Is Targeting LDL-C Levels Below 70 mg/dL Beneficial for Cardiovascular and Overall Health? A Critical Examination of the Evidence
Abstract
:1. Introduction
- (1)
- The supposed direct correlation between LDL-C levels and atherosclerosis progression is questionable;
- (2)
- The systematic reviews that provided the foundation for this assumption have several limitations, including extrapolation of results for LDL-C levels beyond observed data;
- (3)
- Potential bias due to the ecological fallacy stemming from meta-regression results based on study-level rather than patient-level analyses;
- (4)
- Inconsistent findings from trials specifically designed to investigate the relationship between LDL-C targets and CVD risk;
- (5)
- Research documenting greater longevity of elderly individuals with familial—as well as non-familial—hypercholesterolemia contradicts the premise that lower LDL-C levels are ideal.
2. Challenging the Assumed Link Between LDL-C Reduction and Atherosclerotic Plaque Regression
3. Lack of Association Between LDL-C Levels and Cardiovascular Events
4. Inconsistent Clinical Outcomes and Bias in Trials with a Specific LDL-C Target
5. Heterogeneity of LDL-C Particles
6. Pleiotropic Effects of Lipid-Lowering Therapy
7. Hypercholesterolemia, Longevity, and Immune Function
8. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grundy, S.M.; Cleeman, J.I.; Merz, C.N.; Brewer, H.B., Jr.; Clark, L.T.; Hunninghake, D.B.; Pasternak, R.C.; Smith, S.C., Jr.; Stone, N.J. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 2004, 110, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Authors/Task Force Members; ESC Committee for Practice Guidelines (CPG); ESC National Cardiac Societies; Mach, F.; Baigent, C. 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Atherosclerosis 2019, 290, 140–205. [Google Scholar] [CrossRef]
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement fromthe European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef] [PubMed]
- Sedgwick, P. Understanding the ecological fallacy. BMJ 2015, 3, h4773. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Abd ElHafeez, S.; Jager, K.J.; Dekker, F.W.; Stel, V.S.; Pitino, A.; Zoccali, C.; Tripepi, G. Be careful with ecological associations. Nephrology 2021, 2, 501–505. [Google Scholar] [CrossRef]
- Wiviott, S.D.; Mohanavelu, S.; Raichlen, J.S.; Cain, V.A.; Nissen, S.E.; Libby, P. Safety and Efficacy of Achieving Very Low Low-Density Lipoprotein Cholesterol Levels With Rosuvastatin 40 mg Daily (from the ASTEROID Study). Am. J. Cardiol. 2009, 104, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Puri, R.; Nissen, S.E.; Libby, P.; Shao, M.; Ballantyne, C.M.; Barter, P.J.; Chapman, M.J.; Erbel, R.; Raichlen, J.S.; Uno, K.; et al. C-reactive protein, but not low-density lipoprotein cholesterol levels, associate with coronary atheroma regression and cardiovascular events after maximally intensive statin therapy. Circulation 2013, 128, 2395–2403. [Google Scholar] [CrossRef]
- Nissen, S.E.; Tuzcu, E.M.; Schoenhagen, P.; Crowe, T.; Sasiela, W.J.; Tsai, J.; Orazem, J.; Magorien, R.D.; O’Shaughnessy, C.; Ganz, P. Statin Therapy, LDL Cholesterol, C-Reactive Protein, and Coronary Artery Disease. NEJM 2005, 352, 29–38. [Google Scholar] [CrossRef]
- Puri, R.; Libby, P.; Nissen, S.E.; Wolski, K.; Ballantyne, C.M.; Barter, P.J.; Chapman, M.J.; Erbel, R.; Raichlen, J.S.; Uno, K.; et al. Long-term effects of maximally intensive statin therapy on changes in coronary atheroma composition: Insights from SATURN. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 380–388. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Tuzcu, E.M.; Brennan, D.M.; Tardif, J.C.; Nissen, S.E. Cholesteryl ester transfer protein inhibition, high-density lipoprotein raising, and progression of coronary atherosclerosis: Insights from illustrate (investigation of lipid level management using coronary ultrasound to assess reduction of atherosclerosi. Circulation 2008, 118, 2506–2514. [Google Scholar] [CrossRef]
- Sipahi, I.; Tuzcu, E.M.; Schoenhagen, P.; Wolski, K.E.; Nicholls, S.J.; Balog, C.; Crowe, T.D.; Nissen, S.E. Effects of Normal, Pre-Hypertensive, and Hypertensive Blood Pressure Levels on Progression of Coronary Atherosclerosis. J. Am. Coll. Cardiol. 2006, 48, 833–838. [Google Scholar] [CrossRef]
- Tsujita, K.; Sugiyama, S.; Sumida, H.; Shimomura, H.; Yamashita, T.; Yamanaga, K.; Komura, N.; Sakamoto, K.; Oka, H.; Nakao, K.; et al. Impact of dual lipid-lowering strategy with ezetimibe and atorvastatin on coronary plaque regression in patients with percutaneous coronary intervention: The multicenter randomized controlled PRECISE-IVUS trial. J. Am. Coll. Cardiol. 2015, 66, 495–507. [Google Scholar] [CrossRef]
- Kwon, O.; Kang, S.J.; Kang, S.H.; Lee, P.H.; Yun, S.C.; Ahn, J.M.; Park, D.W.; Lee, S.W.; Kim, Y.H.; Lee, C.W.; et al. Relationship between Serum Inflammatory Marker Levels and the Dynamic Changes in Coronary Plaque Characteristics after Statin Therapy. Circ. Cardiovasc. Imaging 2017, 10, e005934. [Google Scholar] [CrossRef] [PubMed]
- Ueda, Y.; Hiro, T.; Hirayama, A.; Komatsu, S.; Matsuoka, H.; Takayama, T.; Ishihara, M.; Hayashi, T.; Saito, S.; Kodama, K. Effect of ezetimibe on stabilization and regression of intracoronary plaque: The ZIPANGU study. Circ. J. 2017, 81, 1611–1619. [Google Scholar] [CrossRef]
- Okuyama, H.; Hamazaki, T.; Hama, R.; Ogushi, Y.; Kobayashi, T.; Ohara, N.; Uchino, H. A Critical Review of the Consensus Statement from the European Atherosclerosis Society Consensus Panel 2017. Pharmacology 2018, 101, 184–218. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, M.B.; Caínzos-Achirica, M.; Steffensen, F.H.; Bøtker, H.E.; Jensen, J.M.; Sand, N.P.R.; Maeng, M.; Bruun, J.M.; Blaha, M.J.; Sørensen, H.T.; et al. Association of Coronary Plaque with Low-Density Lipoprotein Cholesterol Levels and Rates of Cardiovascular Disease Events among Symptomatic Adults. JAMA Netw. Open 2022, 5, e2148139. [Google Scholar] [CrossRef] [PubMed]
