Impact of Body Fat Distribution and Insulin Sensitivity on In Vitro Fertilization Outcomes: A Prospective Observational Study
Abstract
1. Background
2. Methods
2.1. Study Design and Participants
2.2. Inclusion and Exclusion Criteria
2.3. Anthropometric and Biochemical Assessment
2.4. Controlled Ovarian Stimulation Protocols
2.5. Oocyte Retrieval, Fertilization, and Embryo Transfer
2.6. Luteal Support and Pregnancy Evaluation
2.7. Study Groups and Outcomes
2.8. Sample Size and Statistical Analysis
3. Results
3.1. BMI
3.2. Waist-to-Hip Ratio (WHR)
3.3. HOMA Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Boutari, C.; Mantzoros, C.S. A 2022 update on the epidemiology of obesity and a call to action: As its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism 2022, 133, 155217. [Google Scholar] [CrossRef] [PubMed]
- Obesity and reproduction: A committee opinion. Fertil. Steril. 2021, 116, 1266–1285. [CrossRef] [PubMed]
- Sermondade, N.; Huberlant, S.; Bourhis-Lefebvre, V.; Arbo, E.; Gallot, V.; Colombani, M.; Fréour, T. Female obesity is negatively associated with live birth rate following IVF: A systematic review and meta-analysis. Hum. Reprod. Update 2019, 25, 439–451. [Google Scholar] [CrossRef]
- Goldman, K.N.; Hodes-Wertz, B.; McCulloh, D.H.; Flom, J.D.; Grifo, J.A. Association of body mass index with embryonic aneuploidy. Fertil. Steril. 2015, 103, 744–748. [Google Scholar] [CrossRef]
- Hallisey, S.; Makhijani, R.; Thorne, J.; Godiwala, P.; Nulsen, J.; Benadiva, C.; Grow, D.; Engmann, L. The association of obesity with euploidy rates in women undergoing in vitro fertilization with preimplantation genetic testing. J. Assist. Reprod. Genet. 2022, 39, 2521–2528. [Google Scholar] [CrossRef]
- Hughes, L.M.; McQueen, D.B.; Jungheim, E.S.; Merrion, K.; Boots, C.E. Maternal body mass index is not associated with increased rates of maternal embryonic aneuploidy. Fertil. Steril. 2022, 117, 783–789. [Google Scholar] [CrossRef]
- Stovezky, Y.R.; Romanski, P.A.; Bortoletto, P.; Spandorfer, S.D. Body mass index is not associated with embryo ploidy in patients undergoing in vitro fertilization with preimplantation genetic testing. Fertil. Steril. 2021, 116, 388–395. [Google Scholar] [CrossRef]
- Tremellen, K.; Pearce, K.; Zander-Fox, D. Increased miscarriage of euploid pregnancies in obese women undergoing cryopreserved embryo transfer. Reprod. Biomed. Online 2017, 34, 90–97. [Google Scholar] [CrossRef]
- Cozzolino, M.; García-Velasco, J.A.; Meseguer, M.; Pellicer, A.; Bellver, J. Female obesity increases the risk of miscarriage of euploid embryos. Fertil. Steril. 2021, 115, 1495–1502. [Google Scholar] [CrossRef]
- Zhu, L.; Zhou, B.; Zhu, X.; Cheng, F.; Pan, Y.; Zhou, Y.; Wu, Y.; Xu, Q. Association Between Body Mass Index and Female Infertility in the United States: Data from National Health and Nutrition Examination Survey 2013–2018. Int. J. Gen. Med. 2022, 15, 1821–1831. [Google Scholar] [CrossRef]
- Einarsson, S.; Bergh, C.; Friberg, B.; Pinborg, A.; Klajnbard, A.; Karlström, P.-O.; Kluge, L.; Larsson, I.; Loft, A.; Mikkelsen-Englund, A.-L.; et al. Weight reduction intervention for obese infertile women prior to IVF: A randomized controlled trial. Hum. Reprod. 2017, 32, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- A Healthy Lifestyle—WHO Recommendations. n.d. [Internet] 2023. Available online: https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations (accessed on 1 February 2025).
