The Impact of Physical Exercise on Male Fertility Through Its Association with Various Processes and Aspects of Human Biology
Abstract
:1. Introduction
- −
- Diet (e.g., supplementation with antioxidants, micronutrients, and vitamins);
- −
- Sleep (e.g., low-quality sleep or sleep deprivation);
- −
- Stress;
- −
- Environmental pollution (e.g., exposure to heavy metals and other pollutants);
- −
- Substance use (e.g., alcohol or drugs);
- −
- Type of work (e.g., sedentary occupations);
- −
- Overheating (e.g., using Jacuzzi or sauna or wearing tight-fitting clothes);
- −
- Exposure to radiation (e.g., carrying mobile phones in trouser pockets or undergoing radiotherapy) [38].
2. Materials and Methods
- −
- (Physical activity or interval training or resistance training or endurance training) and (male fertility or semen quality);
- −
- (Physical activity or interval training or resistance training or endurance training) and (immune system or cardiovascular system or obesity and insulin resistance or endocrine system or physical trauma or overheating of the body or extreme sports);
- −
- (Male fertility or semen quality) and (immune system or cardiovascular system or obesity and insulin resistance or endocrine system or physical trauma or overheating of the body or extreme sports).
- The immune system;
- Endocrine action;
- The circulatory system;
- Actions related to insulin resistance, diabetes, and obesity;
- Physical action on the male body.
3. Discussion
3.1. Impact of Physical Activity on Fertility Through Its Effect on the Immune System
3.2. Impact of Physical Activity on Fertility Through Endocrine Action
3.3. Impact of Physical Activity on Fertility Through Its Effect on the Circulatory System
3.4. Impact of Physical Activity on Fertility Through Its Action Related to Insulin Resistance, Diabetes, and Obesity
3.5. Impact of Physical Activity on Fertility Issues Associated with Its Physical Action on the Male Body
4. Conclusions
5. Limitations of the Study
Author Contributions
Funding
Conflicts of Interest
References
- Sarac, C.; Koc, I. Prevalence and risk factors of infertility in turkey: Evidence from demographic and health surveys, 1993–2013. J. Biosoc. Sci. 2018, 50, 472–490. [Google Scholar] [CrossRef] [PubMed]
- Minas, A.; Fernandes, A.C.C.; Júnior, V.L.M.; Adami, L.; Intasqui, P.; Bertolla, R.P. Influence of physical activity on male fertility. Andrologia 2022, 54, 14433. [Google Scholar] [CrossRef] [PubMed]
- Abedpoor, N.; Taghian, F.; Hajibabaie, F. Exploring the dynamics of exercise intensity on male fertility and reproductive health: Advancements and implications for fertility research. Front. Reprod. Health 2024, 6, 1423916. [Google Scholar] [CrossRef] [PubMed]
- Daumler, D.; Chan, P.; Lo, K.C.; Takefman, J.; Zelkowic, P. Men’s knowledge of their own fertility: A population-based survey examining the awareness of factors that are associated with male infertility. Hum. Reprod. 2016, 31, 2781–2790. [Google Scholar] [CrossRef]
- Huang, B.; Wang, Z.; Kong, Y.; Jin, M.; Ma, L. Global, regional and national burden of male infertility in 204 countries and territories between 1990 and 2019: An analysis of global burden of disease study. BMC Public. Health 2023, 23, 2125. [Google Scholar] [CrossRef]
- Hammerberg, K.; Collins, V.; Holden, C.; Young, K.; McLachlan, R. Men’s knowledge, attitudes and behaviours relating to fertility. Human Reprod. Update 2017, 23, 458–480. [Google Scholar] [CrossRef]
- Yang, W.; Hua, R.; Cao, Y.; He, X. A metabolomic perspective on the mechanisms by which environmental pollutants and lifestyle lead to male infertility. Andrology 2023, 12, 719–739. [Google Scholar] [CrossRef]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 6th ed.; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Leslie, S.W.; Soon-Sutton, T.L.; Khan, M.A.B. Male Infertility; StatPearls: St. Petersburg, FL, USA, 2025. [Google Scholar]
- Talarczyk-Desole, J.; Berger, A.; Taszarek-Hauke, G.; Hauke, J.; Pawelczyk, L.; Jedrzejczak, P. Manual vs. computer-assisted sperm analysis: Can CASA replace manual assessment of human semen in clinical practice? Ginekol. Pol. 2017, 88, 56–60. [Google Scholar] [CrossRef]
- Boitrelle, F.; Shah, R.; Saleh, R.; Henkel, R.; Kandil, H.; Chung, E.; Vogiatzi, P.; Zini, A.; Arafa, M.; Agarwal, A. The Sixth Edition of the WHO Manualfor Human Semen Analysis: A Critical Review and SWOT Analysis. Life 2021, 11, 1368. [Google Scholar] [CrossRef]