- Valenti, V.; Ó Hartaigh, B.; Heo, R.; Cho, I.; Schulman-Marcus, J.; Gransar, H.; Truong, Q.A.; Shaw, L.J.; Knapper, J.; Kelkar, A.A.; et al. A 15-year warranty period for asymptomatic individuals without coronary artery calcium: A prospective follow-up of 9715 individuals. JACC Cardiovasc. Imaging 2015, 8, 900–909. [Google Scholar] [CrossRef]
- Blaha, M.; Budoff, M.J.; Shaw, L.J.; Khosa, F.; Rumberger, J.A.; Berman, D.; Callister, T.; Raggi, P.; Blumenthal, R.S.; Nasir, K. Absence of Coronary Artery Calcification and All-Cause Mortality. JACC Cardiovasc. Imaging 2009, 2, 692–700. [Google Scholar] [CrossRef]
- Shaikh, K.; Li, D.; Nakanishi, R.; Kinninger, A.; Almeida, S.; Cherukuri, L.; Shekar, C.; Roy, S.K.; Birudaraju, D.; Rai, K.; et al. Low short-term and long-term cardiovascular and all-cause mortality in absence of coronary artery calcium: A 22-year follow-up observational study from large cohort. J. Diabetes Complicat. 2019, 33, 616–622. [Google Scholar] [CrossRef]
- Miname, M.H.; Bittencourt, M.S.; Moraes, S.R.; Alves, R.I.M.; Silva, P.R.S.; Jannes, C.E.; Pereira, A.C.; Krieger, J.E.; Nasir, K.; Santos, R.D. Coronary Artery Calcium and Cardiovascular Events in Patients With Familial Hypercholesterolemia Receiving Standard Lipid-Lowering Therapy. JACC Cardiovasc. Imaging 2019, 12, 1797–1804. [Google Scholar] [CrossRef]
- Cholesterol Treatment Trialists’ (CTT) Collaborators; Mihaylova, B.; Emberson, J.; Blackwell, L.; Keech, A.; Simes, J.; Barnes, E.H.; Voysey, M.; Gray, A.; Collins, R.; et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: Meta-analysis of individual data from 27 randomised trials. Lancet 2012, 380, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Navarese, E.P.; Robinson, J.G.; Kowalewski, M.; Kolodziejczak, M.; Andreotti, F.; Bliden, K.; Tantry, U.; Kubica, J.; Raggi, P.; Gurbel, P.A. Association between baseline LDL-C level and total and cardiovascular mortality after LDL-C lowering a systematic review and meta-analysis. JAMA 2018, 319, 1566–1579. [Google Scholar] [CrossRef] [PubMed]
- Silverman, M.G.; Ference, B.A.; Im, K.; Wiviott, S.D.; Giugliano, R.P.; Grundy, S.M.; Braunwald, E.; Sabatine, M.S. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: A systematic review and meta-analysis. JAMA 2016, 316, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Cholesterol Treatment Trialists’ (CTT) Collaboration; Fulcher, J.; O’Connell, R.; Voysey, M.; Emberson, J.; Blackwell, L.; Mihaylova, B.; Simes, J.; Collins, R.; Kirby, A.; et al. Efficacy and safety of LDL-lowering therapy among men and women: Meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet 2015, 385, 1397–1405. [Google Scholar] [CrossRef]
- Li, Z.; Meredith, M.P. Exploring the Relationship Between Surrogates and Clinical Outcomes: Analysis of Individual Patient Data vs. Meta-regression on Group-Level Summary Statistics. J. Biopharm. Stat. 2003, 13, 777–792. [Google Scholar] [CrossRef]
- Geissbühler, M.; Hincapié, C.A.; Aghlmandi, S.; Zwahlen, M.; Jüni, P.; da Costa, B.R. Most published meta-regression analyses based on aggregate data suffer from methodological pitfalls: A meta-epidemiological study. BMC Med. Res. Methodol. 2021, 21, 123. [Google Scholar] [CrossRef]
- Shepherd, J.; Park, J.S. Prevention of Heart Disease: Is LDL Reduction the Outcome of Choice? No, There Is More. Value Health 1998, 1, 120–124. [Google Scholar] [CrossRef]
- Gotto, A.M., Jr.; Whitney, E.; Stein, E.A.; Shapiro, D.R.; Clearfield, M.; Weis, S.; Jou, J.Y.; Langendörfer, A.; Beere, P.A.; Watson, D.J.; et al. Relation between baseline and on-treatment lipid parameters and first acute major coronary events in the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Circulation 2000, 101, 477–484. [Google Scholar] [CrossRef]
- Sakamoto, T.; Ogawa, H. ‘Just make it lower’ Is an alternative strategy of lipid-lowering therapy with statins in Japanese patients. Circ. J. 2010, 7, 1731–1741. [Google Scholar] [CrossRef]
- Natarajan, S.; Glick, H.; Criqui, M.; Horowitz, D.; Lipsitz, S.R.; Kinosian, B. Cholesterol measures to identify and treat individuals at risk for coronary heart disease. Am. J. Prev. Med. 2003, 25, 50–57. [Google Scholar] [CrossRef]
- Charlton-Menys, V.; Betteridge, D.J.; Colhoun, H.; Fuller, J.; France, M.; Hitman, G.A.; Livingstone, S.J.; Neil, H.A.; Newman, C.B.; Szarek, M.; et al. Apolipoproteins, cardiovascular risk and statin response in type 2 diabetes: The Collaborative Atorvastatin Diabetes Study (CARDS). Diabetologia 2009, 52, 218–225. [Google Scholar] [CrossRef]
- Shah, R.V.; Abbasi, S.A.; Yamal, J.M.; Davis, B.R.; Barzilay, J.; Einhorn, P.T.; Goldfine, A.B. Impaired fasting glucose and body mass index as determinants of mortality in ALLHAT: Is the obesity paradox real? J. Clin. Hypertens. 2014, 16, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Mora, S.; Caulfield, M.P.; Wohlgemuth, J.; Chen, Z.; Superko, H.R.; Rowland, C.M.; Glynn, R.J.; Ridker, P.M.; Krauss, R.M. Atherogenic lipoprotein subfractions determined by ion mobility and first cardiovascular events after random allocation to high-intensity statin or placebo: The justification for the use of statins in prevention: An intervention trial evaluating rosuvastatin (JUPITER) trial. Circulation 2015, 132, 2220–2229. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Moyé, L.A.; Davis, B.R.; Cole, T.G.; Rouleau, J.L.; Nash, D.T.; Pfeffer, M.A.; Braunwald, E. Relationship between plasma LDL concentrations during treatment with pravastatin and recurrent coronary events in the cholesterol and recurrent events trial. Circulation 1998, 97, 1446–1452. [Google Scholar] [CrossRef] [PubMed]