- Gába, A.; Přidalová, M. Diagnostic performance of body mass index to identify adiposity in women. Eur. J. Clin. Nutr. 2016, 70, 898–903. [Google Scholar] [CrossRef] [PubMed]
- Okorodudu, D.O.; Jumean, M.F.; Montori, V.M.; Romero-Corral, A.; Somers, V.K.; Erwin, P.J.; Lopez-Jimenez, F. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: A systematic review and meta-analysis. Int. J. Obes. 2010, 34, 791–799. [Google Scholar] [CrossRef]
- Fabozzi, G.; Verdone, G.; Allori, M.; Cimadomo, D.; Tatone, C.; Stuppia, L.; Franzago, M.; Ubaldi, N.; Vaiarelli, A.; Ubaldi, F.M.; et al. Personalized Nutrition in the Management of Female Infertility: New Insights on Chronic Low-Grade Inflammation. Nutrients 2022, 14, 1918. [Google Scholar] [CrossRef]
- Grieger, J.; Grzeskowiak, L.; Smithers, L.; Bianco-Miotto, T.; Leemaqz, S.; Andraweera, P.; Poston, L.; McCowan, L.; Kenny, L.; Myers, J.; et al. Metabolic syndrome and time to pregnancy: A retrospective study of nulliparous women. BJOG 2019, 126, 852–862. [Google Scholar] [CrossRef]
- Li, F.; Qi, J.J.; Li, L.X.; Yan, T.F. Impact of insulin resistance on IVF/ICSI outcomes in women with polycystic ovary syndrome: A systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2024, 299, 54–61. [Google Scholar] [CrossRef]
- de Koning, L.; Merchant, A.T.; Pogue, J.; Anand, S.S. Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: Meta-regression analysis of prospective studies. Eur. Heart J. 2007, 28, 850–856. [Google Scholar] [CrossRef]
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation, Geneva, 8–11 December 2008 [Internet]; World Health Organization: Geneva, Switzerland, 2008; Available online: https://apps.who.int/iris/handle/10665/44583 (accessed on 1 January 2020).
- Ramírez-Manent, J.I.; Jover, A.M.; Martinez, C.S.; Tomás-Gil, P.; Martí-Lliteras, P.; López-González, Á.A. Waist Circumference Is an Essential Factor in Predicting Insulin Resistance and Early Detection of Metabolic Syndrome in Adults. Nutrients 2023, 15, 257. [Google Scholar] [CrossRef]
- Sundaram, R.; Mumford, S.L.; Buck Louis, G.M. Couples’ body composition and time-to-pregnancy. Hum. Reprod. 2017, 32, 662–668. [Google Scholar] [CrossRef]
- Zaadstra, B.M.; Seidell, J.C.; A Van Noord, P.; Velde, E.R.T.; Habbema, J.D.; Vrieswijk, B.; Karbaat, J. Fat and female fecundity: Prospective study of effect of body fat distribution on conception rates. BMJ 1993, 306, 484–487. [Google Scholar] [CrossRef]
- Amsiejiene, A.; Drasutiene, G.; Usoniene, A.; Tutkuviene, J.; Vilsinskaite, S.; Barskutyte, L. The influence of age, body mass index, waist-to-hip ratio and anti-Mullerian hormone level on clinical pregnancy rates in ART. Gynecol. Endocrinol. 2017, 33, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Wass, P.; Waldenström, U.; Rössner, S.; Hellberg, D. An android body fat distribution in females impairs the pregnancy rate of in-vitro fertilization-embryo transfer. Hum. Reprod. 1997, 12, 2057–2060. [Google Scholar] [CrossRef] [PubMed]
- Christofolini, J.; Maria Christofolini, D.; Zaia, V.; Bianco, B.; Barbosa, C.P. Body fat distribution influences ART outcomes. Gynecol. Endocrinol. 2020, 36, 40–43. [Google Scholar] [CrossRef]