- Jungwirth, A.; Dohle, G.R.; Diemer, T.; Kopa, Z.; Tournaye, H. EAU Guidelines of Male Infertility; European Association of Urology: Arnhem, The Netherlands, 2017. [Google Scholar]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Pushka, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef]
- Eisenberg, M.L.; Kim, S.; Chen, Z.; Sundaram, R.; Schisterman, E.F.; Louis, G.M.B. The relationship between male BMI and waist circumference on semen quality: Data from the LIFE study. Hum. Reprod. 2014, 29, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Mínguez-Alarcón, L.; Chavarro, J.E.; Mendiola, J.; Gaskins, A.J.; Torres-Cantero, A.M. Physical activity is not related to semen quality in young healthy men. Fertil. Steril. 2014, 102, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Balladelli, F.; Basran, S.; Eisenberg, M.L. Male Fertility and Physical Exercise. World J. Mens. Health 2023, 41, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Maleki, B.H.; Tartibian, B.; Chehrazi, M. Effectiveness of Exercise Training on Male Factor Infertility: A Systematic Review and Network Meta-analysis. Sports Health 2022, 14, 508–517. [Google Scholar] [CrossRef]
- Giudice, A.L.; Asmundo, M.G.; Cimino, S.; Morgia, G.; Cocci, A.; Falcone, M.; Sokolakis, I.; Capogrosso, P.; Morgado, A.; Russo, G.I.; et al. Effects of Physical Activity on Fertility Parameters: A Meta-Analysis of Randomized Controlled Trials. World J. Mens. Health 2024, 42, 555–562. [Google Scholar] [CrossRef]
- Kipandula, W.; Lampiao, F. Semen profiles of young men involved as bicycle taxi cyclists in Mangochi District, Malawi: A case-control study. Malawi Med. J. 2015, 27, 151–153. [Google Scholar] [CrossRef]
- Jensen, C.E.; Wiswedel, K.; McLoughlin, J.; van der Spuy, Z. Prospective study of hormonal and semen profiles in marathon runners. Fertil. Steril. 1995, 64, 1189–1196. [Google Scholar] [CrossRef]
- Xu, Z.; Qin, Y.; Lv, B.; Tian, Z.; Zhang, B. Effects of moderate-intensity continuous training and high-intensity interval training on testicular oxidative stress, apoptosis and m6A Methylation in obese male mice. Antioxidants 2022, 11, 1874. [Google Scholar] [CrossRef]
- Ilacqua, A.; Izzo, G.; Emerenziani, G.P.; Baldari, C.; Aversa, A. Lifestyle and fertility: The influence of stress and quality of life on male fertility. Reprod. Biol. Endocrinol. 2018, 16, 115. [Google Scholar] [CrossRef]
- Hayden, R.P.; Flannigan, R.; Schlegel, P.N. The role of lifestyle in male infertility: Diet, physical activity, and body habitus. Curr. Urol. Rep. 2018, 19, 56. [Google Scholar] [CrossRef]
- Manna, I.; Jana, K.; Samantha, P.K. Effect of intensive exercise-induced testicular gametogenic and steroidogenic disorders in mature male Wistar strain rats: A correlative approach to oxidative stress. Acta Physiol. Scand. 2003, 178, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Vaamonde, D.; Da Silva-Grigoletto, M.E.; García-Manso, J.M.; Barrera, N.; Vaamonde-Lemos, R. Physically active men show better semen parameters and hormone values than sedentary men. Eur. J. Appl. Physiol. 2012, 112, 3267–3273. [Google Scholar] [CrossRef] [PubMed]
- Donato, F.; Rota, M.; Ceretti, E.; Viola, G.C.V.; Marullo, M.; Zani, D.; Lorenzetti, S.; Montano, L.; FASt Study Group. Intensity and type of physical activity and semen quality in healthy young men. Fertil. Steril. 2024, 123, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Messerlian, C.; Sun, Z.-H.; Duan, P.; Chen, H.-G.; Chen, Y.-I.; Wang, P.; Wang, L.; Meng, T.-Q.; Wang, Q.; et al. Physical activity and sedentary time in relation to semen quality in healthy men screened as potential sperm donors. Hum. Reprod. 2019, 34, 2330–2339. [Google Scholar] [CrossRef]
- Service, C.A.; Puri, D.; Al Azzawi, S.; Hsieh, T.-C.; Patel, D.P. The impact of obesity and metabolic health on male fertility: A systematic review. Fertil. Steril. 2023, 120, 1098–1111. [Google Scholar] [CrossRef]
- Sansone, A.; Sansone, M.; Vaamonde, D.; Sgrò, P.; Salzano, C.; Romanelli, F.; Lenzi, A.; Di Luigi, L. Sport, doping and male fertility. Reprod. Biol. Endocrinol. 2018, 16, 114. [Google Scholar] [CrossRef]
- Lee, N.K.; Sowa, H.; Hinoi, E.; Ferron, M.; Ahn, J.D.; Confavreux, C.; Dacquin, R.; Mee, P.J.; McKee, M.D.; Jung, D.Y.; et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007, 130, 456–469. [Google Scholar] [CrossRef]
- Hikim, A.P.S.; Swerdloff, R.S. Hormonal and genetic control of germ cell apoptosis in the testis. Rev. Reprod. 1999, 4, 38–47. [Google Scholar] [CrossRef]
