Electronic Health Records: A Gateway to AI-Driven Multimorbidity Solutions—A Comprehensive Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Literature Search Results
4. Discussion
4.1. Multimorbidity Patterns and Future Comorbidities
4.2. Drug Utilization and Drug-Related Adverse Events
4.3. Use of Healthcare Services
4.4. Clinical Scores
4.5. Limitations and Strengths
4.6. Clinical Applications and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Literature Search Strategy
Appendix A.1. Search Strategy in Medline
Appendix A.1.1. #1—Multimorbidity
Appendix A.1.2. #2—Artificial Intelligence
Appendix A.1.3. #3—Electronic Health Records
Appendix A.2. Search Strategy in Embase
Appendix A.2.1. #1—Multimorbidity
Appendix A.2.2. #2—Artificial Intelligence
Appendix A.2.3. #3—Electronic Health Records
References
- Ioakeim-Skoufa, I.; González-Rubio, F.; Aza-Pascual-Salcedo, M.; Laguna-Berna, C.; Poblador-Plou, B.; Vicente-Romero, J.; Coelho, H.; Santos-Mejías, A.; Prados-Torres, A.; Moreno-Juste, A.; et al. Multimorbidity patterns and trajectories in young and middle-aged adults: A large-scale population-based cohort study. Front. Public Health 2024, 12, 1349723. [Google Scholar] [CrossRef] [PubMed]
- The Academy of Medical Sciences. Multimorbidity: A Priority for Global Health Research. 2018. Available online: https://acmedsci.ac.uk/file-download/82222577 (accessed on 12 November 2024).
- Uddin, S.; Wang, S.; Lu, H.; Khan, A.; Hajati, F.; Khushi, M. Comorbidity and multimorbidity prediction of major chronic diseases using machine learning and network analytics. Expert Syst. Appl. 2022, 205, 117761. [Google Scholar] [CrossRef]
- Barnett, K.; Mercer, S.W.; Norbury, M.; Watt, G.; Wyke, S.; Guthrie, B. Epidemiology of multimorbidity and implications for health care, research, and medical education: A cross-sectional study. Lancet 2012, 380, 37–43. [Google Scholar] [CrossRef]
- Starfield, B. Threads and yarns: Weaving the tapestry of comorbidity. Ann. Fam. Med. 2006, 4, 101–103. [Google Scholar] [CrossRef]
- Salisbury, C.; Johnson, L.; Purdy, S.; Valderas, J.M.; Montgomery, A.A. Epidemiology and impact of multimorbidity in primary care: A retrospective cohort study. Br. J. Gen. Pract. 2011, 61, e12–e21. [Google Scholar] [CrossRef]
- Skou, S.T.; Mair, F.S.; Fortin, M.; Guthrie, B.; Nunes, B.P.; Miranda, J.J.; Boyd, C.M.; Pati, S.; Mtenga, S.; Smith, S.M. Multimorbidity. Nat. Rev. Dis. Primers 2022, 8, 48. [Google Scholar] [CrossRef]
- Hanlon, P.; Nicholl, B.I.; Jani, B.D.; Lee, D.; McQueenie, R.; Mair, F.S. Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mortality: A prospective analysis of 493 737 UK Biobank participants. Lancet Public Health 2018, 3, e323–e332. [Google Scholar] [CrossRef]
- Mucherino, S.; Gimeno-Miguel, A.; Carmona-Pirez, J.; Gonzalez-Rubio, F.; Ioakeim-Skoufa, I.; Moreno-Juste, A.; Orlando, V.; Aza-Pascual-Salcedo, M.; Poblador-Plou, B.; Menditto, E.; et al. Changes in Multimorbidity and Polypharmacy Patterns in Young and Adult Population over a 4-Year Period: A 2011–2015 Comparison Using Real-World Data. Int. J. Environ. Res. Public Health 2021, 18, 4422. [Google Scholar] [CrossRef] [PubMed]
- Makovski, T.T.; Schmitz, S.; Zeegers, M.P.; Stranges, S.; van den Akker, M. Multimorbidity and quality of life: Systematic literature review and meta-analysis. Ageing Res. Rev. 2019, 53, 100903. [Google Scholar] [CrossRef]
- Ioakeim-Skoufa, I.; Clerencia-Sierra, M.; Moreno-Juste, A.; Elías de Molins Peña, C.; Poblador-Plou, B.; Aza-Pascual-Salcedo, M.; González-Rubio, F.; Prados-Torres, A.; Gimeno-Miguel, A. Multimorbidity Clusters in the Oldest Old: Results from the EpiChron Cohort. Int. J. Environ. Res. Public Health 2022, 19, 10180. [Google Scholar] [CrossRef]
