recent Advances in Epidemiology, Pathogenesis, Diagnosis, Management and Prevention. Journal of Clinical Medicine. 2025; 14(11):3880. https://doi.org/10.3390/jcm14113880
Chicago/Turabian StyleAsseri, Ali Alsuheel. 2025. "Respiratory Syncytial Virus: A Narrative Review of Updates and Recent Advances in Epidemiology, Pathogenesis, Diagnosis, Management and Prevention" Journal of Clinical Medicine 14, no. 11: 3880. https://doi.org/10.3390/jcm14113880
APA StyleAsseri, A. A. (2025). Respiratory Syncytial Virus: A Narrative Review of Updates and Recent Advances in Epidemiology, Pathogenesis, Diagnosis, Management and Prevention. Journal of Clinical Medicine, 14(11), 3880. https://doi.org/10.3390/jcm14113880