- Walker, W.H. Molecular mechanisms of testosterone action in spermatogenesis. Steroids 2009, 74, 602–607. [Google Scholar] [CrossRef]
- Mera, P.; Laue, K.; Ferron, M.; Confavreux, C.; Wei, J.; Galán-Díez, M.; Lacampagne, A.; Mitchell, S.J.; Mattison, J.A.; Chen, J. Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab. 2016, 23, 1078–1092. [Google Scholar] [CrossRef]
- Leisegang, K.; Opuwari, C.S.; Moichela, F.; Finelli, R. Traditional, Complementary and Alternative Medicines in the Treatment of Ejaculatory Disorders: A Systematic Review. Medicina 2023, 59, 1607. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.; Zillioux, J.; Khourdaji, I.; Smith, R.P. Contemporary management of ejaculatory dysfunction. Transl. Androl. Urol. 2018, 7, 686–702. [Google Scholar] [CrossRef] [PubMed]
- Maleki, B.H.; Tartibian, B. Long-term low-to-intensive cycling training: Impact on semen parameters and seminal cytokines. Clin. J. Sport Med. 2015, 6, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Huang, W.; Liu, S.; Cai, S.; Hong, L.; Xiao, W.; Thiele, K.; Zeng, Y.; Song, M.; Diao, L. Impacts of Immunometabolism on Male Reproduction. Front. Immunol. 2021, 12, 658432. [Google Scholar] [CrossRef]
- Zańko, A.; Siewko, K.; Krętowski, A.J.; Milewski, R. Lifestyle, Insulin Resistance and Semen Quality as Co-Dependent Factors of Male Infertility. Int. J. Environ. Res. Public. Health 2022, 20, 732. [Google Scholar] [CrossRef]
- Diemer, T.; Hales, D.B.; Weidner, W. Immune-Endocrine Interactions and Leydig Cell Function: The Role of Cytokines. Andrologia 2003, 35, 55–63. [Google Scholar] [CrossRef]
- O’Rand, M.G.; Romrell, L.J. Appearance of cell surface auto- and isoantigens during spermatogenesis in the rabbit. Dev. Biol. 1977, 55, 347–358. [Google Scholar] [CrossRef]
- Dutta, S.; Sandhu, N.; Sengupta, P.; Alves, M.G.; Henkel, R.; Agarwal, A. Somatic-Immune Cells Crosstalk In-The-Making of Testicular Immune Privilege. Reprod. Sci. 2022, 29, 2707–2718. [Google Scholar] [CrossRef]
- Meinhardt, A.; Hedger, M.P. Immunological, paracrine and endocrine aspects of testicular immune privilege. Mol. Cell Endocrinol. 2011, 335, 60–68. [Google Scholar] [CrossRef]
- Arck, P.; Solano, M.E.; Walecki, M.; Meinhardt, A. The immune privilege of testis and gravid uterus: Same difference? Mol. Cell Endocrinol. 2014, 382, 509–520. [Google Scholar] [CrossRef]
- Cardoso, A.M.; Alves, M.G.; Mathur, P.P.; Oliveira, P.F.; Cavaco, J.E.; Rato, L. Obesogens and Male Fertility. Obes. Rev. 2017, 18, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, M. Hypogonadism and Male Obesity: Focus on Unresolved Questions. Clin. Endocrinol. 2018, 89, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Wanjari, U.R.; Gopalakrishnan, A.V. A review on immunological aspects in male reproduction: An immune cells and cytokines. J. Reprod. Immunol. 2023, 158, 103984. [Google Scholar] [CrossRef] [PubMed]
- Fraczek, M.; Szumala-Kakol, A.; Dworacki, G.; Sanocka, D.; Kurpisz, M. In vitro reconstruction of inflammatory reaction in human semen: Effect on sperm DNA fragmentation. J. Reprod. Immunol. 2013, 100, 76–85. [Google Scholar] [CrossRef]
- Fraczek, M.; Sanocka, D.; Kamieniczna, M.; Kurpisz, M. Proinflammatory cytokines as an intermediate factor enhancing lipid sperm membrane peroxidation in in vitro conditions. J. Androl. 2008, 29, 85–92. [Google Scholar] [CrossRef]
- Ihim, S.A.; Abubakar, S.D.; Zian, Z.; Sasaki, T.; Saffarioun, M.; Maleknia, S.; Azizi, G. Interleukin-18 cytokine in immunity, inflammation, and autoimmunity: Biological role in induction, regulation, and treatment. Front. Immunol. 2022, 13, 919973. [Google Scholar] [CrossRef]
- Nieman, D.C.; Groen, A.J.; Pugachev, A.; Vacca, G. Detection of functional overreaching in endurance athletes using proteomics. Proteomes 2018, 6, 33. [Google Scholar] [CrossRef]
- Nieman, D.C.; Henson, D.A.; Austin, M.D.; Brown, V.A. Immune response to a 30-minute walk. Med. Sci. Sports Exerc. 2005, 37, 57–62. [Google Scholar] [CrossRef]
- Peake, J.M.; Della Gatta, P.; Suzuki, K.; Nieman, D.C. Cytokine expression and secretion by skeletal muscle cells: Regulatory mechanisms and exercise effects. Exerc. Immunol. Rev. 2015, 21, 8–25. [Google Scholar]
- Nieman, D.C.; Wentz, L.M. The compelling link between physical activity and the body’s defense system. J. Sport Health Sci. 2019, 8, 201–217. [Google Scholar] [CrossRef]
- Connolly, P.H.; Caiozzo, V.J.; Zaldivar, F.; Nemet, D.; Larson, J.; Hung, S.P.; Heck, J.D.; Hatfield, G.W.; Cooper, D.M. Effects of Exercise on Gene Expression in Human Peripheral Blood Mononuclear Cells. J. Appl. Physiol. 2004, 97, 1461–1469. [Google Scholar] [CrossRef] [PubMed]