- Muth, C.; van den Akker, M.; Blom, J.W.; Mallen, C.D.; Rochon, J.; Schellevis, F.G.; Becker, A.; Beyer, M.; Gensichen, J.; Kirchner, H.; et al. The Ariadne principles: How to handle multimorbidity in primary care consultations. BMC Med. 2014, 12, 223. [Google Scholar] [CrossRef] [PubMed]
- McPhail, S.M. Multimorbidity in chronic disease: Impact on health care resources and costs. Risk Manag. Healthc. Policy 2016, 9, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Palladino, R.; Tayu Lee, J.; Ashworth, M.; Triassi, M.; Millett, C. Associations between multimorbidity, healthcare utilisation and health status: Evidence from 16 European countries. Age Ageing 2016, 45, 431–435. [Google Scholar] [CrossRef]
- Sinnott, C.; Mc Hugh, S.; Browne, J.; Bradley, C. GPs’ perspectives on the management of patients with multimorbidity: Systematic review and synthesis of qualitative research. BMJ Open 2013, 3, e003610. [Google Scholar] [CrossRef]
- Smith, S.M.; Wallace, E.; O’Dowd, T.; Fortin, M. Interventions for improving outcomes in patients with multimorbidity in primary care and community settings. Cochrane Database Syst. Rev. 2021, 2021, CD006560. [Google Scholar] [CrossRef]
- Strauss, M.J.; Niederkrotenthaler, T.; Thurner, S.; Kautzky-Willer, A.; Klimek, P. Data-Driven Identification of Complex Disease Phenotypes. J. R. Soc. Interface 2021, 18, 20201040. [Google Scholar] [CrossRef] [PubMed]
- Ioakeim-Skoufa, I.; Poblador-Plou, B.; Carmona-Pírez, J.; Díez-Manglano, J.; Navickas, R.; Gimeno-Feliu, L.A.; González-Rubio, F.; Jureviciene, E.; Dambrauskas, L.; Prados-Torres, A.; et al. Multimorbidity Patterns in the General Population: Results from the EpiChron Cohort Study. Int. J. Environ. Res. Public Health 2020, 17, 4242. [Google Scholar] [CrossRef] [PubMed]
- Violán, C.; Roso-Llorach, A.; Foguet-Boreu, Q.; Guisado-Clavero, M.; Pons-Vigués, M.; Pujol-Ribera, E.; Valderas, J.M. Multimorbidity patterns with K-means nonhierarchical cluster analysis. BMC Fam. Pract. 2018, 19, 108. [Google Scholar] [CrossRef]
- Valletta, M.; Vetrano, D.L.; Xia, X.; Rizzuto, D.; Roso-Llorach, A.; Calderón-Larrañaga, A.; Marengoni, A.; Laukka, E.J.; Canevelli, M.; Bruno, G.; et al. Multimorbidity patterns and 18-year transitions from normal cognition to dementia and death: A population-based study. J. Intern. Med. 2023, 294, 326–335. [Google Scholar] [CrossRef]
- Carmona-Pírez, J.; Gimeno-Miguel, A.; Bliek-Bueno, K.; Poblador-Plou, B.; Díez-Manglano, J.; Ioakeim-Skoufa, I.; González-Rubio, F.; Poncel-Falcó, A.; Prados-Torres, A.; Gimeno-Feliu, L.A.; et al. Identifying multimorbidity profiles associated with COVID-19 severity in chronic patients using network analysis in the PRECOVID Study. Sci. Rep. 2022, 12, 2831. [Google Scholar] [CrossRef]
- Zhang, Z.; He, P.; Yao, H.; Jing, R.; Sun, W.; Lu, P.; Xue, Y.; Qi, J.; Cui, B.; Cao, M.; et al. A network-based study reveals multimorbidity patterns in people with type 2 diabetes. iScience 2023, 26, 107979. [Google Scholar] [CrossRef]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Topol Review (2019) Preparing the Healthcare Workforce to Deliver the Digital Future. Final Report February 2019—A Call For Evidence. A Middleton Invited to Contribute. Health Education England. Available online: https://topol.hee.nhs.uk (accessed on 12 November 2024).
- Clinical Practice Research Datalink (CPRD). Medicines and Healthcare products Regulatory Agency. Available online: https://www.cprd.com/ (accessed on 5 May 2025).