- Hilvo, M.; Meikle, P.J.; Pedersen, E.R.; Tell, G.S.; Dhar, I.; Brenner, H.; Schöttker, B.; Lääperi, M.; Kauhanen, D.; Koistinen, K.M.; et al. Development and validation of a ceramide- And phospholipid-based cardiovascular risk estimation score for coronary artery disease patients. Eur. Heart J. 2020, 41, 371–380. [Google Scholar] [CrossRef]
- Packard, C.J.; Ford, I.; Robertson, M.; Shepherd, J.; Blauw, G.J.; Murphy, M.B.; Bollen, E.L.; Buckley, B.M.; Cobbe, S.M.; Gaw, A.; et al. Plasma lipoproteins and apolipoproteins as predictors of cardiovascular risk and treatment benefit in the PROspective study of pravastatin in the elderly at risk (PROSPER). Circulation 2005, 112, 3058–3065. [Google Scholar] [CrossRef]
- Amarenco, P.; Goldstein, L.B.; Callahan, A., 3rd; Sillesen, H.; Hennerici, M.G.; O’Neill, B.J.; Rudolph, A.E.; Simunovic, L.; Zivin, J.A.; Welch, K.M.; et al. Baseline blood pressure, low- and high-density lipoproteins, and triglycerides and the risk of vascular events in the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial. Atherosclerosis 2009, 204, 515–520. [Google Scholar] [CrossRef]
- Ridker, P.M.; Bhatt, D.L.; Pradhan, A.D.; Glynn, R.J.; MacFadyen, J.G.; Nissen, S.E. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: A collaborative analysis of three randomised trials. Lancet 2023, 401, 1293–1301. [Google Scholar] [CrossRef]
- Toyota, T.; Morimoto, T.; Iimuro, S.; Fujita, R.; Iwata, H.; Miyauchi, K.; Inoue, T.; Nakagawa, Y.; Nishihata, Y.; Daida, H.; et al. Low-Density Lipoprotein Cholesterol Levels on Statins and Cardiovascular Event Risk in Stable Coronary Artery Disease—An Observation From the REAL-CAD Study. Circulation 2023, 87, 360–367. [Google Scholar] [CrossRef]
- Simpson, W.G. Statins for people at low risk of cardiovascular disease. Lancet 2012, 3, 1815–1816. [Google Scholar] [CrossRef]
- Battaggia, A.; Scalisi, A.; Donzelli, A. The systematic review of randomized controlled trials of PCSK9 antibodies challenges their ‘efficacy breakthrough’ and the ‘lower, the better’ theory. Curr. Med. Res. Opin. 2018, 3, 1725–1730. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions, 5th ed.; The Cochrane Collaboration: London, UK, 2019. [Google Scholar] [CrossRef]
- Liaigre, L.; Guigui, A.; Manceau, M.; Cracowski, J.-L.; Khouri, C.; Roustit, M. Trial-level Surrogacy of non-High-Density and Low-Density Lipoprotein Cholesterol Reduction on the Clinical Efficacy of Statins. Eur. Hear. J. Cardiovasc. Pharmacother. 2025, pvaf016. [Google Scholar] [CrossRef] [PubMed]
- Byrne, P.; Demasi, M.; Jones, M.; Smith, S.M.; O’Brien, K.K.; Dubroff, R. Evaluating the Association between Low-Density Lipoprotein Cholesterol Reduction and Relative and Absolute Effects of Statin Treatment: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2022, 182, 474–481. [Google Scholar] [CrossRef]
- Ravnskov, U.; de Lorgeril, M.; Diamond, D.M.; Hama, R.; Hamazaki, T.; Hammarskjöld, B.; Hynes, N.; Kendrick, M.; Langsjoen, P.H.; Mascitelli, L.; et al. LDL-C does not cause cardiovascular disease: A comprehensive review of the current literature. Expert. Rev. Clin. Pharmacol. 2018, 11, 959–970. [Google Scholar] [CrossRef]
- Diamond, D.M.; Bikman, B.T.; Mason, P. Statin therapy is not warranted for a person with high LDL-cholesterol on a low-carbohydrate diet. Curr. Opin. Endocrinol. Diabetes Obes. 2022, 2, 497–511. [Google Scholar] [CrossRef] [PubMed]
- Kip, K.E.; Diamond, D.; Mulukutla, S.; Marroquin, O.C. Is LDL cholesterol associated with long-term mortality among primary prevention adults? A retrospective cohort study from a large healthcare system. BMJ Open 2024, 14, e077949. [Google Scholar] [CrossRef]
- O’Keefe, J.H.; Cordain, L.; Harris, W.H.; Moe, R.M.; Vogel, R. Optimal low-density lipoprotein is 50 to 70 mg/dl: Lower is better and physiologically normal. J. Am. Coll. Cardiol. 2004, 4, 2142–2146. [Google Scholar] [CrossRef]
- Itoh, H.; Ueshima, K.; Komuro, I. Intensive treat-to-target statin therapy in high-risk Japanese patients with hypercholesterolemia and diabetic retinopathy: Report of a randomized study. Diabetes Care 2018, 41, 1275–1284. [Google Scholar] [CrossRef]
- Hagiwara, N.; Kawada-Watanabe, E.; Koyanagi, R.; Arashi, H.; Yamaguchi, J.; Nakao, K.; Tobaru, T.; Tanaka, H.; Oka, T.; Endoh, Y.; et al. Low-density lipoprotein cholesterol targeting with pitavastatin 1 ezetimibe for patients with acute coronary syndrome and dyslipidaemia: The HIJ-PROPER study, a prospective, open-label, randomized trial. Eur. Heart J. 2017, 38, 2264–2275. [Google Scholar] [CrossRef]
- Amarenco, P.; Kim, J.S.; Labreuche, J.; Charles, H.; Abtan, J.; Béjot, Y.; Cabrejo, L.; Cha, J.K.; Ducrocq, G.; Giroud, M.; et al. A Comparison of Two LDL Cholesterol Targets after Ischemic Stroke. N. Engl. J. Med. 2020, 382, 9–19. [Google Scholar] [CrossRef]
- Ennezat, P.V.; Alavi, Z.; Le Jemtel, T.H.; Hansen, M.R. Consideration Regarding the Analysis of Randomized Controlled Trials in the Era of Evidence-based Medicine. J. Cardiovasc. Pharmacol. 2022, 79, 605–619. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Garrison, S.R. Overestimation of benefit when clinical trials stop early: A simulation study. Trials 2022, 23, 747. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.N.; Zou, Y.L.; Guo, S.D. Low-density lipoprotein particles in atherosclerosis. Front. Physiol. 2022, 1, 931931. [Google Scholar] [CrossRef] [PubMed]
- Musunuru, K. Atherogenic dyslipidemia: Cardiovascular risk and dietary intervention. Lipids. 2010, 4, 907–914. [Google Scholar] [CrossRef]
- Toth, P. Insulin Resistance, Small LDL Particles, and Risk for Atherosclerotic Disease. Curr. Vasc. Pharmacol. 2014, 12, 653–657. [Google Scholar] [CrossRef]