- Migdal, C.; Serres, M. Espèces Réactives de l’oxygène et Stress Oxydant. Méd./Sci. 2011, 27, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, A.; Liu, X.; Li, E. Effects of resveratrol on reducing spermatogenic dysfunction caused by high-intensity exercise. Reprod. Biol. Endocrinol. 2019, 17, 42. [Google Scholar] [CrossRef]
- Manna, I.; Jana, K.; Samantha, P.K. Effect of different intensities of swimming exercise on testicular oxidative stress and reproductive dysfunction in mature male albino Wistar rats. Indian. J. Exp. Biol. 2004, 42, 816–822. [Google Scholar]
- Vider, J.; Lehtmaa, J.; Kullisaar, T.; Vihalemm, T.; Zilmer, K.; Kairane, C.; Landõr, A.; Karu, T.; Zilmer, M. Acute immune response in respect to exercise-induced oxidative stress. Pathophysiology 2001, 7, 263–270. [Google Scholar] [CrossRef]
- Nieman, D.C.; Mitmesser, S.H. Potential impact of nutrition on immune system recovery from heavy exertion: A metabolomics perspective. Nutrients 2017, 9, 513. [Google Scholar] [CrossRef]
- Nieman, D.C.; Lila, M.A.; Gillitt, N.D. Immunometabolism: A multi-omics approach to interpreting the influence of exercise and diet on the immune system. Ann. Rev. Food Sci. Technol. 2019, 10, 341–363. [Google Scholar] [CrossRef]
- Pedersen, B.K. Anti-inflammatory effects of exercise: Role in diabetes and cardiovascular disease. Eur. J. Clin. Investig. 2017, 47, 600–611. [Google Scholar] [CrossRef]
- Simpson, R.J.; Kunz, H.; Agha, N.; Graff, R. Exercise and the regulation of immune functions. Prog. Mol. Biol. Transl. Sci. 2015, 135, 355–380. [Google Scholar]
- Ringseis, R.; Eder, K.; Mooren, F.C.; Krüger, K. Metabolic signals and innate immune activation in obesity and exercise. Exerc. Immunol. Rev. 2015, 21, 58–68. [Google Scholar]
- Mateus, F.G.; Moreira, S.; Martins, A.D.; Oliveira, P.F.; Alves, M.G.; de Lourdes Pereira, M. L-Carnitine and Male Fertility: Is Supplementation Beneficial? J. Clin. Med. 2023, 12, 5796. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Ratamess, N.A.; Nindl, B.C. Recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise. J. Appl. Physiol. 2017, 3, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.E. Energy balance and reproduction. Physiol. Behav. 2004, 2, 289–317. [Google Scholar] [CrossRef]
- Vingren, J.L.; Kraemer, W.J.; Hatfield, D.L.; Anderson, J.M.; Volek, J.S.; Ratamess, N.A.; Thomas, G.A.; Ho, J.Y.; Fragala, M.S.; Maresh, C.M. Effect of resistance exercise on muscle steroidogenesis. J. Appl. Physiol. 2008, 105, 1754–1760. [Google Scholar] [CrossRef]
- Ayers, J.W.; Komesu, Y.; Romani, T.; Ansbacher, R. Anthropomorphic, hormonal, and psychologic correlates of semen quality in endurance-trained male athletes. Fertil. Steril. 1985, 43, 917–921. [Google Scholar] [CrossRef]
- Lucía, A.; Chicharro, J.L.; Pérez, M.; Serratosa, L.; Bandrés, F.; Legido, J.C. Reproductive function in male endurance athletes: Sperm analysis and hormonal profile. J. Appl. Physiol. 1996, 81, 2627–2636. [Google Scholar] [CrossRef]
- De Souza, M.J.; Arce, J.C.; Pescatello, L.S.; Scherzer, H.S.; Luciano, A.A. Gonadal hormones and semen quality in male runners. Int. J. Sports Med. 1994, 15, 383–391. [Google Scholar] [CrossRef]
- Molsted, S.; Andersen, J.L.; Eidemak, I.; Harrison, A.P.; Jørgensen, N. Resistance training and testosterone levels in male patients with chronic kidney disease undergoing dialysis. Biomed. Res. Int. 2014, 2014, 121273. [Google Scholar] [CrossRef]
- Wu, S.; Chen, W.; Cai, Y.; Xia, W. Dose-response association between 24-hour total movement activity and testosterone deficiency in adult males. Front. Endocrinol. 2024, 14, 1280841. [Google Scholar] [CrossRef]
- Safarinejad, M.R.; Azma, K.; Kolahi, A.A. The effects of intensive, long-term treadmill running on reproductive hormones, hypothalamus-pituitary-testis axis, and semen quality: A randomized controlled study. J. Endocrinol. 2009, 3, 259–271. [Google Scholar] [CrossRef]
- Kujala, U.M.; Alen, M.; Huhtaniemi, I.T. Gonadotrophin-releasing hormone and human chorionic gonadotrophin tests reveal that both hypothalamic and testicular endocrine functions are suppressed during acute prolonged physical exercise. Clin. Endocrinol. 1990, 33, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Vingren, J.L.; Hill, D.W.; Buddhadev, H.; Duplanty, A. Postresistance exercise ethanol ingestion and acute testosterone bioavailability. Med. Sci. Sports Exerc. 2013, 45, 1825–1832. [Google Scholar] [CrossRef] [PubMed]