- Usher Institute. AIM-CISC: Artificial Intelligence and Multimorbidity-Clustering in Individuals, Space and Clinical Context; The University of Edinburgh: Scotland, UK, 2024; Available online: https://usher.ed.ac.uk/aim-cisc (accessed on 5 May 2025).
- University of Oxford. CoMPuTE: Complex Multiple long-term conditions Phenotypes, Trends, and Endpoints; Nuffield Department of Primary Care Health Sciences: Oxford, UK, 2024; Available online: https://www.phc.ox.ac.uk/research/groups-and-centres/medical-statistics/COMPUTE (accessed on 5 May 2025).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 29, 372. [Google Scholar] [CrossRef]
- Miller, S.A.; Forrest, J.L. Enhancing your practice through evidence-based decision making: PICO, learning how to ask good questions. J. Evid.-Based Dent. Pract. 2001, 1, 136–141. [Google Scholar] [CrossRef]
- Granholm, A.; Alhazzani, W.; Møller, M.H. Use of the GRADE approach in systematic reviews and guidelines. Br. J. Anaesth. 2019, 123, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Ryan, R.; Hill, S. How to GRADE the Quality of the Evidence. Cochrane Consumers and Communication Group. CCCG. Version 3.0 December 2016. Available online: http://cccrg.cochrane.org/author-resources (accessed on 1 January 2023).
- Ageno, A.; Català, N.; Pons, M. Acquisition of Temporal Patterns from Electronic Health Records: An Application to Multimorbid Patients. BMC Med. Inform. Decis. Mak. 2023, 23, 189. [Google Scholar] [CrossRef]
- Bendayan, R.; Kraljevic, Z.; Shaari, S.; Das-Munshi, J.; Leipold, L.; Chaturvedi, J.; Mirza, L.; Aldelemi, S.; Searle, T.; Chance, N.; et al. Mapping Multimorbidity in Individuals with Schizophrenia and Bipolar Disorders: Evidence from the South London and Maudsley NHS Foundation Trust Biomedical Research Centre (SLAM BRC) Case Register. BMJ Open 2022, 12, e054414. [Google Scholar] [CrossRef] [PubMed]
- Bolt, H.; Suffel, A.; Matthewman, J.; Sandmann, F.; Tomlinson, L.; Eggo, R. Seasonality of Acute Kidney Injury Phenotypes in England: An Unsupervised Machine Learning Classification Study of Electronic Health Records. BMC Nephrol. 2023, 24, 67. [Google Scholar] [CrossRef]
- Chushig-Muzo, D.; Soguero-Ruiz, C.; de Miguel Bohoyo, P.; Mora-Jiménez, I. Learning and Visualizing Chronic Latent Representations Using Electronic Health Records. BioData Min. 2022, 15, 16. [Google Scholar] [CrossRef]
- Cruz-Ávila, H.A.; Vallejo, M.; Martínez-García, M.; Hernández-Lemus, E. Comorbidity Networks in Cardiovascular Diseases. Front. Physiol. 2020, 11, 1009. [Google Scholar] [CrossRef]
- Dashtban, A.; Mizani, M.A.; Pasea, L.; Denaxas, S.; Corbett, R.; Mamza, J.B.; Gao, H.; Morris, T.; Hemingway, H.; Banerjee, A. Identifying Subtypes of Chronic Kidney Disease with Machine Learning: Development, Internal Validation and Prognostic Validation Using Linked Electronic Health Records in 350,067 Individuals. EBioMedicine 2023, 89, 104489. [Google Scholar] [CrossRef]
- Dorr, D.A.; Quiñones, A.R.; King, T.; Wei, M.Y.; White, K.; Bejan, C.A. Prediction of Future Health Care Utilization through Note-Extracted Psychosocial Factors. Med. Care 2022, 60, 570–578. [Google Scholar] [CrossRef] [PubMed]
- Dworzynski, P.; Aasbrenn, M.; Rostgaard, K.; Melbye, M.; Gerds, T.A.; Hjalgrim, H.; Pers, T.H. Nationwide Prediction of Type 2 Diabetes Comorbidities. Sci. Rep. 2020, 10, 1776. [Google Scholar] [CrossRef] [PubMed]
