Balance Level and Fundamental Motor Skills of Youth with Visual Impairments: Pilot Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Limitations and Recommendations to the Future Studies
6. Conclusions
- Higher balance levels (eyes closed, single-leg stance) in girls than boys may be attributed to sex-based differences in motor abilities during adolescence.
- The lack of differences in girls’ trials with eyes open vs. closed may result from their involvement in activities like dance and fitness, supporting their inclusion in physical education curricula.
- Differences in balance across groups with varying degrees of visual impairment highlight the impact of sensory loss on balance development.
- The absence of significant sex differences in locomotor skills suggests equal potential for motor development in boys and girls with visual impairment.
- High locomotion scores emphasize the benefits of regular physical activity and suggest that visual impairment need not be a barrier to motor skill acquisition.
- The observed associations between balance and locomotion support the need for targeted interventions that enhance postural control.
- The age-related increase in motor skills among those with milder impairment and the decline among those with severe impairment highlight the importance of early and tailored interventions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alghadir, A.H.; Alotaibi, A.Z.; Iqbal, Z.A. Postural stability in people with visual impairment. Brain Behav. 2019, 9, e01436. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Bhise, S. Comparison of Balance Between the Normal Vision & Visually Impaired School Children Using the Balance Evaluation Systems Test (BESTest). Int. J. Adv. Res. IJAR 2019, 7, 857–864. [Google Scholar]
- Dana, A.; Sabzi, A.H.; Ghorbani, S.; Rad, A.G. The effect of diurnal rhythms on static and dynamic balance performance. Biomed. Hum. Kinet. 2021, 13, 205–211. [Google Scholar] [CrossRef]
- Hallemans, A.; Ortibus, E.; Meire, F.; Aerts, P. Low vision affects dynamic stability of gait. Gait Posture 2010, 32, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Daneshmandi, H.; Norasteh, A.A.; Zarei, H. Balance in the Blind: A Systematic Review. Phys. Treat. Specif. Phys. Ther. J. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Atasavun Uysal, S.; Duger, T. A comparison of motor skills in Turkish children with different visual acuity. Fiz. Rehabil. 2011, 22, 23–29. [Google Scholar]
- Kędziorek, J.; Błażkiewicz, M. Effect of voluntary muscle contraction on postural stability in healthy adults. Adv. Rehabilitation 2021, 35, 33–37. [Google Scholar] [CrossRef]
- Juodzbaliene, V.; Muckus, K. The influence of the degree of visual impairment on psychomotor reaction and equilibrium maintenance of adolescents. Medicina 2006, 42, 49–56. [Google Scholar]
- Zarei, H.; Norasteh, A.A.; Lieberman, L.J.; Ertel, M.W.; Brian, A. Balance Control in Individuals with Hearing Impairment: A Systematic Review and Meta-Analysis. Audiol. Neurotol. 2023, 29, 30–48. [Google Scholar] [CrossRef]
- Bouchard, D.; Tétreault, S. The Motor Development of Sighted Children and Children with Moderate Low Vision Aged 8–13. J. Vis. Impair. Blind. 2000, 94, 564–573. [Google Scholar] [CrossRef]
- Hallemans, A.; Ortibus, E.; Truijen, S.; Meire, F. Development of independent locomotion in children with a severe visual impairment. Res. Dev. Disabil. 2011, 32, 2069–2074. [Google Scholar] [CrossRef] [PubMed]
- Samalot-Rivera, A.; Lieberman, L.J.; Haibach, P. Teaching Two Critical Locomotor Skills to Children who Are Blind or Have Low Vision. J. Vis. Impair. Blind. 2015, 109, 148–153. [Google Scholar] [CrossRef]
- Sretenović, I.; Nedović, G. Motor development of children with visual impairment. J. Hum. Res. Rehabilitation 2019, 9, 36–41. [Google Scholar] [CrossRef]
