Serum Concentrations of Selected Biological Factors as a Potential Tool for Detecting Recurrence in Endocrine Tumors—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Data Collection and Determination of Serum Biochemical Factor Concentration
2.3. Statistical Analysis
2.4. Baseline Patients Characteristics
2.5. Analysis in the NET Group
2.5.1. Effect of Somatostatin Analog Type on Assay Results
2.5.2. Impact of Primary Focus Location and NET Grading on the Assays Results
2.6. Impact of Gender on the Results of the Assays
3. Discussion
3.1. TNF-Alpha as a Marker of Endocrine Neoplasms
3.2. Role of Fascin in Endocrine Neoplasms
3.3. VEGF and the Impact of Somatostatin Analogs
3.4. Other Biomarkers
3.5. Limitations and Future Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aluri, V.; Dillon, J.S. Biochemical Testing in Neuroendocrine Tumors. Endocrinol. Metab. Clin. N. Am. 2017, 46, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.E.; Ciafardini, C.; Sciola, V.; Conte, D.; Massironi, S. Chromogranin A in the Follow-Up of Gastroenteropancreatic Neuroendocrine Neoplasms: Is It Really Game Over? A Systematic Review and Meta-Analysis. Pancreas 2018, 47, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Smolkova, B.; Kataki, A.; Earl, J.; Ruz-Caracuel, I.; Cihova, M.; Urbanova, M.; Buocikova, V.; Tamargo, S.; Rovite, V.; Niedra, H.; et al. Liquid Biopsy and Preclinical Tools for Advancing Diagnosis and Treatment of Patients with Pancreatic Neuroendocrine Neoplasms. Crit. Rev. Oncol. Hematol. 2022, 177, 103865. [Google Scholar] [CrossRef]
- Modlin, I.M.; Bodei, L.; Kidd, M. Neuroendocrine Tumor Biomarkers: From Monoanalytes to Transcripts and Algorithms. Best Pract. Res. Clin. Endocrinol. Metab. 2016, 30, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Cella, C.A.; Spada, F.; Berruti, A.; Bertolini, F.; Mancuso, P.; Barberis, M.; Pisa, E.; Rubino, M.; Gervaso, L.; Laffi, A.; et al. Addressing the Role of Angiogenesis in Patients with Advanced Pancreatic Neuroendocrine Tumors Treated with Everolimus: A Biological Prospective Analysis of Soluble Biomarkers and Clinical Outcomes. Cancers 2022, 14, 4471. [Google Scholar] [CrossRef]
- Pavel, M.E.; Hassler, G.; Baum, U.; Hahn, E.G.; Lohmann, T.; Schuppan, D. Circulating of Angiogenic Cytokines Can Predict Tumour Progression and Prognosis in Neuroendocrine Carcinomas. Clin. Endocrinol. 2005, 62, 434–443. [Google Scholar] [CrossRef]
- Mateo, J.; Heymach, J.V.; Zurita, A.J. Circulating Biomarkers of Response to Sunitinib in Gastroenteropancreatic Neuroendocrine Tumors: Current Data and Clinical Outlook. Mol. Diagn. Ther. 2012, 16, 151–161. [Google Scholar] [CrossRef]
- Zurita, A.J.; Khajavi, M.; Wu, H.K.; Tye, L.; Huang, X.; Kulke, M.H.; Lenz, H.J.; Meropol, N.J.; Carley, W.; DePrimo, S.E.; et al. Circulating Cytokines and Monocyte Subpopulations as Biomarkers of Outcome and Biological Activity in Sunitinib-Treated Patients with Advanced Neuroendocrine Tumours. Br. J. Cancer 2015, 112, 1199–1205. [Google Scholar] [CrossRef]
- Sandra, I.; Cazacu, I.M.; Croitoru, V.M.; Mihaila, M.; Herlea, V.; Diculescu, M.M.; Dima, S.O.; Croitoru, A.E. Circulating Angiogenic Markers in Gastroenteropancreatic Neuroendocrine Neoplasms: A Systematic Review. Curr. Issues Mol. Biol. 2022, 44, 4001–4014. [Google Scholar] [CrossRef]