- Fahmi, A.; Wong, D.; Walker, L.; Buchan, I.; Pirmohamed, M.; Sharma, A.; Cant, H.; Ashcroft, D.M.; van Staa, T.P. Combinations of Medicines in Patients with Polypharmacy Aged 65–100 in Primary Care: Large Variability in Risks of Adverse Drug Related and Emergency Hospital Admissions. PLoS ONE 2023, 18, e0281466. [Google Scholar] [CrossRef] [PubMed]
- Fränti, P.; Sieranoja, S.; Wikström, K.; Laatikainen, T. Clustering Diagnoses from 58 Million Patient Visits in Finland Between 2015 and 2018. JMIR Med. Inform. 2022, 10, e35422. [Google Scholar] [CrossRef]
- Han, X.; Jiang, F.; Needleman, J.; Zhou, H.; Yao, C.; Tang, Y.L. Comorbidity Combinations in Schizophrenia Inpatients and Their Associations with Service Utilization: A Medical Record-Based Analysis Using Association Rule Mining. Asian J. Psychiatr. 2022, 67, 102927. [Google Scholar] [CrossRef] [PubMed]
- Hayward, C.J.; Batty, J.A.; Westhead, D.R.; Johnson, O.; Gale, C.P.; Wu, J.; Hall, M. Disease Trajectories Following Myocardial Infarction: Insights from Process Mining of 145 Million Hospitalisation Episodes. EBioMedicine 2023, 96, 104792. [Google Scholar] [CrossRef]
- Hossain, M.E.; Uddin, S.; Khan, A. Network Analytics and Machine Learning for Predictive Risk Modelling of Cardiovascular Disease in Patients with Type 2 Diabetes. Expert Syst. Appl. 2021, 164, 113918. [Google Scholar] [CrossRef]
- Josephson, C.B.; Gonzalez-Izquierdo, A.; Engbers, J.D.T.; Denaxas, S.; Delgado-Garcia, G.; Sajobi, T.T.; Wang, M.; Keezer, M.R.; Wiebe, S. Association of comorbid-socioeconomic clusters with mortality in late onset epilepsy derived through unsupervised machine learning. Seizure 2023, 111, 58–67. [Google Scholar] [CrossRef]
- Khader, F.; Müller-Franzes, G.; Wang, T.; Han, T.; Tayebi Arasteh, S.; Haarburger, C.; Stegmaier, J.; Bressem, K.; Kuhl, C.; Nebelung, S.; et al. Multimodal Deep Learning for Integrating Chest Radiographs and Clinical Parameters: A Case for Transformers. Radiology 2023, 309, e230806. [Google Scholar] [CrossRef]
- Kueper, J.K.; Rayner, J.; Zwarenstein, M.; Lizotte, D.J. Describing a Complex Primary Health Care Population to Support Future Decision Support Initiatives. Int. J. Popul. Data Sci. 2022, 7, 1756. [Google Scholar] [CrossRef] [PubMed]
- Lai, F.T.T.; Beeler, P.E.; Yip, B.H.K.; Cheetham, M.; Chau, P.Y.K.; Chung, R.Y.; Wong, E.L.Y.; Yeoh, E.K.; Battegay, E.; Wong, S.Y.S. Comparing Multimorbidity Patterns Among Discharged Middle-Aged and Older Inpatients Between Hong Kong and Zurich: A Hierarchical Agglomerative Clustering Analysis of Routine Hospital Records. Front. Med. 2021, 8, 651925. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, J.; Lin, H.; Lin, Y.; Lu, H.; Yang, Z. A Patient Information Mining Network for Drug Recommendation. Methods 2023, 216, 3–10. [Google Scholar] [CrossRef]
- Linden, T.; De Jong, J.; Lu, C.; Kiri, V.; Haeffs, K.; Fröhlich, H. An Explainable Multimodal Neural Network Architecture for Predicting Epilepsy Comorbidities Based on Administrative Claims Data. Front. Artif. Intell. 2021, 4, 610197. [Google Scholar] [CrossRef]
- Lip, G.Y.H.; Genaidy, A.; Tran, G.; Marroquin, P.; Estes, C.; Sloop, S. Effects of Multimorbidity on Incident COVID-19 Events and Its Interplay with COVID-19 Event Status on Subsequent Incident Myocardial Infarction (MI). Eur. J. Clin. Investig. 2022, 52, e13760. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Uddin, S. A Disease Network-Based Recommender System Framework for Predictive Risk Modelling of Chronic Diseases and Their Comorbidities. Appl. Intell. 2022, 52, 10330–10340. [Google Scholar] [CrossRef]