- Li, M.-C.; Mínguez-Alarcón, L.; Arvizu, M.; Chiu, Y.-H.; Ford, J.B.; Williams, P.L.; Attaman, J.; Hauser, R.; Chavarro, J.E. Waist circumference in relation to outcomes of infertility treatment with assisted reproductive technologies. Am. J. Obstet. Gynecol. 2019, 220, 578.e1–578.e13. [Google Scholar] [CrossRef]
- Setti, A.; Halpern, G.; Braga, D.; Figueira, R.; Iaconelli, A.; Borges, E. Association between parental anthropometric measures and the outcomes of intracytoplasmic sperm injection cycles. J. Assist. Reprod. Genet. 2019, 36, 461–471. [Google Scholar] [CrossRef]
- Joham, A.E.; Norman, R.J.; Stener-Victorin, E.; Legro, R.S.; Franks, S.; Moran, L.J.; Boyle, J.; Teede, H.J. Polycystic ovary syndrome. Lancet Diabetes Endocrinol. 2022, 10, 668–680. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and ?-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Allegra, A.; Marino, A.; Volpes, A.; Coffaro, F.; Scaglione, P.; Gullo, S.; La Marca, A. A randomized controlled trial investigating the use of a predictive nomogram for the selection of the FSH starting dose in IVF/ICSI cycles. Reprod. Biomed. Online 2017, 34, 429–438. [Google Scholar] [CrossRef]
- Holte, J.; Berglund, L.; Milton, K.; Garello, C.; Gennarelli, G.; Revelli, A.; Bergh, T. Construction of an evidence-based integrated morphology cleavage embryo score for implantation potential of embryos scored and transferred on day 2 after oocyte retrieval. Hum. Reprod. 2007, 22, 548–557. [Google Scholar] [CrossRef]
- Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: Proceedings of an expert meeting. Hum. Reprod. 2011, 26, 1270–1283. [Google Scholar] [CrossRef]
- Banatvala, N.; Bovet, P. (Eds.) Noncommunicable Diseases: A Compendium; Routledge: London, UK, 2023. [Google Scholar]
- Huber, M.; Hadziosmanovic, N.; Berglund, L.; Holte, J. Using the ovarian sensitivity index to define poor, normal, and high response after controlled ovarian hyperstimulation in the long gonadotropin-releasing hormone-agonist protocol: Suggestions for a new principle to solve an old problem. Fertil. Steril. 2013, 100, 1270–1276. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Katzmarzyk, P.T.; Ross, R. Waist circumference and not body mass index explains obesity-related health risk. Am. J. Clin. Nutr. 2004, 79, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Boyle, B.R.; Ablett, A.D.; Ochi, C.; Hudson, J.; Watson, L.; Rauh, D.; Avenell, A. The effect of weight loss interventions for obesity on fertility and pregnancy outcomes: A systematic review and meta-analysis. Int. J. Gynecol. Obstet. 2023, 161, 335–342. [Google Scholar] [CrossRef]
- Lee, S.; Bacha, F.; Gungor, N.; Arslanian, S.A. Waist circumference is an independent predictor of insulin resistance in black and white youths. J. Pediatr. 2006, 148, 188–194. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, Y.; Zhang, S.; Liu, H.; Zhang, C. Association of HOMA-IR with Ovarian Sensitivity Index in Women Undergoing IVF/ICSI: A Retrospective Cohort Study. Diabetes Metab. Syndr. Obes. 2023, 16, 309–320. [Google Scholar] [CrossRef]