- Siri-Tarino, P.W.; Krauss, R.M. Diet, lipids, and cardiovascular disease. Curr. Opin. Infect. Dis. 2016, 27, 323–328. [Google Scholar] [CrossRef]
- Sarwar, N.; Danesh, J.; Eiriksdottir, G.; Sigurdsson, G.; Wareham, N.; Bingham, S.; Boekholdt, S.M.; Khaw, K.T.; Gudnason, V. Triglycerides and the risk of coronary heart disease: 10 158 Incident cases among 262 525 participants in 29 Western prospective studies. Circulation 2007, 115, 450–458. [Google Scholar] [CrossRef]
- Zhang, B.; Menzin, J.; Friedman, M.; Korn, J.R.; Burge, R.T. Predicted coronary risk for adults with coronary heart disease and low HDL-C: An analysis from the US National Health and Nutrition Examination Survey. Curr. Med. Res. Opin. 2008, 24, 2711–2717. [Google Scholar] [CrossRef]
- Steffen, B.T.; Guan, W.; Remaley, A.T.; Stein, J.H.; Tattersall, M.C.; Kaufman, J.; Tsai, M.Y. Apolipoprotein B is associated with carotid atherosclerosis progression independent of individual cholesterol measures in a 9-year prospective study of Multi-Ethnic Study of Atherosclerosis participants. J. Clin. Lipidol. 2017, 11, 1181–1191.e1. [Google Scholar] [CrossRef]
- Haffner, S.M.; Mykkänen, L.; Robbins, D.; Valdez, R.; Miettinen, H.; Howard, B.V.; Stern, M.P.; Bowsher, R. A preponderance of small dense LDL is associated with specific insulin, proinsulin and the components of the insulin resistance syndrome in non-diabetic subjects. Diabetologia 1995, 38, 1328–1336. [Google Scholar] [CrossRef]
- Austin, M.A.; Mykkänen, L.; Kuusisto, J.; Edwards, K.L.; Nelson, C.; Haffner, S.M.; Pyörälä, K.; Laakso, M. Prospective study of small LDLs as a risk factor for non-insulin dependent diabetes mellitus in elderly men and women. Circulation 1995, 92, 1770–1778. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.X.; Cui, Y.H.; Fan, Q.; Wang, P.H.; Hui, R.; Cianflone, K.; Wang, D.W. Small dense low-density lipoproteins and associated risk factors in patients with stroke. Cerebrovasc. Dis. 2009, 27, 99–104. [Google Scholar] [CrossRef]
- Zhou, P.; Liu, J.; Wang, L.; Feng, W.; Cao, Z.; Wang, P.; Liu, G.; Sun, C.; Shen, Y.; Wang, L.; et al. Association of small dense low-density lipoprotein cholesterol with stroke risk, severity and prognosis. J. Atheroscler. Thromb. 2020, 27, 1310–1324. [Google Scholar] [CrossRef]
- Gerber, P.A.; Thalhammer, C.; Schmied, C.; Spring, S.; Amann-Vesti, B.; Spinas, G.A.; Berneis, K. Small, Dense LDL Particles Predict Changes in Intima Media Thickness and Insulin Resistance in Men with Type 2 Diabetes and Prediabetes—A Prospective Cohort Study. PLoS ONE 2013, 8, e72763. [Google Scholar] [CrossRef] [PubMed]
- Bokemark, L.; Wikstrand, J.; Attvall, S.; Hulthe, J.; Wedel, H.; Fagerberg, B. Insulin resistance and intima-media thickness in the carotid and femoral arteries of clinically healthy 58-year-old men. The Atherosclerosis and Insulin Resistance Study (AIR). J. Intern. Med. 2001, 249, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. The changing landscape of atherosclerosis. Nature 2021, 5, 524–533. [Google Scholar] [CrossRef]
- Lee, C.K.; Liao, C.W.; Meng, S.W.; Wu, W.K.; Chiang, J.Y.; Wu, M.S. Lipids and lipoproteins in health and disease: Focus on targeting atherosclerosis. Biomedicines 2021, 9, 985. [Google Scholar] [CrossRef]
- Hoogeveen, R.C.; Gaubatz, J.W.; Sun, W.; Dodge, R.C.; Crosby, J.R.; Jiang, J.; Couper, D.; Virani, S.S.; Kathiresan, S.; Boerwinkle, E.; et al. Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: The Atherosclerosis Risk in Communities (ARIC) study. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1069–1077. [Google Scholar] [CrossRef]
- St-Pierre, A.C.; Cantin, B.; Dagenais, G.R.; Mauriège, P.; Bernard, P.M.; Després, J.P.; Lamarche, B. Low-density lipoprotein subfractions and the long-term risk of ischemic heart disease in men: 13-year follow-up data from the Québec Cardiovascular Study. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 553–559. [Google Scholar] [CrossRef]
- Ai, M.; Otokozawa, S.; Asztalos, B.F.; Ito, Y.; Nakajima, K.; White, C.C.; Cupples, L.A.; Wilson, P.W.; Schaefer, E.J. Small dense LDL cholesterol and coronary heart disease: Results from the Framingham offspring study. Clin. Chem. 2010, 56, 967–976. [Google Scholar] [CrossRef]
- Sampson, M.; Wolska, A.; Warnick, R.; Lucero, D.; Remaley, A.T. A New Equation Based on the Standard Lipid Panel for Calculating Small Dense Low-Density Lipoprotein-Cholesterol and Its Use as a Risk-Enhancer Test. Clin. Chem. 2021, 67, 987–997. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.F.; Jacob, R.F.; Jeffers, B.; Ghadanfar, M.M.; Preston, G.M.; Buch, J.; Mason, R.P. Serum levels of thiobarbituric acid reactive substances predict cardiovascular events in patients with stable coronary artery disease: A longitudinal analysis of the PREVENT study. J. Am. Coll. Cardiol. 2004, 44, 1996–2002. [Google Scholar] [CrossRef] [PubMed]
- Rabizadeh, S.; Seyedi, S.A.; Nabipoorashrafi, S.A.; Omidvar Siahkalmahalleh, M.; Yadegar, A.; Mohammadi, F.; Rajab, A.; Esteghamati, A.; Nakhjavani, M. The lack of association between different LDL-C levels and oxidized LDL in patients with type 2 diabetes. Chronic Dis. Transl. Med. 2023, 9, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Sayed, A.; Peterson, E.D.; Virani, S.S.; Sniderman, A.D.; Navar, A.M. Individual Variation in the Distribution of Apolipoprotein B Levels Across the Spectrum of LDL-C or Non–HDL-C Levels. JAMA Cardiol. 2024, 9, 741. [Google Scholar] [CrossRef]
- Yeang, C.; Karwatowska-Prokopczuk, E.; Su, F.; Dinh, B.; Xia, S.; Witztum, J.L.; Tsimikas, S. Effect of Pelacarsen on Lipoprotein(a) Cholesterol and Corrected Low-Density Lipoprotein Cholesterol. J. Am. Coll. Cardiol. 2022, 79, 1035–1046. [Google Scholar] [CrossRef]