- Ma, H.; Ding, J.; Liu, M.; Liu, Y. Connections between Various Disorders: Combination Pattern Mining Using Apriori Algorithm Based on Diagnosis Information from Electronic Medical Records. BioMed Res. Int. 2022, 2022, 2199317. [Google Scholar] [CrossRef]
- Mahajan, A.; Deonarine, A.; Bernal, A.; Lyons, G.; Norgeot, B. Developing the Total Health Profile, a Generalizable Unified Set of Multimorbidity Risk Scores Derived from Machine Learning for Broad Patient Populations: Retrospective Cohort Study. J. Med. Internet Res. 2021, 23, e32900. [Google Scholar] [CrossRef]
- Nielsen, A.B.; Thorsen-Meyer, H.C.; Belling, K.; Nielsen, A.P.; Thomas, C.E.; Chmura, P.J.; Lademann, M.; Moseley, P.L.; Heimann, M.; Dybdahl, L.; et al. Survival Prediction in Intensive-Care Units Based on Aggregation of Long-Term Disease History and Acute Physiology: A Retrospective Study of the Danish National Patient Registry and Electronic Patient Records. Lancet Digit. Health 2019, 1, e78–e89. [Google Scholar] [CrossRef]
- Nikolaou, V.; Massaro, S.; Garn, W.; Fakhimi, M.; Stergioulas, L.; Price, D. The Cardiovascular Phenotype of Chronic Obstructive Pulmonary Disease (COPD): Applying Machine Learning to the Prediction of Cardiovascular Comorbidities. Respir. Med. 2021, 186, 106528. [Google Scholar] [CrossRef]
- Oh, S.H.; Back, S.; Park, J. Measuring Patient Similarity on Multiple Diseases by Joint Learning via a Convolutional Neural Network. Sensors 2021, 22, 131. [Google Scholar] [CrossRef]
- Prior, T.S.; Hoyer, N.; Hilberg, O.; Shaker, S.B.; Davidsen, J.R.; Rasmussen, F.; Bendstrup, E. Clusters of Comorbidities in Idiopathic Pulmonary Fibrosis. Respir. Med. 2021, 185, 106490. [Google Scholar] [CrossRef]
- Sae-Ang, A.; Chairat, S.; Tansuebchueasai, N.; Fumaneeshoat, O.; Ingviya, T.; Chaichulee, S. Drug Recommendation from Diagnosis Codes: Classification vs. Collaborative Filtering Approaches. Int. J. Environ. Res. Public Health 2022, 20, 309. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Nikolic, G.; Van Pottelbergh, G.; van den Akker, M.; Vos, R.; De Moor, B. Development of Multimorbidity Over Time: An Analysis of Belgium Primary Care Data Using Markov Chains and Weighted Association Rule Mining. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 1234–1241. [Google Scholar] [CrossRef]
- Siebenhuener, K.; Eschmann, E.; Kienast, A.; Schneider, D.; Minder, C.E.; Saller, R.; Zimmerli, L.; Blaser, J.; Battegay, E.; Holzer, B.M. Chronic Pain: How Challenging Are DDIs in the Analgesic Treatment of Inpatients with Multiple Chronic Conditions? PLoS ONE 2017, 12, e0168987. [Google Scholar] [CrossRef] [PubMed]
- Stafford, G.; Villén, N.; Roso-Llorach, A.; Troncoso-Mariño, A.; Monteagudo, M.; Violán, C. Combined Multimorbidity and Polypharmacy Patterns in the Elderly: A Cross-Sectional Study in Primary Health Care. Int. J. Environ. Res. Public Health 2021, 18, 9216. [Google Scholar] [CrossRef]
- Sun, M.; Niu, J.; Yang, X.; Gu, Y.; Zhang, W. CEHMR: Curriculum Learning Enhanced Hierarchical Multi-Label Classification for Medication Recommendation. Artif. Intell. Med. 2023, 143, 102613. [Google Scholar] [CrossRef] [PubMed]
- Verhoeff, M.; Weil, L.I.; Chu, H.; Vermeeren, Y.; de Groot, J.; Burgers, J.S.; Jeurissen, P.P.T.; Zwerwer, L.R.; van Munster, B.C. Clusters of Medical Specialties around Patients with Multimorbidity—Employing Fuzzy C-Means Clustering to Explore Multidisciplinary Collaboration. BMC Health Serv. Res. 2023, 23, 683. [Google Scholar] [CrossRef]