- Zheng, Y.; Pan, Y.; Li, P.; Wang, Z.; Wang, Z.; Shi, Y. Ovarian Sensitivity Decreased Significantly in Patients With Insulin Resistance Undergoing in vitro Fertilization and Embryo Transfer. Front. Physiol. 2022, 12, 809419. [Google Scholar] [CrossRef]
- Harrison, T.N.H.; Chang, R.J. Ovarian response to follicle-stimulating hormone in women with polycystic ovary syndrome is diminished compared to ovulatory controls. Clin. Endocrinol. 2022, 97, 310–318. [Google Scholar] [CrossRef]
- Glueck, C.J.; Goldenberg, N. Characteristics of obesity in polycystic ovary syndrome: Etiology, treatment, and genetics. Metabolism 2019, 92, 108–120. [Google Scholar] [CrossRef]
- Vazquez Rocha, L.; Macdonald, I.; Alssema, M.; Færch, K. The Use and Effectiveness of Selected Alternative Markers for Insulin Sensitivity and Secretion Compared with Gold Standard Markers in Dietary Intervention Studies in Individuals without Diabetes: Results of a Systematic Review. Nutrients 2022, 14, 2036. [Google Scholar] [CrossRef]
- Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef]
- Cai, W.-Y.; Luo, X.; Song, J.; Ji, D.; Zhu, J.; Duan, C.; Wu, W.; Wu, X.-K.; Xu, J. Effect of Hyperinsulinemia and Insulin Resistance on Endocrine, Metabolic, and Reproductive Outcomes in Non-PCOS Women Undergoing Assisted Reproduction: A Retrospective Cohort Study. Front. Med. 2021, 8, 736320. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Gong, F. Immune cells in adipose tissue microenvironment under physiological and obese conditions. Endocrine 2024, 83, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, F.M.; Weschenfelder, J.; Sander, C.; Minkwitz, J.; Thormann, J.; Chittka, T.; Mergl, R.; Kirkby, K.C.; Faßhauer, M.; Stumvoll, M.; et al. Inflammatory cytokines in general and central obesity and modulating effects of physical activity. PLoS ONE 2015, 10, e0121971. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, N.; Moini, A.; Eftekhari-Yazdi, P.; Karimian, L.; Salman-Yazdi, R.; Zolfaghari, Z.; Arabipoor, A. Abdominal obesity can induce both systemic and follicular fluid oxidative stress independent from polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 184, 112–116. [Google Scholar] [CrossRef]
- Carosso, A.R.; van Eekelen, R.; Revelli, A.; Canosa, S.; Mercaldo, N.; Benedetto, C.; Gennarelli, G. Women in Advanced Reproductive Age: Are the Follicular Output Rate, the Follicle-Oocyte Index and the Ovarian Sensitivity Index Predictors of Live Birth in an IVF Cycle? J. Clin. Med. 2022, 11, 859. [Google Scholar] [CrossRef]
- Revelli, A.; Gennarelli, G.; Biasoni, V.; Chiadò, A.; Carosso, A.; Evangelista, F.; Paschero, C.; Filippini, C.; Benedetto, C. The Ovarian Sensitivity Index (OSI) Significantly Correlates with Ovarian Reserve Biomarkers, Is More Predictive of Clinical Pregnancy than the Total Number of Oocytes, and Is Consistent in Consecutive IVF Cycles. J. Clin. Med. 2020, 9, 1914. [Google Scholar] [CrossRef]
- Svensson, H.; Einarsson, S.; Olausson, D.; Kluge, L.; Bergh, C.; Edén, S.; Lönn, M.; Thurin-Kjellberg, A. Inflammatory and metabolic markers in relation to outcome of in vitro fertilization in a cohort of predominantly overweight and obese women. Sci. Rep. 2022, 12, 13331. [Google Scholar] [CrossRef]