- Willeit, P.; Yeang, C.; Moriarty, P.M.; Tschiderer, L.; Varvel, S.A.; McConnell, J.P.; Tsimikas, S. Low-density lipoprotein cholesterol corrected for lipoprotein(A) cholesterol, risk thresholds, and cardiovascular events. J. Am. Hear. Assoc. 2020, 9, e016318. [Google Scholar] [CrossRef]
- Khera, A.V.; Everett, B.M.; Caulfield, M.P.; Hantash, F.M.; Wohlgemuth, J.; Ridker, P.M.; Mora, S. Lipoprotein(a) concentrations, rosuvastatin therapy, and residual vascular risk: An analysis from the JUPITER trial (justification for the use of statins in prevention: An intervention trial evaluating rosuvastatin). Circulation 2014, 129, 635–642. [Google Scholar] [CrossRef]
- Albers, J.J.; Slee, A.; O’Brien, K.D.; Robinson, J.G.; Kashyap, M.L.; Kwiterovich POJr Xu, P.; Marcovina, S.M. Relationship of apolipoproteins A-1 and b, and lipoprotein(a) to cardiovascular outcomes: The aim-high trial (atherothrombosis intervention in metabolic syndrome with low HDL/high triglyceride and impact on global health outcomes). J. Am. Coll. Cardiol. 2013, 62, 1575–1579. [Google Scholar] [CrossRef]
- Nestel, P.J.; Barnes, E.H.; Tonkin, A.M.; Simes, J.; Fournier, M.; White, H.D.; Colquhoun, D.M.; Blankenberg, S.; Sullivan, D.R. Plasma lipoprotein(a) concentration predicts future coronary and cardiovascular events in patients with stable coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 2902–2908. [Google Scholar] [CrossRef]
- Bu, D.X.; Griffin, G.; Lichtman, A.H. Mechanisms for the anti-inflammatory effects of statins. Curr. Opin. Lipidol. 2011, 22, 165–170. [Google Scholar] [CrossRef]
- Undas, A.; Brummel-Ziedins, K.E.; Mann, K.G. Anticoagulant effects of statins and their clinical implications. Thromb. Haemost. 2014, 1, 392–400. [Google Scholar] [CrossRef]
- Ridker, P.M.; Rifai, N.; Rose, L.; Buring, J.E.; Cook, N.R. Comparison of C-Reactive Protein and Low-Density Lipoprotein Cholesterol Levels in the Prediction of First Cardiovascular Events. N. Engl. J. Med. 2002, 347, 1557–1565. [Google Scholar] [CrossRef]
- Kandelouei, T.; Abbasifard, M.; Imani, D.; Aslani, S.; Razi, B.; Fasihi, M.; Shafiekhani, S.; Mohammadi, K.; Jamialahmadi, T.; Reiner, Ž.; et al. Effect of Statins on Serum level of hs-CRP and CRP in Patients with Cardiovascular Diseases: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Mediators Inflamm. 2022, 2, 8732360. [Google Scholar] [CrossRef] [PubMed]
- Clearfield, M. C-reactive protein levels and outcomes after statin therapy. Curr. Atheroscler. Rep. 2006, 8, 8–9. [Google Scholar] [CrossRef]
- Ridker, P.M.; Danielson, E.; Fonseca, F.A.; Genest, J.; Gotto, A.M., Jr.; Kastelein, J.J.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G.; et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 2008, 359, 2195–2207. [Google Scholar] [CrossRef]
- Siniscalchi, C.; Basaglia, M.; Riva, M.; Meschi, M.; Meschi, T.; Castaldo, G.; Di Micco, P. Statins Effects on Blood Clotting: A Review. Cells 2023, 1, 2719. [Google Scholar] [CrossRef] [PubMed]
- Glynn, R.J.; Danielson, E.; Fonseca, F.A.; Genest, J.; Gotto, A.M., Jr.; Kastelein, J.J.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G.; et al. A Randomized Trial of Rosuvastatin in the Prevention of Venous Thromboembolism. N. Engl. J. Med. 2009, 360, 1851–1861. [Google Scholar] [CrossRef]
- Eikelboom, J.W.; Connolly, S.J.; Bosch, J.; Dagenais, G.R.; Hart, R.G.; Shestakovska, O.; Diaz, R.; Alings, M.; Lonn, E.M.; Anand, S.S.; et al. Rivaroxaban with or without Aspirin in Stable Cardiovascular Disease. N. Engl. J. Med. 2017, 377, 1319–1330. [Google Scholar] [CrossRef]
- Morrow, D.A.; Braunwald, E.; Bonaca, M.P.; Ameriso, S.F.; Dalby, A.J.; Fish, M.P.; Fox, K.A.; Lipka, L.J.; Liu, X.; Nicolau, J.C.; et al. Vorapaxar in the Secondary Prevention of Atherothrombotic Events. N. Engl. J. Med. 2012, 366, 1404–1413. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Ballantyne, C.M. Existing and emerging strategies to lower Lipoprotein(a). Atherosclerosis 2022, 3, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Theroux, P.; Darius, H.; Lewis, B.S.; Ophuis, T.O.; Jukema, J.W.; et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N. Engl. J. Med. 2015, 372, 2387–2397. [Google Scholar] [CrossRef] [PubMed]
- Giugliano, R.P.; Cannon, C.P.; Blazing, M.A.; Nicolau, J.C.; Corbalán, R.; Špinar, J.; Park, J.G.; White, J.A.; Bohula, E.A.; Braunwald, E. Benefit of Adding Ezetimibe to Statin Therapy on Cardiovascular Outcomes and Safety in Patients with Versus Without Diabetes Mellitus Results from IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Effcacy International Trial). Circulation 2018, 137, 1571–1582. [Google Scholar] [CrossRef] [PubMed]
- Norwitz, N.G.; Mindrum, M.R.; Giral, P.; Kontush, A.; Soto-Mota, A.; Wood, T.R.; D’Agostino, D.P.; Manubolu, V.S.; Budoff, M.; Krauss, R.M. Elevated LDL-cholesterol levels among lean mass hyper-responders on low-carbohydrate ketogenic diets deserve urgent clinical attention and further research. J. Clin. Lipidol. 2022, 16, 765–768. [Google Scholar] [CrossRef]
- O’Neill, B.; Raggi, P. The ketogenic diet: Pros and cons. Atherosclerosis 2020, 292, 119–126. [Google Scholar] [CrossRef]
- Burén, J.; Ericsson, M.; Damasceno, N.R.T.; Sjödin, A. A ketogenic low-carbohydrate high-fat diet increases ldl cholesterol in healthy, young, normal-weight women: A randomized controlled feeding trial. Nutrients 2021, 13, 814. [Google Scholar] [CrossRef]
- Gardner, C.D.; Landry, M.J.; Perelman, D.; Petlura, C.; Durand, L.R.; Aronica, L.; Crimarco, A.; Cunanan, K.M.; Chang, A.; Dant, C.C.; et al. Effect of a ketogenic diet versus Mediterranean diet on glycated hemoglobin in individuals with prediabetes and type 2 diabetes mellitus: The interventional Keto-Med randomized crossover trial. Am. J. Clin. Nutr. 2022, 116, 640–652. [Google Scholar] [CrossRef]