- Violán, C.; Foguet-Boreu, Q.; Fernández-Bertolín, S.; Guisado-Clavero, M.; Cabrera-Bean, M.; Formiga, F.; Valveny, N.; Muñoz, M.A. Soft Clustering Using Real-World Data for the Identification of Multimorbidity Patterns in an Elderly Population: Cross-Sectional Study in a Mediterranean Population. BMJ Open 2019, 9, e029594. [Google Scholar] [CrossRef]
- Wang, T.; Bendayan, R.; Msosa, Y.; Pritchard, M.; Roberts, A.; Stewart, R.; Dobson, R. Patient-Centric Characterization of Multimorbidity Trajectories in Patients with Severe Mental Illnesses: A Temporal Bipartite Network Modeling Approach. J. Biomed. Inform. 2022, 127, 104010. [Google Scholar] [CrossRef]
- Wesołowski, S.; Lemmon, G.; Hernandez, E.J.; Henrie, A.; Miller, T.A.; Weyhrauch, D.; Puchalski, M.D.; Bray, B.E.; Shah, R.U.; Deshmukh, V.G.; et al. An Explainable Artificial Intelligence Approach for Predicting Cardiovascular Outcomes Using Electronic Health Records. PLoS Digit. Health 2022, 1, e0000004. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, J.; Chen, W.; Lai, Y.; Wang, Y.; Zou, Q. DeepMPM: A Mortality Risk Prediction Model Using Longitudinal EHR Data. BMC Bioinform. 2022, 23, 423. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Fu, T.; Hao, S.; Zhang, Y.; Wang, O.; Jin, B.; Xia, M.; Liu, M.; Zhou, X.; Wu, Q.; et al. Prediction of Incident Hypertension within the Next Year: Prospective Study Using Statewide Electronic Health Records and Machine Learning. J. Med. Internet Res. 2018, 20, e22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Padman, R. Innovations in Chronic Care Delivery Using Predictive Analytics. Am. J. Manag. Care 2015, 21, 661–668. [Google Scholar] [PubMed]
- Zhao, B.; Huepenbecker, S.; Zhu, G.; Rajan, S.S.; Fujimoto, K.; Luo, X. Comorbidity Network Analysis Using Graphical Models for Electronic Health Records. Front. Big Data 2023, 6, 846202. [Google Scholar] [CrossRef]
- Zheng, H.; Ryzhov, I.O.; Xie, W.; Zhong, J. Personalized Multimorbidity Management for Patients with Type 2 Diabetes Using Reinforcement Learning of Electronic Health Records. Drugs 2021, 81, 471–482. [Google Scholar] [CrossRef]
- Zulman, D.M.; Martins, S.B.; Liu, Y.; Tu, S.W.; Hoffman, B.B.; Asch, S.M.; Goldstein, M.K. Using a Clinical Knowledge Base to Assess Comorbidity Interrelatedness Among Patients with Multiple Chronic Conditions. AMIA Annu. Symp. Proc. 2015, 2015, 1381–1389. [Google Scholar] [PubMed]
- Ng, S.K.; Tawiah, R.; Sawyer, M.; Scuffham, P. Patterns of multimorbid health conditions: A systematic review of analytical methods and comparison analysis. Int. J. Epidemiol. 2018, 47, 1687–1704. [Google Scholar] [CrossRef]
- Brzinsky-Fay, C.; Kohler, U. New Developments in Sequence Analysis. Sociol. Methods Res. 2010, 38, 359–364. [Google Scholar] [CrossRef]
- Studer, M.; Ritschard, G. What Matters in Differences Between Life Trajectories: A Comparative Review of Sequence Dissimilarity Measures. J. R. Stat. Soc. Ser. A Stat. Soc. 2016, 179, 481–511. [Google Scholar] [CrossRef]
- Masnoon, N.; Shakib, S.; Kalisch-Ellett, L.; Caughey, G.E. What is polypharmacy? A systematic review of definitions. BMC Geriatr. 2017, 17, 230. [Google Scholar] [CrossRef]
- Pazan, F.; Wehling, M. Polypharmacy in older adults: A narrative review of definitions, epidemiology and consequences. Eur. Geriatr. Med. 2021, 12, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Rodríguez, M.Á.; Sempere-Verdú, E.; Vicens-Caldentey, C.; González-Rubio, F.; Miguel-García, F.; Palop-Larrea, V.; Orueta-Sánchez, R.; Esteban-Jiménez, Ó.; Sempere-Manuel, M.; Arroyo-Aniés, M.P.; et al. Drug Prescription Profiles in Patients with Polypharmacy in Spain: A Large-Scale Pharmacoepidemiologic Study Using Real-World Data. Int. J. Environ. Res. Public Health 2021, 18, 4754. [Google Scholar] [CrossRef]