- Prost, E.; Reignier, A.; Leperlier, F.; Caillet, P.; Barrière, P.; Fréour, T.; Lefebvre, T. Female obesity does not impact live birth rate after frozen-thawed blastocyst transfer. Hum. Reprod. 2020, 35, 859–865. [Google Scholar] [CrossRef]
Number of participants | 265 |
Age (years) | 36 [33–39] |
BMI (kg/m2) | 22.8 [20.9–26.9] |
Smoker, n (%) | |
Never | 67% |
Past | 12% |
Current | 21% |
Infertility diagnosis | |
Male factor | 40.7% (108/265) |
Female factor | 39.6% (105/265) |
Unexplained | 19.6% (52/265) |
Treatment protocol | |
GnRH antagonist | 52.0% (138/265) |
GnRH agonist | 48.0% (127/265) |
IVF | 38.8% (103/265) |
ICSI | 61.2% (162/265) |
Hip circumference (HC) | 92.8 ± 10.5 |
Waist circumference (WC) | 86 [75–96] |
Waist-to-hip ratio (WHR), mean (SD) | 0.93 [0.86–1.2] |
AFC | 12 [8–20] |
AMH | 2.4 [1.1–4.9] |
HOMA index | 1.06 [0.59–1.81] |
BMI < 25 | BMI ≥ 25–29.9 | BMI ≥ 30 | p-Value | |
---|---|---|---|---|
N | 170 | 64 | 31 | |
Age (years) | 36 ± 3.9 | 35.8 ± 5.0 | 34.8 ± 5.4 | NS |
WC (cm) | 73.8 ± 6.9 | 85.4 ± 3.7 | 95.8 ± 8.9 | <0.05 |
WHR | 0.84 ± 0.09 | 0.86 ± 0.08 | 0.9 ± 0.07 | <0.05 |
AFC | 14.7 ± 9.5 | 14.6 ± 9.3 | 12.9 ± 8.4 | NS |
AMH (ƿg/L). | 3.67 ± 4.42 | 3.62 ± 4.22 | 3.22 ± 2.90 | NS |
HOMA index. | 1.00 ± 0.91 | 2.21 ± 1.81 | 2.51 ± 1.88 | <0.05 |
Mean FSH dose (UI). | 216 ± 85 | 229 ± 83 | 228 ± 86 | NS |
Total FSH dose (UI). | 2451 ± 1189 | 2706 ± 1249 | 2686 ± 1030 | NS |
Duration of stimulation (days) | 11.2 ± 1.9 | 11.7 ± 2.2 | 11.7 ± 1.8 | NS |
Estradiol peak at trigger (pmol/L) | 1728 ± 1227 | 1678 ± 1080 | 1440 ± 699 | NS |
Number of retrieved oocytes | 8.9 ± 6.1 | 8.0 ± 5.7 | 8.2 ± 5.2 | NS |
Number of mature oocytes (MII) | 7.2 ± 4.7 | 6.1 ± 4.2 | 6.8 ± 4.7 | NS |
OSI | 5.2 ± 5.3 | 4.2 ± 4.6 | 3.6 ± 2.9 | NS |
Fertilization rate | 85.8 ± 21.1 | 85.4 ± 24.9 | 82.1 ± 27.2 | NS |
Fertilization rate | ||||
IVF | 90 ± 14 | 97 ± 6 | 94 ± 12 | NS |
ICSI | 82 ± 24 | 81 ± 28 | 78 ± 30 | NS |
Proportion ICSI/IVF (%) | 68.2/31.8 | 73.4/26.6 | 74.2/25.8 | NS |
Number of embryos to ET | 1.6 ± 0.5 | 1.5 ± 0.5 | 1.7 ± 0.5 | NS |
Proportion D3/D5 to ET (%) | 69.7/30.3 | 70.8/29.2 | 76.9/23.1 | NS |
Cryopreserved blastocysts | 1.7 ± 1.2 | 1.6 ± 1.1 | 1.9 ± 1.5 | NS |
Clinical pregnancy rate * | 41% (65/159) | 41% (23/56) | 26% (7/27) | NS |
Miscarriage rate * | 15% (10/65) | 5% (3/56) | 7% (2/27) | NS |
Live birth rate * | 35% (55/159) | 36% (20/56) | 19% (5/27) | NS |
WHR ≥ 0.85 | WHR < 0.85 | p-Value | |
---|---|---|---|
N | 146 | 119 | |
Age (years) | 36 ± 4.5 | 35.6 ± 4.3 | NS |
BMI (kg/m2) | 24.7 ± 4.5 | 23.2 ± 3.7 | <0.05 |
AFC | 14.6 ± 9.2 | 14.4 ± 9.4 | NS |
AMH (ƿg/L) | 3.67 ± 4.48 | 3.47 ± 3.82 | NS |
HOMA index | 1.54 ± 1.50 | 1.16 ± 1.05 | <0.05 |
Mean FSH dose (UI) | 232 ± 80 | 204 ± 87 | <0.05 |
Total FSH dose (UI) | 2622 ± 1060 | 2423 ± 1321 | <0.05 |
Duration of stimulation (days) | 11 ± 1.7 | 11 ± 2.2 | <0.05 |
Estradiol peak at trigger (pmol/L) | 1736 ± 1253 | 1911 ± 984 | NS |
Number of retrieved oocytes | 7.3 ± 4.2 | 8.8 ± 5.6 | NS |