- Brambring, M. Divergent Development of Gross Motor Skills in Children who are Blind or Sighted. J. Vis. Impair. Blind. 2006, 100, 620–634. [Google Scholar] [CrossRef]
- Newell, K.M. What are Fundamental Motor Skills and What is Fundamental about Them? J. Mot. Learn. Dev. 2020, 8, 280–314. [Google Scholar] [CrossRef]
- Levtzion-Korach, O.; Tennenbaum, A.; Schnitzer, R.; Ornoy, A. Early motor development of blind children. J. Paediatr. Child Heal. 2000, 36, 226–229. [Google Scholar] [CrossRef]
- Selçuk, H.; Kıral, H. Comparison of balance functions of 13-15 age group boys who make sports or not and inborn visually impaired. Procedia Soc. Behav. Sci. 2009, 1, 304–308. [Google Scholar] [CrossRef]
- Houwen, S.; Visscher, C.; Hartman, E.; Lemmink, K. Gross motor skills and sports participation of children with visual im-pairments. Res. Q. Exerc. Sport 2007, 78, A-16–A-23. [Google Scholar] [CrossRef]
- Aki, E.; Atasavun, S.; Turan, A.; Kayihan, H. Training motor skills of children with low vision. Percept. Mot. Ski. 2007, 104, 1328–1336. [Google Scholar] [CrossRef]
- Zipori, A.B.; Colpa, L.; Wong, A.M.F.; Cushing, S.L.; Gordon, K.A. Postural stability and visual impairment: Assessing balance in children with strabismus and amblyopia. PLOS ONE 2018, 13, e0205857. [Google Scholar] [CrossRef]
- Houwen, S.; Hartman, E.; Visscher, C. Physical Activity and Motor Skills in Children with and without Visual Impairments. Med. Sci. Sports Exerc. 2009, 41, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Domínguez Álvarez, L.; Barcala Furelos, R.; Peixoto Pino, L.; Rico Díaz, J. Factores que influyen en la motricidad gruesa de niños y niñas con discapacidad visual: Revisión de la literatura. Sport. Sci. J. Sch. Sport Phys. Educ. Psychomot. 2021, 8, 40–59. [Google Scholar] [CrossRef]
- Wagner, M.O.; Haibach, P.S.; Lieberman, L.J. Gross motor skill performance in children with and without visual impairments—Research to practice. Res. Dev. Disabil. 2013, 34, 3246–3252. [Google Scholar] [CrossRef] [PubMed]
- Makaruk, H.; Grants, J.; Bodasińska, A.; Bula-Biteniece, I.; Zieliński, J.; Dravniece, I.; Starzak, M.; Ciekurs, K.; Piech, K.; Makaruk, B.; et al. Exploring Cross-Cultural Differences in Fundamental Motor Skills Proficiency Between Polish and Latvian Children. Pol. J. Sport Tour. 2023, 30, 12–17. [Google Scholar] [CrossRef]
- Abdullah, N.M.; Parnabas, V.; Omar-Fauzee, M.S.; Nazaruddin, M.N. Assessing Gross Motor Skills Development Among Children with Visual Impairment. Int. J. Educ. Res. 2014, 2, 1–6. [Google Scholar]
- Brian, A.; Miedema, S.T.; Johnson, J.L.; Chica, I. A Comparison of the Fundamental Motor Skills of Preschool-Aged Children With and Without Visual Impairments. Adapt. Phys. Act. Q. 2021, 38, 349–358. [Google Scholar] [CrossRef]
- Kit, B.K.; Akinbami, L.J.; Isfahani, N.S.; Ulrich, D.A. Gross Motor Development in Children Aged 3–5 Years, United States 2012. Matern. Child Health J. 2017, 21, 1573–1580. [Google Scholar] [CrossRef]
- Haibach, P.S.; Wagner, M.O.; Lieberman, L.J. Determinants of gross motor skill performance in children with visual impairments. Res. Dev. Disabil. 2014, 35, 2577–2584. [Google Scholar] [CrossRef]
- Houwen, S.; Hartman, E.; Jonker, L.; Visscher, C. Reliability and Validity of the TGMD-2 in Primary-School-Age Children With Visual Impairments. Adapt. Phys. Act. Q. 2010, 27, 143–159. [Google Scholar] [CrossRef]
- Valentini, N.C.; Duarte, M.G.; Zanella, L.W.; Nobre, G.C. Test of Gross Motor Development-3: Item Difficulty and Item Differential Functioning by Gender and Age with Rasch Analysis. Int. J. Environ. Res. Public Health 2022, 19, 8667. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Rules, Forms and Manuals—IBSA International Blind Sports Federation. Available online: https://ibsasport.org/anti-doping-and-classification/classification/rules-forms-and-manuals/ (accessed on 12 April 2025).