- Mindrum, M.R. Let’s Be Clear about Expected Cardiovascular Risk: A Commentary on the Massive Rise in LDL Cholesterol Induced by Carbohydrate Restriction in the Proposed ‘Lean Mass Hyper-Responder’ Phenotype. Curr. Dev. Nutr. 2022, 6, nzac042. [Google Scholar] [CrossRef]
- Moore, J.M.; Diefenbach, D.; Nadendla, M.; Hiebert, N. Evidence for a Lean Mass Hyperresponder Phenotype Is Lacking with Increases in LDL Cholesterol of Clinical Significance in All Categories of Response to a Carbohydrate-Restricted Diet. Curr. Dev. Nutr. 2022, 6, nzac043. [Google Scholar] [CrossRef]
- Mundal, L.; Sarancic, M.; Ose, L.; Iversen, P.O.; Borgan, J.K.; Veierød, M.B.; Leren, T.P.; Retterstøl, K. Mortality among patients with familial hypercholesterolemia: A registry-based study in norway, 1992–2010. J. Am. Hear. Assoc. 2014, 3, e001236. [Google Scholar] [CrossRef] [PubMed]
- Ravnskov, U.; Diamond, D.M.; Hama, R.; Hamazaki, T.; Hammarskjöld, B.; Hynes, N.; Kendrick, M.; Langsjoen, P.H.; Malhotra, A.; Mascitelli, L.; et al. Lack of an association or an inverse association between low-density-lipoprotein cholesterol and mortality in the elderly: A systematic review. BMJ Open 2016, 6, e010401. [Google Scholar] [CrossRef]
- Harlan, W.R.; Graham, J.B.; Estes, E.H. Familial hypercholesterolemia: A genetic and metabolic study. Medicine 1966, 45, 77–110. [Google Scholar] [CrossRef]
- Williams, R.R.; Hasstedt, S.J.; Wilson, D.E.; Ash, K.O.; Yanowitz, F.F.; Reiber, G.E.; Kuida, H. Evidence That Men With Familial Hypercholesterolemia Can Avoid Early Coronary Death: An Analysis of 77 Gene Carriers in Four Utah Pedigrees. JAMA 1986, 255, 219–224. [Google Scholar] [CrossRef]
- Sijbrands, E.J.G.; Westendorp, R.G.J.; Defesche, J.C.; De Meier, P.H.E.M.; Smelt, A.H.M.; Kastelein, J.J.P. Mortality over two centuries in large pedigree with familial hypercholesterolaemia: Family tree mortality study. BMJ 2001, 322, 1019–1023. [Google Scholar] [CrossRef]
- Hovland, A.; Mundal, L.J.; Igland, J.; Veierød, M.B.; Holven, K.B.; Bogsrud, M.P.; Tell, G.S.; Leren, T.P.; Retterstøl, K. Risk of Ischemic Stroke and Total Cerebrovascular Disease in Familial Hypercholesterolemia: A Register Study from Norway. Stroke 2019, 50, 172–174. [Google Scholar] [CrossRef] [PubMed]
- Baldassarre, D.; Mores, N.; Colli, S.; Pazzucconi, F.; Sirtori, C.R.; Tremoli, E. Platelet α2-adrenergic receptors in hypercholesterolemia: Relationship between binding studies and epinephrine-induced platelet aggregation. Clin. Pharmacol. Ther. 1997, 61, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Schechner, V.; Shapira, I.; Berliner, S.; Comaneshter, D.; Hershcovici, T.; Orlin, J.; Zeltser, D.; Rozenblat, M.; Lachmi, K.; Hirsch, M.; et al. Significant dominance of fibrinogen over immunoglobulins, C-reactive protein, cholesterol and triglycerides in maintaining increased red blood cell adhesiveness/aggregation in the peripheral venous blood: A model in hypercholesterolaemic patients. Eur. J. Clin. Investig. 2003, 33, 955–961. [Google Scholar] [CrossRef]
- Ravnskov, U.; de Lorgeril, M.; Kendrick, M.; Diamond, D.M. Inborn coagulation factors are more important cardiovascular risk factors than high LDL-cholesterol in familial hypercholesterolemia. Med. Hypotheses 2018, 121, 60–63. [Google Scholar] [CrossRef]
- Diamond, D.M.; Alabdulgader, A.A.; de Lorgeril, M.; Harcombe, Z.; Kendrick, M.; Malhotra, A.; O’Neill, B.; Ravnskov, U.; Sultan, S.; Volek, J.S. Dietary Recommendations for Familial Hypercholesterolaemia: An Evidence-Free Zone. BMJ Evid. Based Med. 2021, 26, 295–301. [Google Scholar] [CrossRef]
- Ravnskov, U.; de Lorgeril, M.; Kendrick, M.; Diamond, D.M. Importance of Coagulation Factors as Critical Components of Premature Cardiovascular Disease in Familial Hypercholesterolemia. Int. J. Mol. Sci. 2022, 2, 9146. [Google Scholar] [CrossRef] [PubMed]
- Han, R. Plasma lipoproteins are important components of the immune system. Microbiol. Immunol. 2010, 54, 246–253. [Google Scholar] [CrossRef]
- Netea, M.G.; Demacker, P.N.; Kullberg, B.J.; Boerman, O.C.; Verschueren, I.; Stalenhoef, A.F.; van der Meer, J.W. Low-density lipoprotein receptor-deficient mice are protected against lethal endotoxemia and severe gram-negative infections. J. Clin. Investig. 1996, 97, 1366–1372. [Google Scholar] [CrossRef]
- Guirgis, F.W.; Donnelly, J.P.; Dodani, S.; Howard, G.; Safford, M.M.; Levitan, E.B.; Wang, H.E. Cholesterol levels and long-term rates of community-acquired sepsis. Crit. Care 2016, 20, 408. [Google Scholar] [CrossRef] [PubMed]
- Lagrost, L.; Girard, C.; Grosjean, S.; Masson, D.; Deckert, V.; Gautier, T.; Debomy, F.; Vinault, S.; Jeannin, A.; Labbé, J.; et al. Low preoperative cholesterol level is a risk factor of sepsis and poor clinical outcome in patients undergoing cardiac surgery with cardiopulmonary bypass. Crit. Care Med. 2014, 42, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Shor, R.; Wainstein, J.; Oz, D.; Boaz, M.; Matas, Z.; Fux, A.; Halabe, A. Low serum LDL cholesterol levels and the risk of fever, sepsis, and malignancy. Ann. Clin. Lab. Sci. 2007, 37, 343–348. [Google Scholar]
- Akyea, R.K.; Kai, J.; Qureshi, N.; Iyen, B.; Weng, S.F. Sub-optimal cholesterol response to initiation of statins and future risk of cardiovascular disease. Heart 2019, 105, 975–981. [Google Scholar] [CrossRef]
- van Bruggen, F.H.; de Haas, E.C.; Zuidema, S.U.; Luijendijk, H.J. Time Gained to Cardiovascular Disease by Intensive Lipid-Lowering Therapy: Results of Individual Placebo-Controlled Trials and Pooled Effects. Am. J. Cardiovasc. Drugs 2024, 24, 743–752. [Google Scholar] [CrossRef]
- Cederberg, H.; Stančáková, A.; Yaluri, N.; Modi, S.; Kuusisto, J.; Laakso, M. Increased risk of diabetes with statin treatment is associated with impaired insulin sensitivity and insulin secretion: A 6 year follow-up study of the METSIM cohort. Diabetologia 2015, 58, 1109–1117. [Google Scholar] [CrossRef]