- Ferguson, L.R.; Huebner, C.; Petermann, I.; Gearry, R.B.; Barclay, M.L.; Demmers, P.; McCulloch, A.; Han, D.H. Single Nucleotide Polymorphism in the Tumor Necrosis Factor-Alpha Gene Affects Inflammatory Bowel Diseases Risk. World J. Gastroenterol. 2008, 14, 4652–4661. [Google Scholar] [CrossRef]
- Wang, X.; Lin, Y. Tumor Necrosis Factor and Cancer, Buddies or Foes? Acta Pharmacol. Sin. 2008, 29, 1275–1288. [Google Scholar] [CrossRef] [PubMed]
- Mahečić, D.H.; Berković, M.C.; Zjačić-Rotkvić, V.; Čačev, T.; Kapitanović, S.; Ulamec, M. Inflammation-Related Cytokines and Their Roles in Gastroenteropancreatic Neuroendocrine Neoplasms. Bosn. J. Basic Med. Sci. 2020, 20, 445–450. [Google Scholar] [CrossRef]
- Budek, M.; Nuszkiewicz, J.; Czuczejko, J.; Maruszak-Parda, M.; Wróblewska, J.; Wojtasik, J.; Hołyńska-Iwan, I.; Pawłowska, M.; Woźniak, A.; Szewczyk-Golec, K. Searching for New Biomarkers of Neuroendocrine Tumors: A Comparative Analysis of Chromogranin A and Inflammatory Cytokines in Patients with Neuroendocrine Tumors. Curr. Oncol. 2024, 31, 6110–6132. [Google Scholar] [CrossRef]
- Tampakis, A.; Tampaki, E.C.; Nonni, A.; Kostakis, I.D.; Posabella, A.; Kontzoglou, K.; von Flüe, M.; Felekouras, E.; Kouraklis, G.; Nikiteas, N. High Fascin-1 Expression in Colorectal Cancer Identifies Patients at High Risk for Early Disease Recurrence and Associated Mortality. BMC Cancer 2021, 21, 193. [Google Scholar] [CrossRef]
- Chen, C.; Xie, B.; Li, Z.; Chen, L.; Chen, Y.; Zhou, J.; Ju, S.; Zhou, Y.; Zhang, X.; Zhuo, W.; et al. Fascin Enhances the Vulnerability of Breast Cancer to Erastin-Induced Ferroptosis. Cell Death Dis. 2022, 13, 187. [Google Scholar] [CrossRef]
- Ou, C.; Sun, Z.; He, X.; Li, X.; Fan, S.; Zheng, X.; Peng, Q.; Li, G.; Li, X.; Ma, J. Targeting YAP1/LINC00152/FSCN1 Signaling Axis Prevents the Progression of Colorectal Cancer. Adv. Sci. 2020, 7, 1901380. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, T.; Li, Z.Y.; Wang, C.Y.; Deng, R.; Deng, W.Y.; Yang, A.K.; Chen, Y.F.; Li, H. FSCN1 Is an Effective Marker of Poor Prognosis and a Potential Therapeutic Target in Human Tongue Squamous Cell Carcinoma. Cell Death Dis. 2019, 10, 369. [Google Scholar] [CrossRef]
- Wu, D.; Chen, L.; Liao, W.; Ding, Y.; Zhang, Q.; Li, Z.; Liu, L. Fascin1 Expression Predicts Poor Prognosis in Patients with Nasopharyngeal Carcinoma and Correlates with Tumor Invasion. Ann. Oncol. 2009, 21, 589–596. [Google Scholar] [CrossRef]
- Lin, S.; Li, Y.; Wang, D.; Huang, C.; Marino, D.; Bollt, O.; Wu, C.; Taylor, M.D.; Li, W.; DeNicola, G.M.; et al. Fascin Promotes Lung Cancer Growth and Metastasis by Enhancing Glycolysis and PFKFB3 Expression. Cancer Lett. 2021, 518, 230–242. [Google Scholar] [CrossRef]
- Lin, S.; Taylor, M.D.; Singh, P.K.; Yang, S. How Does Fascin Promote Cancer Metastasis? FEBS J. 2021, 288, 1434–1446. [Google Scholar] [CrossRef]
- Cigrovski Berković, M.; Čačev, T.; Catela Ivković, T.; Marout, J.; Ulamec, M.; Zjačić-Rotkvić, V.; Kapitanović, S. High VEGF Serum Values Are Associated with Locoregional Spread of Gastroenteropancreatic Neuroendocrine Tumors (GEP-NETs). Mol. Cell. Endocrinol. 2016, 425, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Rosiek, V.; Janas, K.; Kos-Kudła, B. Association between Biomarkers (VEGF-R2, VEGF-R3, VCAM-1) and Treatment Duration in Patients with Neuroendocrine Tumors Receiving Therapy with First-Generation Somatostatin Analogues. Biomedicines 2023, 11, 842. [Google Scholar] [CrossRef] [PubMed]