- Brian, A.S.; Starrett, A.; Pennell, A.; Beach, P.H.; Miedema, S.T.; Stribing, A.; Gilbert, E.; Patey, M.; Lieberman, L.J. The brief form of the test of gross motor devel-opment-3 for individuals with visual impairments. Int. J. Environ. Res. Public Health 2021, 18, 7962. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, D.A. Test of Gross Motor Development-2: Examiner’s Manual; PRO-ED Inc.: Austin, TX, USA, 2000. [Google Scholar]
- Webster, E.K.; Ulrich, D.A. Evaluation of the Psychometric Properties of the Test of Gross Motor Development—Third Edition. J. Mot. Learn. Dev. 2017, 5, 45–58. [Google Scholar] [CrossRef]
- Brian, A.; Taunton, S.; Lieberman, L.J.; Haibach-Beach, P.; Foley, J.; Santarossa, S. Psychometric Properties of the Test of Gross Motor Development-3 for Children With Visual Impairments. Adapt. Phys. Act. Q. 2018, 35, 145–158. [Google Scholar] [CrossRef]
- Staiano, A.E.; Newton, R.L.; Beyl, R.A.; Kracht, C.L.; Hendrick, C.A.; Viverito, M.; Webster, E.K. mHealth Intervention for Motor Skills: A Randomized Controlled Trial. Pediatrics 2022, 149, e2021053362. [Google Scholar] [CrossRef]
- De Vaus, D. Analyzing Social Science Data: 50 Key Problems in Data Analysis; SAGE Publication: Thousand Oaks, CA, USA, 2002. [Google Scholar]
- Houwen, S.; Visscher, C.; Lemmink, K.A.P.M.; Hartman, E. Motor skill performance of school-age children with visual impairments. Dev. Med. Child Neurol. 2008, 50, 139–145. [Google Scholar] [CrossRef]
- Tomomitsu, M.S.V.; Castilho, A.A.; Morimoto, E.; Bobbio, T.G.; Greve, J.M.D. Static and dynamic postural control in low-vision and normal-vision adults. Clinics 2013, 68, 517–521. [Google Scholar] [CrossRef]
- Choi, K.Y.; Wong, H.Y.; Cheung, H.N.; Tseng, J.K.; Chen, C.C.; Wu, C.L.; Eng, H.; Woo, G.C.; Cheong, A.M.Y. Impact of visual impairment on balance and visual processing functions in students with special educational needs. PLOS ONE 2022, 17, e0249052. [Google Scholar] [CrossRef]
- Schedler, S.; Kiss, R.; Muehlbauer, T. Age and sex differences in human balance performance from 6-18 years of age: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0214434. [Google Scholar] [CrossRef]
- Jazi, S.D.; Purrajabi, F.; Movahedi, A.; Jalali, S. Effect of Selected Balance Exercises on the Dynamic Balance of Children with Visual Impairments. J. Vis. Impair. Blind. 2012, 106, 466–474. [Google Scholar] [CrossRef]
- Bakke, H.A.; Cavalcante, W.A.; de Oliveira, I.S.; Sarinho, S.W.; Cattuzzo, M.T. Assessment of Motor Skills in Children With Visual Impairment: A Systematic and Integrative Review. Clin. Med. Insights Pediatr. 2019, 13, 1179556519838287. [Google Scholar] [CrossRef] [PubMed]