- Cinar, V.; Polat, Y.; Baltaci, A.K.; Mogulkoc, R. Effects of magnesium supplementation on testosterone levels of athletes and sedentary subjects at rest and after exhaustion. Biol. Trace Elem. Res. 2011, 140, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Schwanbeck, S.R.; Cornish, S.M.; Barss, T.; Chilibeck, P.D. Effects of Training With Free Weights Versus Machines on Muscle Mass, Strength, Free Testosterone, and Free Cortisol Levels. J. Strength. Cond. Res. 2020, 34, 1851–1859. [Google Scholar] [CrossRef]
- Wu, Y.; Goodrich, J.M.; Dolinoy, D.C.; Sánchez, B.N.; Ruiz-Narváez, E.A.; Banker, M.; Cantoral, A.; Mercado-Garcia, A.; Téllez-Rojo, M.M.; Peterson, K.E. Accelerometer-measured Physical Activity, Reproductive Hormones, and DNA Methylation. Med. Sci. Sports Exerc. 2020, 52, 598–607. [Google Scholar] [CrossRef]
- Steeves, J.A.; Fitzhugh, E.C.; Bradwin, G.; McGlynn, K.A.; Platz, E.A.; Joshu, C.E. Cross-sectional association between physical activity and serum testosterone levels in US men: Results from NHANES 1999–2004. Andrology 2016, 4, 465–472. [Google Scholar] [CrossRef]
- Sokoloff, N.C.; Misra, M.; Exercise, K.E.A. Training, and the Hypothalamic-Pituitary-Gonadal Axis in Men and Women. Front. Horm. Res. 2016, 47, 27–43. [Google Scholar]
- De Souza, M.J.; Miller, B.E. The effect of endurance training on reproductive function in male runners. A ‘volume threshold’ hypothesis. Sports Med. 1997, 6, 357–374. [Google Scholar] [CrossRef]
- Watts, E.L.; Perez-Cornago, A.; Doherty, A.; Allen, N.E.; Fensom, G.K.; Tin, S.T.; Key, T.J.; Travis, R.C. Physical activity in relation to circulating hormone concentrations in 117,100 men in UK Biobank. Cancer Causes Control 2021, 32, 1197–1212. [Google Scholar] [CrossRef]
- Matos, B.; Howl, J.; Ferreira, R.; Fardilha, M. Exploring the effect of exercise training on testicular function. Eur. J. Appl. Physiol. 2019, 119, 1–8. [Google Scholar] [CrossRef]
- Samadian, Z.; Tofighi, A.; Razi, M.; Azar, J.T.; Pakdel, F.G. Moderate-intensity exercise training ameliorates the diabetes-suppressed spermatogenesis and improves sperm parameters: Insole and simultaneous with insulin. Andrologia 2019, 51, e13457. [Google Scholar] [CrossRef] [PubMed]
- Bahreiny, S.S.; Ahangarpour, A.; Rajaei, E.; Sharifani, M.S.; Aghaei, M. Meta-Analytical and Meta-Regression Evaluation of Subclinical Hyperthyroidism’s Effect on Male Reproductive Health: Hormonal and Seminal Perspectives. Reprod. Sci. 2024, 31, 2957–2971. [Google Scholar] [CrossRef] [PubMed]
- Poppe, K.; Bisschop, P.; Fugazzola, L.; Minziori, G.; Unuane, D.; Weghofer, A. European thyroid association guideline on thyroid disorders prior to and during assisted reproduction. Eur. Thyroid. J. 2021, 9, 281–295. [Google Scholar] [CrossRef]
- Wu, K.; Zhou, Y.; Ke, S.; Huang, J.; Gao, X.; Li, B.; Lin, X.; Liu, X.; Liu, X.; Ma, L.; et al. Lifestyle is associated with thyroid function in subclinical hypothyroidism: A cross-sectional study. BMC Endocr. Disord. 2021, 21, 112. [Google Scholar] [CrossRef]
- Kumar, B.J.; Khurana, M.L.; Ammini, A.C.; Karmarkar, M.G.; Ahuja, M.M. Reproductive endocrine functions in men with primary hypothyroidism: Effect of thyroxine replacement. Horm. Res. 1990, 34, 215–218. [Google Scholar] [CrossRef]
- Carani, C.; Isidori, A.M.; Granata, A.; Carosa, E.; Maggi, M.; Lenzi, A.; Jannini, E.A. Multicenter study on the prevalence of sexual symptoms in male hypo- and hyperthyroid patients. J. Clin. Endocrinol. Metab. 2005, 90, 6472–6479. [Google Scholar] [CrossRef]
- Phillips, K.J. Beige Fat, Adaptive Thermogenesis, and Its Regulation by Exercise and Thyroid Hormone. Biology 2019, 3, 57. [Google Scholar] [CrossRef]
- Fiore, M.; Cristaldi, A.; Okatyeva, V.; Bianco, S.L.; Conti, G.O.; Zuccarello, P.; Copat, C.; Caltabiano, R.; Cannizzaro, M.; Ferrante, M. Physical Activity and Thyroid Cancer Risk: A Case-Control Study in Catania (South Italy). Int. J. Environ. Res. Public. Health 2019, 16, 1428. [Google Scholar] [CrossRef]
- Sulague, R.M.; Suan, N.N.M.; Mendoza, M.F.; Lavie, C.J. The associations between exercise and lipid biomarkers. Prog. Cardiovasc. Dis. 2022, 75, 59–68. [Google Scholar] [CrossRef]
- Derby, C.A.; Mohr, B.A.; Goldstein, I.; Feldman, H.A.; Johannes, C.B.; McKinlay, J.B. Modifiable risk factors and erectile dysfunction: Can lifestyle changes modify risk? Urology 2000, 56, 302–306. [Google Scholar] [CrossRef]