Number of mature oocytes (MII) | 6.0 ± 3.7 | 7.1 ± 4.6 | NS |
OSI | 3.4 ± 2.3 | 4.9 ± 4.1 | <0.05 |
Fertilization rate | 82.9 ± 24.0 | 88.3 ± 20.7 | <0.05 |
Fertilization rate | |||
IVF | 92 ± 13 | 91 ± 13 | NS |
ICSI | 78 ± 27 | 86 ± 24 | <0.01 |
Proportion ICSI/IVF (%) | 65.7/34.3 | 61.3/38.7 | NS |
Number of embryos to ET | 1.5 ± 0.5 | 1.6 ± 0.5 | NS |
Proportion D3/D5 to ET (%) | 67.5/32.5 | 74.5/25.5 | NS |
Cryopreserved blastocysts | 1.6 ± 1.3 | 1.7 ± 1.1 | NS |
Clinical pregnancy rate * | 39% (53/134) | 38.5% (42/108) | NS |
Miscarriage rate * | 19% (10/53) | 12% (5/42) | NS |
Live birth rate * | 32% (43/134) | 34% (37/108) | NS |
WC > 80 cm | WC ≤ 80 cm | p-Value | |
---|---|---|---|
N | 102 | 163 | |
Age (years) | 35.7 ± 4.6 | 35.9 ± 4.1 | NS |
BMI (kg/m2) | 27.7 ± 3.8 | 21.8 ± 2.6 | <0.05 |
AFC | 13.6 ± 8.5 | 15.1 ± 9.7 | NS |
AMH (ƿg/L) | 3.0 ± 2.6 | 3.9 ± 4.8 | NS |
HOMA index | 2.1 ± 1.8 | 0.9 ± 0.6 | <0.05 |
Mean FSH dose (UI) | 232 ± 78 | 212 ± 87 | <0.05 |
Total FSH dosage (UI) | 2662 ± 1069 | 2452 ± 1249 | <0.05 |
Duration of stimulation (days) | 11 ± 2 | 11 ± 1.9 | NS |
Estradiol peak at trigger (pmol/L) | 1732 ± 1294 | 1648 ± 1036 | NS |
Number of retrieved oocytes | 7.1 ± 4.5 | 8.4 ± 4.5 | NS |
Number of mature oocytes (MII) | 6.0 ± 3.9 | 6.8 ± 4.3 | NS |
OSI | 3.2 ± 2.5 | 4.6 ± 3.9 | <0.05 |
Fertilization rate | 84.2 ± 22.8 | 86.0 ± 22.7 | NS |
Proportion ICSI/IVF (%) | 69.6/30.4 | 60.1/39.9 | NS |
Number of embryos to ET | 1.6 ± 0.5 | 1.6 ± 0.5 | NS |
Proportion D3/D5 to ET (%) | 69.1/30.9 | 71.7/28.3 | NS |
Cryopreserved blastocysts | 1.6 ± 1.2 | 1.7 ± 1.2 | NS |
Clinical pregnancy rate * | 39% (36/91) | 39% (59/151) | NS |
Miscarriage rate * | 19% (7/36) | 14% (8/59) | NS |
Live birth rate * | 32% (29/92) | 34% (51/152) | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carosso, A.R.; Revelli, A.; Ruffa, A.; Carosso, M.; Contangelo, G.; Benedetto, C.; Gennarelli, G. Impact of Body Fat Distribution and Insulin Sensitivity on In Vitro Fertilization Outcomes: A Prospective Observational Study. J. Clin. Med. 2025, 14, 3848. https://doi.org/10.3390/jcm14113848
Carosso AR, Revelli A, Ruffa A, Carosso M, Contangelo G, Benedetto C, Gennarelli G. Impact of Body Fat Distribution and Insulin Sensitivity on In Vitro Fertilization Outcomes: A Prospective Observational Study. Journal of Clinical Medicine. 2025; 14(11):3848. https://doi.org/10.3390/jcm14113848
Chicago/Turabian StyleCarosso, Andrea Roberto, Alberto Revelli, Alessandro Ruffa, Marco Carosso, Gianvito Contangelo, Chiara Benedetto, and Gianluca Gennarelli. 2025. "Impact of Body Fat Distribution and Insulin Sensitivity on In Vitro Fertilization Outcomes: A Prospective Observational Study" Journal of Clinical Medicine 14, no. 11: 3848. https://doi.org/10.3390/jcm14113848
APA StyleCarosso, A. R., Revelli, A., Ruffa, A., Carosso, M., Contangelo, G., Benedetto, C., & Gennarelli, G. (2025). Impact of Body Fat Distribution and Insulin Sensitivity on In Vitro Fertilization Outcomes: A Prospective Observational Study. Journal of Clinical Medicine, 14(11), 3848. https://doi.org/10.3390/jcm14113848