- Weng, M.C.; Tsai, C.F.; Sheu, K.L.; Lee, Y.T.; Lee, H.C.; Tzeng, S.L.; Ueng, K.C.; Chen, C.C.; Chen, S.C. The impact of number of drugs prescribed on the risk of potentially inappropriate medication among outpatient older adults with chronic diseases. QJM Int. J. Med. 2013, 106, 1009–1015. [Google Scholar] [CrossRef]
- Maher, R.L.; Hanlon, J.; Hajjar, E.R. Clinical consequences of polypharmacy in elderly. Expert Opin. Drug Saf. 2014, 13, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Rajkomar, A.; Oren, E.; Chen, K.; Dai, A.M.; Hajaj, N.; Hardt, M.; Liu, P.J.; Liu, X.; Marcus, J.; Sun, M.; et al. Scalable and Accurate Deep Learning with Electronic Health Records. NPJ Digit. Med. 2018, 1, 18. [Google Scholar] [CrossRef] [PubMed]
- Alaa, A.M.; Bolton, T.; Di, A.E.; Rudd, J.H.F.; van der Schaar, M. Cardiovascular Disease Risk Prediction Using Automated Machine Learning: A Prospective Study of 423,604 UK Biobank Participants. PLoS ONE 2019, 14, e0213653. [Google Scholar] [CrossRef]
- Redfern, O.C.; Pimentel, M.A.F.; Prytherch, D.; Meredith, P.; Clifton, D.A.; Tarassenko, L.; Smith, G.B.; Watkinson, P.J. Predicting In-Hospital Mortality and Unanticipated Admissions to the Intensive Care Unit Using Routinely Collected Blood Tests and Vital Signs: Development and Validation of a Multivariable Model. Resuscitation 2018, 133, 75–81. [Google Scholar] [CrossRef]
- Bica, I.; Alaa, A.M.; Lambert, C.; van der Schaar, M. From Real-World Patient Data to Individualized Treatment Effects Using Machine Learning: Current and Future Methods to Address Underlying Challenges. Clin. Pharmacol. Ther. 2021, 109, 87–100. [Google Scholar] [CrossRef]
- Yoon, J.; Zame, W.R.; Banerjee, A.; Cadeiras, M.; Alaa, A.M.; van der Schaar, M. Personalized Survival Predictions via Trees of Predictors: An Application to Cardiac Transplantation. PLoS ONE 2018, 13, e0194985. [Google Scholar] [CrossRef]
Author, Year [Ref] | Country | Clinical Setting | Study Population | Medication Usage | Laboratory | Social/ Lifestyle | Quality of Life, Health-Related | Sample Size (n) | AI Approach a | AI Objective | Grade Score |
---|---|---|---|---|---|---|---|---|---|---|---|
Ageno A et al., 2023 [32] | Spain | Primary care | Multimorbidity | Yes | No | No | No | 320 | ML algorithms | Predict risk factors | Low ⨁⨁◯◯ |
Bendayan R et al., 2022 [33] | England | Specialized care | Severe mental illness | Yes | Yes | Yes | No | 17,500 | NLP (MedCAT) | Extract physical health data | Low ⨁⨁◯◯ |
Bolt H et al., 2023 [34] | England | Hospital | Acute Kidney Injury | No | No | No | No | 133,488 | Clustering | Profile clusters of underlying comorbidities | Low ⨁⨁◯◯ |
Chushig-Muzo D et al., 2022 [35] | Spain | Hospital | General population | Yes | No | No | No | 15,162 | Denoising autoencoder | Profile progression of chronic patients | Low ⨁⨁◯◯ |
Cruz-Ávila HA et al., 2020 [36] | Mexico | Hospital | Cardiovascular diseases | No | No | No | No | 34,099 | CVC | Estimate molecular relationships behind multimorbidity | Low ⨁⨁◯◯ |
Dashtban A et al., 2023 [37] | UK | Primary care | Chronic Kidney Disease | Yes | Yes | Yes | No | 350,067 | XGBoost, NB, K-NN, DT | Profile clusters of chronic kidney disease | Low ⨁⨁◯◯ |
Dorr DA et al., 2022 [38] | USA | Hospital | Multimorbidity | No | No | Yes | No | 76,479 | LR | Predict health care utilization | Low ⨁⨁◯◯ |