- Duca, Y.; Calogero, A.E.; Cannarella, R.; Giaconne, F.; Mongioi, L.M.; Condorelli, R.A.; La Vignera, S. Erectile dysfunction, physical activity and physical exercise: Recommendations for clinical practice. Andrologia 2019, 51, e13264. [Google Scholar] [CrossRef] [PubMed]
- Sgrò, P.; Di Luigi, L. Sport and male sexuality. J. Endocrinol. Investig. 2017, 40, 911–923. [Google Scholar] [CrossRef] [PubMed]
- Mussawar, M.; Balsom, A.A.; de Zepetnek, J.O.T.; Gordon, J.L. The effect of physical activity on fertility: A mini-review. F S Rep. 2023, 4, 150–158. [Google Scholar] [CrossRef]
- Hunter, E.; Avenell, A.; Stadler, G.; Best, D. The effectiveness of weight-loss lifestyle interventions for improving fertility in women and men with overweight or obesity and infertility: A systematic review update of evidence from randomized controlled trials. Obes. Rev. 2021, 22, e13325. [Google Scholar] [CrossRef]
- Zańko, A.; Martynowicz, I.; Citko, A.; Konopka, P.; Paszko, A.; Pawłowski, M.; Szczerbiński, Ł.; Siewko, K.; Krętowski, A.J.; Kuczyński, W.; et al. The Influence of Lifestyle on Male Fertility in the Context of Insulin Resistance-Identification of Factors That Influence Semen Quality. J. Clin. Med. 2024, 13, 2797. [Google Scholar] [CrossRef]
- Kumagai, H.; Yoshikawa, T.; Zempo-Miyaki, A.; Myoenzono, K.; Tsujimoto, T.; Tanaka, K.; Maeda, S. Vigorous Physical Activity is Associated with Regular Aerobic Exercise-Induced Increased Serum Testosterone Levels in Overweight/Obese Men. Horm. Metab. Res. 2018, 50, 73–79. [Google Scholar] [CrossRef]
- La Vignera, S.; Condorelli, R.A.; Cannarella, R.; Duca, Y.; Calogero, A.E. Sport, doping and female fertility. Reprod. Biol. Endocrinol. 2019, 16, 108. [Google Scholar] [CrossRef]
- Di Luigi, L.; Romanelli, F.; Sgrò, P.; Lenzi, A. Andrological aspects of physical exercise and sport medicine. Endocrine 2012, 42, 278–284. [Google Scholar] [CrossRef]
- La Vignera, S.; Candorelli, R.; Vicari, E.; D’Agata, R.; Calogero, A.E. Aerobic physical activity improves endothelial function in the middle-aged patients with erectile dysfunction. Aging Male 2011, 14, 265–272. [Google Scholar] [CrossRef]
- La Vignera, S.; Condorelli, R.; Vicari, E.; D’Agata, R.; Calogero, A.E. Physical activity and erectile dysfunction in middle-aged men. J. Androl. 2012, 33, 154–161. [Google Scholar] [CrossRef]
- Fantus, R.J.; Chang, C.; Hehemann, M.C.; Bennett, N.E.; Brannigan, R.E.; Helfand, B.T.; Halpern, J.A. The association between guideline-based exercise thresholds and low testosterone among men in the United States. Andrology 2020, 8, 1712–1719. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.; Abdo, J.G.; Petty, C.S.; Neaves, W.B. Effect of age on the composition of seminiferous tubular boundary tissue and on the volume of each component in humans. Fertil. Steril. 1988, 6, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Alio, A.P.; Salihu, H.M.; McIntosh, C.; August, E.M.; Weldeselasse, H.; Sanchez, E.; Mbah, A.K. The Effect of Paternal Age on Fetal Birth Outcomes. Am. J. Men’s Health 2012, 5, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Lian, Z.H.; Zack, M.M.; Erickson, J.D. Paternal age and the occurrence of birth defects. Am. J. Hum. Genet. 1986, 39, 648–660. [Google Scholar]
- Neaves, W.B.; Johnson, L.; Porter, J.C.; Parker, C.R., Jr.; Petty, C.S. Leydig cell numbers, daily sperm production, and serum gonadotropin levels in aging men. J. Clin. Endocrinol. Metab. 1984, 59, 756–763. [Google Scholar] [CrossRef]
- Wei, W.; Raun, S.H.; Long, J.Z. Molecular Insights From Multiomics Studies of Physical Activity. Diabetes 2024, 73, 162–168. [Google Scholar] [CrossRef]
- Aitken, R.J.; Baker, M.A. Oxidative stress, sperm survival and fertility control. Mol. Cell Endocrinol. 2006, 250, 66–69. [Google Scholar] [CrossRef]
- Momen, M.N.; Ananian, F.B.; Fahmy, I.M.; Mostafa, T. Effect of high environmental temperature on semen parameters among fertile men. Fertil. Steril. 2010, 93, 1884–1886. [Google Scholar] [CrossRef]
- Sieber, M.H.; Thomsen, M.B.; Spradling, A.C. Electron Transport Chain Remodeling by GSK3 during Oogenesis Connects Nutrient State to Reproduction. Cell 2016, 164, 420–432. [Google Scholar] [CrossRef]
- Figà-Talamanca, I.; Cini, C.; Varricchio, G.C.; Dondero, F.; Gandini, L.; Lenzi, A.; Lombardo, F.; Angelucci, L.; Di Grezia, R.; Patacchioli, F.R. Effects of prolonged autovehicle driving on male reproduction function: A study among taxi drivers. Am. J. Ind. Med. 1996, 6, 750–758. [Google Scholar] [CrossRef]