- Goodarzi, M.O.; Li, X.; Krauss, R.M.; Rotter, J.I.; Chen, Y.D.I. Relationship of sex to diabetes risk in statin trials. Diabetes Care 2013, 3, e100–e101. [Google Scholar] [CrossRef]
- Aiman, U.; Najmi, A.; Khan, R.A. Statin induced diabetes and its clinical implications. J. Pharmacol. Pharmacother. 2014, 5, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, F.; Lamendola, C.; Harris, C.S.; Harris, V.; Tsai, M.S.; Tripathi, P.; Abbas, F.; Reaven, G.M.; Reaven, P.D.; Snyder, M.P.; et al. Statins Are Associated With Increased Insulin Resistance and Secretion. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2786–2797. [Google Scholar] [CrossRef]
- Sanvee, G.M.; Panajatovic, M.V.; Bouitbir, J.; Krähenbühl, S. Mechanisms of insulin resistance by simvastatin in C2C12 myotubes and in mouse skeletal muscle. Biochem. Pharmacol. 2019, 164, 23–33. [Google Scholar] [CrossRef]
- Rees-Milton, K.J.; Norman, P.; Babiolakis, C.; Hulbert, M.; Turner, M.E.; Berger, C.; Anastassiades, T.P.; Hopman, W.M.; Adams, M.A.; Powley, W.L.; et al. Statin use is associated with insulin resistance in participants of the canadian multicentre osteoporosis study. J. Endocr. Soc. 2020, 4, bvaa057. [Google Scholar] [CrossRef] [PubMed]
- Sukhija, R.; Prayaga, S.; Marashdeh, M.; Bursac, Z.; Kakar, P.; Bansal, D.; Sachdeva, R.; Kesan, S.H.; Mehta, J.L. Effect of statins on fasting plasma glucose in diabetic and nondiabetic patients. J. Investig. Med. 2009, 57, 495–499. [Google Scholar] [CrossRef]
- Eliasson, P.; Dietrich-Zagonel, F.; Lundin, A.C.; Aspenberg, P.; Wolk, A.; Michaëlsson, K. Statin treatment increases the clinical risk of tendinopathy through matrix metalloproteinase release—A cohort study design combined with an experimental study. Sci. Rep. 2019, 9, 17958. [Google Scholar] [CrossRef]
- Barrons, R. Statin-Associated Autoimmune Myopathy: Review of the Literature. J. Pharm. Pract. 2023, 3, 383–393. [Google Scholar] [CrossRef]
- Bruckert, E.; Hayem, G.; Dejager, S.; Yau, C.; Bégaud, B. Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic—The PRIMO study. Cardiovasc. Drugs Ther. 2005, 19, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Padala, K.P.; Padala, P.R.; McNeilly, D.P.; Geske, J.A.; Sullivan, D.H.; Potter, J.F. The effect of HMG-CoA reductase inhibitors on cognition in patients with alzheimer’s dementia: A prospective withdrawal and rechallenge pilot study. Am. J. Geriatr. Pharmacother. 2012, 10, 296–302. [Google Scholar] [CrossRef]
- Muldoon, M.F.; Ryan, C.M.; Sereika, S.M.; Flory, J.D.; Manuck, S.B. Randomized trial of the effects of simvastatin on cognitive functioning in hypercholesterolemic adults. Am. J. Med. 2004, 117, 823–829. [Google Scholar] [CrossRef]
- Jurcau, A.; Simion, A. Cognition, statins, and cholesterol in elderly ischemic stroke patients: A neurologist’s perspective. Medicina 2021, 57, 616. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Weinstock, J.L.; Ishino, A.S.; Benites, J.F.; Pop, S.R.; Perez, C.D.; Gumbs, E.A.; Rosenbaum, J.A.; Roccato, M.K.; Shah, H.; et al. Association of Cognitive Impairment in Patients on 3-Hydroxy-3-Methyl-Glutaryl-CoA Reductase Inhibitors. J. Clin. Med. Res. 2017, 9, 638–649. [Google Scholar] [CrossRef] [PubMed]
- Kobalava, Z.D.; Villevalde, S.V.; Vorobyeva, M.A. Effects of high-dose statin therapy on cognitive functions and quality of life in very high cardiovascular risk patients. Kardiologiya 2017, 57, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Hyman, D.; Ayyala, S.; Bakhshi, A.; Kim, S.H.; Anoruo, N.; Weinstock, J.; Balogun, A.; D’Souza, M.; Filatova, N.; et al. Cognitive Function Assessment in Patients on Moderate or High-Intensity Statin Therapy. J. Clin. Med. Res. 2020, 12, 255–265. [Google Scholar] [CrossRef]
- Tan, B.; Rosenfeldt, F.; Ou, R.; Stough, C. Evidence and mechanisms for statin-induced cognitive decline. Expert. Rev. Clin. Pharmacol. 2019, 1, 397–406. [Google Scholar] [CrossRef]
- Guo, Y.; Zou, G.; Qi, K.; Jin, J.; Yao, L.; Pan, Y.; Xiong, W. Simvastatin impairs hippocampal synaptic plasticity and cognitive function in mice. Mol. Brain 2021, 14, 41. [Google Scholar] [CrossRef]
- Sahebzamani, F.M.; Munro, C.L.; Marroquin, O.C.; Diamond, D.M.; Kip, K.E. Examination of the Food and Drug Administration Black Box Warning for Statins and Cognitive Dysfunction. J. Pharmacovigil. 2014, 2, 10001. [Google Scholar] [CrossRef]
- Piechocki, M.; Przewłocki, T.; Pieniążek, P.; Trystuła, M.; Podolec, J.; Kabłak-Ziembicka, A. A Non-Coronary, Peripheral Arterial Atherosclerotic Disease (Carotid, Renal, Lower Limb) in Elderly Patients-A Review PART II-Pharmacological Approach for Management of Elderly Patients with Peripheral Atherosclerotic Lesions outside Coronary Territory. J. Clin. Med. 2024, 1, 1508. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaysen, G.A.; Ye, X.; Raimann, J.G.; Wang, Y.; Topping, A.; Usvyat, L.A.; Stuard, S.; Canaud, B.; van der Sande, F.M.; Kooman, J.P. Lipid levels are inversely associated with infectious and all-cause mortality: International MONDO study results. J. Lipid Res. 2018, 59, 1519–1528. [Google Scholar] [CrossRef]
- Iribarren, C.; Jacobs, D.R.; Sidney, S.; Claxton, A.J.; Feingold, K.R. Cohort study of serum total cholesterol and in-hospital incidence of infectious diseases. Epidemiol. Infect. 1998, 121, 335–347. [Google Scholar] [CrossRef]
- Hofmaenner, D.A.; Arina, P.; Kleyman, A.; Page Black, L.; Salomao, R.; Tanaka, S.; Guirgis, F.W.; Arulkumaran, N.; Singer, M. Association Between Hypocholesterolemia and Mortality in Critically Ill Patients With Sepsis: A Systematic Review and Meta-Analysis. Crit. Care Explor. 2023, 5, E0860. [Google Scholar] [CrossRef]
- Chidambaram, V.; Shanmugavel Geetha, H.; Kumar, A.; Majella, M.G.; Sivakumar, R.K.; Voruganti, D.; Mehta, J.L.; Karakousis, P.C. Association of Lipid Levels With COVID-19 Infection, Disease Severity and Mortality: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2022, 9, 862999. [Google Scholar] [CrossRef] [PubMed]