- Grbović, A.; Jorgić, B. Motor abilities of children with different levels of visual acuity. Facta universitatis—series: Physical Education and Sport. Facta Univ. Ser. Phys. Educ. Sport 2017, 15, 175–184. [Google Scholar]
- Haegele, J.A.; Brian, A.; Goodway, J. Fundamental Motor Skills and School-Aged Individuals with Visual Impairments: A Review. Rev. J. Autism Dev. Disord. 2015, 2, 320–327. [Google Scholar] [CrossRef]
- Baniasadi, T.; Ranjbari, S.; Mofrad, S.K.; Dana, A. Associations between device-measured physical activity and balance performance in children: Mediating role of motor self-efficacy. Biomed. Hum. Kinet. 2022, 14, 252–258. [Google Scholar] [CrossRef]
- da Silva, E.S.; Fischer, G.; da Rosa, R.G.; Schons, P.; Teixeira, L.B.T.; Hoogkamer, W.; Peyré-Tartaruga, L.A. Gait and functionality of individuals with visual impairment who participate in sports. Gait Posture 2018, 62, 355–358. [Google Scholar] [CrossRef]
- Rogge, A.-K.; Hamacher, D.; Cappagli, G.; Kuhne, L.; Hötting, K.; Zech, A.; Gori, M.; Röder, B. Balance, gait, and navigation performance are related to physical exercise in blind and visually impaired children and adolescents. Exp. Brain Res. 2021, 239, 1111–1123. [Google Scholar] [CrossRef]
Boys (n = 15) | Girls (n = 10) | |||||
---|---|---|---|---|---|---|
Height [cm] | 166.9 ± 13.1 | 166.0 ± 12.6 | ||||
Body mass [kg] | 57.3 ± 13.3 | 57.4 ± 13.1 | ||||
Age [years] | 15.2 ± 1.6 | 15.2 ± 1.6 | ||||
Visual impairment level | B1 | B2 | B3 | B1 | B2 | B3 |
20% | 60% | 20% | 30% | 50% | 20% |
B1 (n = 6) x ± SD | B2 (n = 14) x ± SD | B3 (n = 5) x ± SD | F or H | p | ES η2 | |
---|---|---|---|---|---|---|
BF EO Area Circ [cm2] | 2.30 ± 0.89 | 2.38 ± 1.05 | 1.85 ± 0.52 | 0.69 | 0.518 | 0.05 |
BF EO Path Lenght [cm] | 48.1 ± 3.52 | 39.9 ± 10.1 | 39.2 ± 12.3 | 1.12 | 0.352 | 0.14 |
BF EC Area Circ [cm2] | 2.35 ± 1.06 | 3.02 ± 2.3 | 2.05 ± 0.55 | 0.41 | 0.671 | 0.05 |
BF EC Path Lenght [cm] | 47.7 ± 11.3 | 45.1 ± 15.0 | 48.6 ± 13.2 | 0.72 | 0.502 | 0.01 |
SL EO Area Circ [cm2] | 24.0 ± 11.6 | 9.88 ± 3.54 * | 7.42 ± 1.70 * | 8.81 # | 0.011 | 0.34 |
SL EO Path Length [cm] | 90.6 ± 30.8 | 62.1 ± 14.8 | 54.0 ± 4.72 * | 6.02 # | 0.049 | 0.20 |
SL EC Area Circ [cm2] | 19.2 ± 10.1 | 21.2 ± 9.28 | 15.6 ± 5.26 | 0,89 | 0.431 | 0.07 |
SL EC Path Lenght [cm] | 93.6 ± 31.2 | 78.8 ± 25.0 | 88.6 ± 31.8 | 0.76 | 0.485 | 0.06 |
SR EO Area Circ [cm2] | 14.1 ± 8.00 | 14.4 ± 10.9 | 9.74 ± 2.76 | 2.40 | 0.123 | 0.04 |
SR EO Path Lenght [cm] | 74.3 ± 24.9 | 67.0 ± 16.5 | 66.0 ± 20.2 | 2.97 | 0.080 | 0.03 |
SR EC Area Circ [cm2] | 19.1 ± 8.97 | 17.0 ± 5.7 | 21.1 ± 4.61 | 1.88 | 0.185 | 0.09 |
SR EC Path Lenght [cm] | 89.8 ± 31.2 | 80.8 ± 28.0 | 95.9 ± 25.2 | 2.83 | 0.089 | 0.06 |
TGMD-3 (locomotion) (points) | 44.2 ± 1.33 | 45.7 ± 1.73 | 46.0 ± 1.87 | 1.08 | 0.362 | 0.17 |