- Garolla, A.; Torino, M.; Sartini, B.; Cosci, I.; Patassini, C.; Carraro, U.; Foresta, C. Seminal and molecular evidence that sauna exposure affects human spermatogenesis. Hum. Reprod. 2013, 28, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Stone, B.A.; Alex, A.; Werlin, L.B.; Marr, R.P.S. Age thresholds for changes in semen parameters in men. Fertil. Steril. 2013, 100, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Kidd, S.A.; Eskenazi, B.; Wyrobek, A.J. Effects of male age on semen quality and fertility: A review of the literature. Fertil. Steril. 2001, 75, 237–248. [Google Scholar] [CrossRef]
- Handelsman, D.J.; Staraj, S. Testicular size: The effects of aging, malnutrition, and illness. J. Androl. 1985, 6, 144–151. [Google Scholar] [CrossRef]
- Khera, M.; Broderick, G.A.; Carson, C.C., 3rd; Dobs, A.S.; Faraday, M.M.; Goldstein, I.; Hakim, L.S.; Hellstrom, W.J.; Kacker, R.; Köhler, T.S.; et al. Adult-Onset Hypogonadism. Mayo Clin. Proc. 2016, 91, 908–926. [Google Scholar] [CrossRef]
- Brahem, S.; Mehdi, M.; Elghezal, H.; Saad, A. The effects of male aging on semen quality, sperm DNA fragmentation and chromosomal abnormalities in an infertile population. J. Assist. Reprod. Genet. 2011, 28, 425–432. [Google Scholar] [CrossRef]
- Zhao, X.; Bian, Y.; Sun, Y.; Li, L.; Wang, L.; Zhao, C.; Shen, Y.; Song, Q.; Qu, Y.; Niu, S.; et al. Effects of moderate exercise over different phases on age-related physiological dysfunction in testes of SAMP8 mice. Exp. Gerontol. 2013, 48, 869–880. [Google Scholar] [CrossRef]
- Chigurupati, S.; Son, T.G.; Hyun, D.H.; Lathia, J.D.; Mughal, M.R.; Savell, J.; Li, S.C.; Nagaraju, G.P.; Chan, S.L.; Arumugam, T.V.; et al. Lifelong running reduces oxidative stress and degenerative changes in the testes of mice. J. Endocrinol. 2008, 199, 333–334. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Fry, A.C.; Warren, B.J.; Stone, M.H.; Fleck, S.J.; Kearney, J.T.; Conroy, B.P.; Maresh, C.M.; Weseman, C.A.; Triplett, N.T.; et al. Acute hormonal responses in elite junior weightlifters. Int. J. Sports Med. 1992, 13, 103–109. [Google Scholar] [CrossRef]
- Hakkinen, K.; Pakarinen, A.; Kraemer, W.J.; Newton, R.U.; Alen, M. Basal concentrations and acute responses of serum hormones andstrength development during heavy resistance training in middle-aged andelderly men and women. J. Gerontol. Ser. A 2000, 55, 95–105. [Google Scholar]
- Pelliccione, F.; Verratti, V.; D’Angeli, A.; Micillo, A.; Doria, C.; Pezzella, A.; Iacutone, G.; Francavilla, F.; Di Giulio, C.; Francavilla, S. Physical exercise at high altitude is associated with a testicular dysfunction leading to reduced sperm concentration but healthy sperm quality. Fertil. Steril. 2011, 96, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; Buckingham, D.; Richardson, D.; Gardiner, J.C.; Irvine, D.S. Impact of a deep saturation dive on semen quality. Int. J. Androl. 2000, 23, 116–120. [Google Scholar] [CrossRef]
- Sairanen, J.; Katila, T.; Virtala, A.M.; Ojala, M. Effects of racing on equine fertility. Anim. Reprod. Sci. 2011, 124, 73–84. [Google Scholar] [CrossRef]
- Leibovitch, I.; Mor, Y. The vicious cycling: Bicycling related urogenital disorders. Eur. Urol. 2005, 47, 277–287. [Google Scholar] [CrossRef]
- Parazzini, F.; Marchini, M.; Luchini, L.; Tozzi, L.; Mezzopane, R.; Fedele, L. Tight underpants and trousers and risk of dyspermia. Int. J. Androl. 1995, 18, 137–140. [Google Scholar] [CrossRef]
Aspect | Mechanism Associated with the Impact on Male Fertility | Positive Influence on Male Fertility | Negative Influence on Male Fertility | Main Conclusion |
---|---|---|---|---|
Immunological | Physical activity supports immune function by reducing inflammation and improving antioxidant defenses, which can protect reproductive tissues from oxidative stress and enhance semen quality | Regular exercise enhances semen quality, reduces oxidative stress, and promotes spermatogenesis by improving testicular antioxidant defenses and modulating immune response | Excessive exercise can cause an imbalance between oxidative stress and antioxidant defense, leading to potential sperm damage, DNA fragmentation, and reduced fertility; a lack of physical activity leads to worsened antioxidant defense, leading to sperm DNA fragmentation | Balanced exercise positively affects fertility by supporting immune function and reducing inflammation; excessive activity may cause oxidative damage and negatively affect fertility |