- Cousin, J.M.; Cloninger, M.J. The Role of Galectin-1 in Cancer Progression, and Synthetic Multivalent Systems for the Study of Galectin-1. Int. J. Mol. Sci. 2016, 17, 1566. [Google Scholar] [CrossRef]
- Li, S.; Pritchard, D.M.; Yu, L.G. Galectin-3 Promotes Secretion of Proteases That Decrease Epithelium Integrity in Human Colon Cancer Cells. Cell Death Dis. 2023, 14, 268. [Google Scholar] [CrossRef] [PubMed]
- Vitale, G.; Cozzolino, A.; Malandrino, P.; Minotta, R.; Puliani, G.; Saronni, D.; Faggiano, A.; Colao, A. Role of FGF System in Neuroendocrine Neoplasms: Potential Therapeutic Applications. Front. Endocrinol. 2021, 12, 665631. [Google Scholar] [CrossRef]
- Ornitz, D.M.; Itoh, N. The Fibroblast Growth Factor Signaling Pathway. Wiley Interdiscip. Rev. Dev. Biol. 2015, 4, 215–266. [Google Scholar] [CrossRef]
- Koumarianou, A.; Alexandraki, K.I.; Wallin, G.; Kaltsas, G.; Daskalakis, K. Pathogenesis and Clinical Management of Mesenteric Fibrosis in Small Intestinal Neuroendocrine Neoplasms: A Systematic Review. J. Clin. Med. 2020, 9, 1777. [Google Scholar] [CrossRef]
Group | No | Female/Male | Median Age (Range) Years | Dissemniation of npl (No) | |
---|---|---|---|---|---|
Control | 25 | 20/5 | 51 (26–78) | 0 | |
NET | Total | 30 | 17/13 | 66 (26–86) | 30 |
Pancreatic NETs (panNET) | 12 (1 insulinoma) | ||||
Small Intestine NETs (siNET) | 11 (5 carcinoid syndrome) | ||||
Other NETs (rectum, stomach, lung) | 7 | ||||
MTC | 6 | 1/5 | 56 (37–65) | 6 | |
ACC | 3 | 2/1 | 63 (44–89) | 3 | |
PG | 4 | 2/2 | 54.5 (40–61) | 4 |
Parameter | Patients Value (Range) | Control Group Value (Range) | p |
---|---|---|---|
VEGF (ng/mL) | 391.90 (9.08–2100.00) | 306.50 (0.00–901.40) | 0.245 |
TNF-α (ng/mL) | 2.88 (0.00–9.89) | 0.93 (0.00–5.70) | 0.008 |
Galectin-1 (ng/mL) | 1.6500 (0.85–3.28) | 1.64 (0.00–5.19) | 0.983 |
Galectin-3 (ng/mL) | 2.64 (1.23–6.64) | 2.69 (0.92–8.06) | 0.873 |
Fascin (ng/mL) | 4.95 (0.00–100.00) | 3.67 (0.00–100.00) | 0.245 |
FGF (ng/mL) | 2.2750 (0.00–23.88) | 5.8300 (0.00–32.14) | 0.065 |
Factor | NET Patients Value (Range) No 30 | MTC Patients Value (Range) No 6 | Adrenal Neoplasm Value (Range) No 7 | Control Group Value (Range) No 25 | p |
---|---|---|---|---|---|
Fascin (ng/mL) | 5.59 (0.00–100.00) | 0.52 (0.02–4.17) | 5.28 (1.13–17.95) | 3.67 (0.00–100.00) | 0.035 |
TNF-α (ng/mL) | 2.88 (0.00–9.89) | 2.77 (1.65–5.62) | 0.65 (0.00–5.14) | 0.93 (0.00–5.7) | 0.007 |
Parameter | Lanreotide Use Value (Range) No 22 | Octreotide Use Value (Range) No 7 | p |
---|---|---|---|
VEGF (ng/mL) | 309.1000 (9.08–860.10) | 488.6000 (302.70–558.30) | 0.035 |
TNF-α (ng/mL) | 2.9200 (0.00–9.89) | 1.4900 (0.00–5.26) | 1.000 |
Galectin-1 (ng/mL) | 2.0050 (0.00–3.69) | 1.6200 (1.39–5.19) | 1.000 |
Galectin-3 (ng/mL) | 2.8300 (1.23–5.08) | 2.4500 (1.37–5.10) | 1.000 |
Fascin (ng/mL) | 5.4900 (0.00–54.52) | 4.8400 (0.27–20.03) | 1.000 |
FGF (ng/mL) | 3.8150 (0.00–23.88) | 0.0000 (0.00–22.65) | 1.000 |
Parameter | panNET Value (Range) No 12 | siNET Value (Range) No 11 | Other NET Value (Range) No 7 | p |