n Valid | T | Z | p | ES Hedges’ g | ||
---|---|---|---|---|---|---|
EO vs. EC (L) | B1 | 5 | 5.00 | 0.67 | 0.50 | −0.09 |
EO vs. EC (R) | 4 | 3.00 | 0.73 | 0.46 | −0.54 | |
EO vs. EC (L) | B2 | 11 | 10.00 | 2.04 | 0.04 | −0.77 |
EO vs. EC (R) | 12 | 5.00 | 2.66 | 0.00 | −0.59 | |
EO vs. EC (L) | B3 | 5 | 1.00 | 1.75 | 0.07 | −1.20 |
EO vs. EC (R) | 5 | 0.00 | 2.02 | 0.04 | −1.09 |
B1 (n = 6) | B2 (n = 14) | B3 (n = 5) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
r | t | p | ES | r | t | p | ES | r | t | p | ES | |
BF EO Area Circ | −0.61 | −1.54 | 0.20 | EVS | −0.27 | −0.98 | 0.35 | LM | 0.24 | 0.43 | 0.70 | LM |
BF EO Path Lenght | 0.51 | 1.19 | 0.30 | EVS | −0.12 | −0.43 | 0.67 | LM | −0.06 | −0.11 | 0.92 | TN |
BF EC Area Circ | 0.68 | 1.87 | 0.13 | EVS | −0.07 | −0.26 | 0.80 | TN | 0.19 | 0.35 | 0.75 | LM |
BF EC Path Lenght | 0.93 | 5.09 | 0.007 | AP | −0.09 | −0.32 | 0.76 | TN | 0.15 | 0.27 | 0.81 | LM |
SL EO Area Circ | 0.52 | 1.07 | 0.36 | EVS | −0.56 | −2.23 | 0.05 | EVS | −0.29 | −0.53 | 0.63 | LM |
SL EO Path Length | 0.68 | 1.60 | 0.21 | EVS | −0.13 | −0.42 | 0.68 | LM | −0.37 | −0.70 | 0.53 | ME |
SL EC Area Circ | 0.30 | 0.54 | 0.62 | ME | 0.65 | 2.60 | 0.03 | EVS | 0.27 | 0.48 | 0.66 | LM |
SL EC Path Lenght | 0.67 | 1.58 | 0.21 | EVS | 0.67 | 2.71 | 0.02 | EVS | 0.26 | 0.46 | 0.67 | LM |
SR EO Area Circ | 0.28 | 0.58 | 0.59 | LM | −0.13 | −0.46 | 0.66 | EVS | 0.68 | 1.62 | 0.20 | EVS |
SR EO Path Lenght | 0.53 | 1.25 | 0.28 | EVS | −0.05 | −0.19 | 0.85 | TN | 0.56 | 1.19 | 0.32 | EVS |
SR EC Area Circ | 0.91 | 3.15 | 0.09 | AP | −0.11 | −0.35 | 0.73 | LM | 0.01 | 0.02 | 0.98 | TN |
SR EC Path Lenght | 0.76 | 1.63 | 0.24 | VS | 0.10 | 0.33 | 0.74 | LM | 0.47 | 0.91 | 0.43 | ME |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bednarczuk, G.; Bandura, W.; Rutkowska, I.; Starczewski, M. Balance Level and Fundamental Motor Skills of Youth with Visual Impairments: Pilot Study. J. Clin. Med. 2025, 14, 3483. https://doi.org/10.3390/jcm14103483
Bednarczuk G, Bandura W, Rutkowska I, Starczewski M. Balance Level and Fundamental Motor Skills of Youth with Visual Impairments: Pilot Study. Journal of Clinical Medicine. 2025; 14(10):3483. https://doi.org/10.3390/jcm14103483
Chicago/Turabian StyleBednarczuk, Grzegorz, Wiktoria Bandura, Izabela Rutkowska, and Michal Starczewski. 2025. "Balance Level and Fundamental Motor Skills of Youth with Visual Impairments: Pilot Study" Journal of Clinical Medicine 14, no. 10: 3483. https://doi.org/10.3390/jcm14103483
APA StyleBednarczuk, G., Bandura, W., Rutkowska, I., & Starczewski, M. (2025). Balance Level and Fundamental Motor Skills of Youth with Visual Impairments: Pilot Study. Journal of Clinical Medicine, 14(10), 3483. https://doi.org/10.3390/jcm14103483