Endocrine | Exercise modulates the hypothalamic–pituitary–gonadal (HPG) axis, influencing hormone production (e.g., testosterone, LH, and FSH) crucial for sperm production and sexual function | Moderate physical activity supports hormonal balance, stimulating spermatogenesis and improving testosterone levels | Intense or prolonged physical activity can suppress the HPG axis, reducing testosterone, LH, and FSH levels, which can impair fertility; sedentary behavior may lead to lower testosterone levels | Regular, moderate exercise improves hormonal regulation and fertility; excessive exercise can disrupt hormonal balance and negatively impact reproductive health |
Circulatory | Physical activity improves cardiovascular health, which is crucial for erectile function and blood flow to the reproductive organs; inadequate circulation can lead to erectile dysfunction, which is a common indicator of cardiovascular issues | Regular exercise enhances cardiovascular health, improving blood flow to the testes and erectile function, which supports overall fertility | Excessive or intense exercise can exacerbate existing cardiovascular issues, potentially worsening erectile dysfunction and, indirectly, male fertility; a lack of physical activity may lead to the development of metabolic syndrome and worsened erectile function | Regular, moderate exercise is beneficial for erectile function and fertility by improving cardiovascular health and blood circulation, while excessive exercise may negatively impact erectile health and fertility through cardiovascular complications |
Insulin resistance, diabetes, and obesity | Physical activity improves insulin sensitivity, reduces the risk of diabetes and obesity, and enhances metabolic health, which are critical factors in male fertility | Regular physical activity reduces insulin resistance and helps maintain proper body weight, which can improve sperm quality and hormone levels, particularly in individuals with obesity or metabolic disorders | While no direct negative impacts of exercise on fertility in diabetic or obese males were found, extreme exercise can exacerbate metabolic disorders or lead to fatigue and oxidative stress; the level of physical activity should be carefully considered in the case of obese males; a lack of physical activity leads to the development of obesity, insulin resistance, and diabetes, which can impair overall fertility | Physical activity has a positive impact on fertility, especially by managing metabolic conditions such as insulin resistance, obesity, and diabetes, which negatively affect reproductive health |
Physical action | Intense, especially professional, physical activity may lead to physical stress on the body, such as overheating, insufficient oxygen levels, and trauma to the reproductive organs, which can disrupt sperm production and testicular function | Moderate physical activity can improve general health and reproductive function through better tissue repair, improved hormone levels, and overall well-being | Intense physical activity can cause overheating (e.g., from excessive heat in cycling or saunas) in a manner similar to aging, oxygen deprivation (e.g., from high-altitude sports), or trauma (e.g., from pressure in cycling or sports injuries), all of which negatively impact sperm production and testicular function | Regular, moderate physical activity is beneficial for fertility, while excessive physical activity may have detrimental effects, particularly through factors connected with professional sports |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zańko, A.; Pawłowski, M.; Milewski, R. The Impact of Physical Exercise on Male Fertility Through Its Association with Various Processes and Aspects of Human Biology. J. Clin. Med. 2025, 14, 3442. https://doi.org/10.3390/jcm14103442
Zańko A, Pawłowski M, Milewski R. The Impact of Physical Exercise on Male Fertility Through Its Association with Various Processes and Aspects of Human Biology. Journal of Clinical Medicine. 2025; 14(10):3442. https://doi.org/10.3390/jcm14103442
Chicago/Turabian StyleZańko, Adrianna, Michał Pawłowski, and Robert Milewski. 2025. "The Impact of Physical Exercise on Male Fertility Through Its Association with Various Processes and Aspects of Human Biology" Journal of Clinical Medicine 14, no. 10: 3442. https://doi.org/10.3390/jcm14103442
APA StyleZańko, A., Pawłowski, M., & Milewski, R. (2025). The Impact of Physical Exercise on Male Fertility Through Its Association with Various Processes and Aspects of Human Biology. Journal of Clinical Medicine, 14(10), 3442. https://doi.org/10.3390/jcm14103442