---|---|---|---|---|
VEGF (ng/mL) | 359.4500 (9.08–860.00) | 410.9000 (96.80–558.30) | 306.50 (0.00–901.40) | 0.753 |
TNF-α (ng/mL) | 4.4900 (0.00–9.89) | 1.4900 (0.00–6.69) | 0.93 (0.00–5.70) | 0.040 |
Galectin-1 (ng/mL) | 2.2600 (0.00–5.19) | 1.5700 (1.39–3.77) | 1.64 (0.00–5.19) | 0.218 |
Galectin-3 (ng/mL) | 2.64 (1.23–5.08) | 3.0700 (2.33–54.52) | 2.69 (0.92–8.06) | 0.890 |
Fascin (ng/mL) | 2.88 (0.85–26.78) | 6.6950 (2.33–54.52) | 3.67 (0.00–100.00) | 0.890 |
FGF (ng/mL) | 2.530 (0.00–14.48) | 0.6000 (0.00–15.02) | 5.8300 (0.00–32.14) | 0.890 |
Parameter | G1 Value (Range) No 10 | G2 Value (Range) No 18 | p |
---|---|---|---|
VEGF (ng/mL) | 410.9000 (96.80–558.30) | 368.1000 (114.30–860.10) | 1.000 |
TNF-α (ng/mL) | 2.4500 (0.00–5.94) | 2.9600 (0.00–9.89) | 0.411 |
Galectin-1 (ng/mL) | 1.6000 (1.39–5.19) | 1.9700 (1.16–3.32) | 1.000 |
Galectin-3 (ng/mL) | 2.5200 (1.37–5.10) | 3.1400 (1.23–5.08) | 1.000 |
Fascin (ng/mL) | 4.8400 (2.33–54.52) | 5.6900 (0.00–26.78) | 1.000 |
FGF (ng/mL) | 6.3100 (0.00–22.65) | 4.5300 (0.00–23.88) | 1.000 |
Parameter | Females Value (Range) No 18 | Males Value (Range) No 12 | p |
---|---|---|---|
VEGF (ng/mL) | 456.7000 (114.30–860.10) | 327.0500 (9.08–558.30) | 0.264 |
TNF-α (ng/mL) | 2.1850 (0.00–7.64) | 3.1800 (0.00–9.89) | 1.000 |
Galectin-1 (ng/mL) | 1.8950 (1.16–5.19) | 2.0300 (0.00–3.77) | 0.710 |
Galectin-3 (ng/mL) | 3.1550 (1.23–5.08) | 2.3400 (1.26–5.10) | 0.060 |
Fascin (ng/mL) | 5.6900 (0.00–54.52) | 4.7550 (0.27–11.90) | 1.000 |
FGF (ng/mL) | 3.5550 (0.00–22.65) | 2.5350 (0.00–23.88) | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurzynska, A.; Przybylik-Mazurek, E.; Morawiec-Slawek, K.; Kolasa, M.; Tkacz, E.; Stefanska, A.; Szuminska, M.; Sowa-Staszczak, A.; Brodowicz, J.; Gawlik, K.; et al. Serum Concentrations of Selected Biological Factors as a Potential Tool for Detecting Recurrence in Endocrine Tumors—A Pilot Study. J. Clin. Med. 2025, 14, 3732. https://doi.org/10.3390/jcm14113732
Kurzynska A, Przybylik-Mazurek E, Morawiec-Slawek K, Kolasa M, Tkacz E, Stefanska A, Szuminska M, Sowa-Staszczak A, Brodowicz J, Gawlik K, et al. Serum Concentrations of Selected Biological Factors as a Potential Tool for Detecting Recurrence in Endocrine Tumors—A Pilot Study. Journal of Clinical Medicine. 2025; 14(11):3732. https://doi.org/10.3390/jcm14113732
Chicago/Turabian StyleKurzynska, Anna, Elwira Przybylik-Mazurek, Karolina Morawiec-Slawek, Magdalena Kolasa, Edyta Tkacz, Agnieszka Stefanska, Małgorzata Szuminska, Anna Sowa-Staszczak, Justyna Brodowicz, Katarzyna Gawlik, and et al. 2025. "Serum Concentrations of Selected Biological Factors as a Potential Tool for Detecting Recurrence in Endocrine Tumors—A Pilot Study" Journal of Clinical Medicine 14, no. 11: 3732. https://doi.org/10.3390/jcm14113732
APA StyleKurzynska, A., Przybylik-Mazurek, E., Morawiec-Slawek, K., Kolasa, M., Tkacz, E., Stefanska, A., Szuminska, M., Sowa-Staszczak, A., Brodowicz, J., Gawlik, K., Pawlica-Gosiewska, D., Solnica, B., Hubalewska-Dydejczyk, A., & Opalinska, M. (2025). Serum Concentrations of Selected Biological Factors as a Potential Tool for Detecting Recurrence in Endocrine Tumors—A Pilot Study. Journal of Clinical Medicine, 14(11), 3732. https://doi.org/10.3390/jcm14113732