- Yousufuddin, M.; Sharma, U.M.; Bhagra, S.; Murad, M.H. Hyperlipidaemia and mortality among patients hospitalised with pneumonia: Retrospective cohort and propensity score matched study. BMJ Open Respir. Res. 2021, 8, e000757. [Google Scholar] [CrossRef]
- Ravnskov, U. High cholesterol may protect against infections and atherosclerosis. QJM Int. J. Med. 2003, 96, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Rong, S.; Li, B.; Chen, L.; Sun, Y.; Du, Y.; Liu, B.; Robinson, J.G.; Bao, W. Association of Low-Density Lipoprotein Cholesterol Levels with More than 20-Year Risk of Cardiovascular and All-Cause Mortality in the General Population. J. Am. Hear. Assoc. 2022, 11, e023690. [Google Scholar] [CrossRef]
- Yuan, S.; Huang, X.; Ma, W.; Yang, R.; Xu, F.; Han, D.; Huang, T.; Peng, M.; Xu, A.; Lyu, J. Associations of HDL-C/LDL-C with myocardial infarction, all-cause mortality, haemorrhagic stroke and ischaemic stroke: A longitudinal study based on 384,093 participants from the UK Biobank. Stroke Vasc. Neurol. 2023, 8, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, R.; Kikuchi, A.; Akase, T.; Ninomiya, D.; Kumagi, T. Low density lipoprotein cholesterol and all-cause mortality rate: Findings from a study on Japanese community-dwelling persons. Lipids Health Dis. 2021, 20, 105. [Google Scholar] [CrossRef]
- Johannesen, C.D.L.; Langsted, A.; Mortensen, M.B.; Nordestgaard, B.G. Association between low density lipoprotein and all cause and cause specific mortality in Denmark: Prospective cohort study. BMJ 2020, 3, m4266. [Google Scholar] [CrossRef]
- Chwal, B.C.; Reis, R.C.P.D.; Schmidt, M.I.; Ribeiro, A.L.P.; Barreto, S.M.; Griep, R.H.; Lotufo, P.A.; Duncan, B.B. On-Target Low-Density Lipoprotein Cholesterol in Adults with Diabetes Not at High Cardiovascular Disease Risk Predicts Greater Mortality, Independent of Early Deaths or Frailty. J. Clin. Med. 2024, 13, 7667. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Leiter, L.A.; Wiviott, S.D.; Giugliano, R.P.; Deedwania, P.; De Ferrari, G.M.; Murphy, S.A.; Kuder, J.F.; Gouni-Berthold, I.; Lewis, B.S.; et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: A prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol. 2017, 5, 941–950. [Google Scholar] [CrossRef]
- van Bruggen, F.H.; Luijendijk, H.J. Evolocumab’s Long-Term Mortality Risk Unclear Due to Shortened Follow-Up of FOURIER. Am. J. Cardiovasc. Drugs. 2022, 2, 5–8. [Google Scholar] [CrossRef] [PubMed]
- van Bruggen, F.H.; Luijendijk, H.J. Comment on Chwal, B.C.; Reis, R.C.P.D.; Schmidt, M.I.; Ribeiro, A.L.P.; Barreto, S.M.; Griep, R.H.; Lotufo, P.A.; Duncan, B.B. On-Target Low-Density Lipoprotein Cholesterol in Adults with Diabetes Not at High Cardiovascular Disease Risk Predicts Greater Mortality, Independent of Early Deaths or Frailty. J. Clin. Med. 2024, 13, 7667. J. Clin. Med. 2025, 14, 2559. [Google Scholar] [CrossRef]
Argument | Details |
---|---|
Lack of linear association between LDL-C and risk of CVD | - Minimal to no correlation has been observed between LDL-C levels and plaque progression or CAC scores at the individual patient level. - No consistent association has been found between LDL-C levels and cardiovascular events at the individual level. - Clinical trials targeting specific LDL-C levels have yielded inconsistent results regarding cardiovascular outcomes. |
LDL-Cis a poor predictor of CVD risk | - LDL-C consists of diverse particles, with small dense LDL (sdLDL) strongly linked to CVD risk, while large buoyant LDL (lbLDL) is not. - Oxidized-LDL and Lp(a) are more reliable predictors of atherosclerosis and CVD. - Elevated Lp(a) can distort LDL-C measurements, and studies indicate that CVD risk in individuals with LDL-C < 70 mg/dL is primarily driven by high Lp(a) rather than LDL-C itself. |
Lipid-lowering therapy benefits stem from reduction in non-LDL-C factors | The pleiotropic effects of lipid-lowering therapies, including the anti-inflammatory and antithrombotic actions of statins, the anti-inflammatory effects of ezetimibe, and the Lp(a)-lowering effect of PCSK9 inhibitors, contribute to cardiovascular risk reduction independently of LDL-C, with inflammation and Lp(a) being stronger determinants of risk. |
Lifelong elevated LDL-C may result in long CVD-free lives | Elderly individuals with high LDL-C, including those with familial hypercholesterolemia (FH), often enjoy longer, CVD-free lives, likely due to enhanced immune function and resistance to severe infections, while younger FH individuals’ CVD risk is linked to thrombosis rather than elevated LDL-C. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruggen, F.H.v.; Diamond, D.M. Is Targeting LDL-C Levels Below 70 mg/dL Beneficial for Cardiovascular and Overall Health? A Critical Examination of the Evidence. J. Clin. Med. 2025, 14, 3569. https://doi.org/10.3390/jcm14103569
Bruggen FHv, Diamond DM. Is Targeting LDL-C Levels Below 70 mg/dL Beneficial for Cardiovascular and Overall Health? A Critical Examination of the Evidence. Journal of Clinical Medicine. 2025; 14(10):3569. https://doi.org/10.3390/jcm14103569
Chicago/Turabian StyleBruggen, Folkert H. van, and David M. Diamond. 2025. "Is Targeting LDL-C Levels Below 70 mg/dL Beneficial for Cardiovascular and Overall Health? A Critical Examination of the Evidence" Journal of Clinical Medicine 14, no. 10: 3569. https://doi.org/10.3390/jcm14103569
APA StyleBruggen, F. H. v., & Diamond, D. M. (2025). Is Targeting LDL-C Levels Below 70 mg/dL Beneficial for Cardiovascular and Overall Health? A Critical Examination of the Evidence. Journal of Clinical Medicine, 14(10), 3569. https://doi.org/10.3390/jcm14103569