Dworzynski P et al., 2020 [39] | Denmark | Hospital | Type 2 diabetes mellitus | Yes | No | No | No | 203,517 | RLR, LR, RF, XGBoost | Predict future onset of chronic disease comorbidities | Low ⨁⨁◯◯ |
Fahmi A et al., 2023 [40] | UK | Hospital | Polypharmacy | Yes | No | Yes | No | 532,732 | RF | Predict ADR risk | Low ⨁⨁◯◯ |
Fränti P et al., 2022 [41] | Finland | Primary care and hospital | General population | No | No | No | No | 3,800,000 | M-algorithm | Profile multimorbidity clusters | Low ⨁⨁◯◯ |
Han X et al., 2022 [42] | China | Hospital | Schizophrenia and related disorders | No | No | No | No | 8252 | Association Rule Mining (ARM) | Predict health care utilization | Low ⨁⨁◯◯ |
Hayward CJ et al., 2023 [43] | England | Hospital | General population | No | No | Yes | No | 375,669 | AI-powered process mining | Estimate disease trajectories | Low ⨁⨁◯◯ |
Hossain ME et al., 2021 [44] | Australia | General | Type 2 diabetes mellitus | No | No | No | No | 344 | LR, SVM, DT, RF, NB, K-NN | Predict comorbid risk | Low ⨁⨁◯◯ |
Josephson CB et al., 2023 [45] | UK | Primary care and hospital | Epilepsy | Yes | No | Yes | No | 1,032,129 | NLP (CALIBRE) | Profile clusters of premature mortality | Low ⨁⨁◯◯ |
Khader F et al., 2023 [46] | USA and Germany | Hospital | Admitted to ICU b | No | Yes | No | No | 81,558 | MDL | Improve diagnostic performance | Low ⨁⨁◯◯ |
Kueper JK et al., 2022 [47] | Canada | Primary Care | General population | No | No | Yes | No | 221,047 | Primary-care decision support tool | Improve diagnostic decision | Low ⨁⨁◯◯ |
Lai FTT et al., 2021 [48] | China and Switzerland | Hospital | General population | No | No | No | No | 20,000 | Hierarchical clustering | Profile multimorbid inpatients | Low ⨁⨁◯◯ |
Li R et al., 2023 [49] | China | Hospital | General population | Yes | No | No | No | 6350 | PIMNet. | Improve the medication recommendation | Low ⨁⨁◯◯ |
Linden T et al., 2021 [50] | USA | General | Epilepsy | Yes | Yes | No | No | 132,265 | DeepLORI | Predict risk for common comorbidities | Low ⨁⨁◯◯ |
Lip GYH et al., 2022 [51] | USA | Hospital | General population | No | No | No | No | 4,289,481 | ANN | Identify the relationships among comorbidity and other variables | Low ⨁⨁◯◯ |
Lu H et al., 2022 [52] | Australia | General | Chronic patients | No | No | No | No | 19,828 | ANN | Predict the comorbid risk of chronic diseases and their comorbidities | Low ⨁⨁◯◯ |
Ma H et al., 2022 [53] | China | Hospital | Admitted to hospital | No | No | No | No | 144,207 | Data mining | Identify associations between diseases | Low ⨁⨁◯◯ |
Mahajan A et al., 2021 [54] | USA | General | General population | Yes | Yes | Yes | No | 992,868 | ML algorithms | Predict multimorbidity risk scores | Low ⨁⨁◯◯ |
Nielsen AB et al., 2019 [55] | Denmark | Hospital | Admitted to ICU b | No | Yes | No | No | 11,896 | ANN | Improves mortality predictions | Low ⨁⨁◯◯ |
Nikolaou V et al., 2021 [56] | UK | Hospital | COPD c and cardiovascular comorbidity | Yes | No | No | No | 6883 | RF, DT, XGBoost, MLR | Predict cardiovascular comorbidities | Low ⨁⨁◯◯ |
Oh SH et al., 2021 [57] | South Korea | General | General population | No | No | No | No | Unclear | CNN-based model | Predict similarity in multiple diseases | Low ⨁⨁◯◯ |
Prior TS et al., 2021 [58] | Denmark | Hospital | Idiopathic pulmonary fibrosis | Yes | Yes | No | Yes | 150 | Self-organizing maps | Profile comorbidity clusters | Low ⨁⨁◯◯ |
Sae-Ang, A et al., 2022 [59] | Thailand | Primary care | Diabetes, hypertension, or cardiovascular disease | Yes | No | No | No | 3925 | LR, NN, RF, MLP | Improve the drug prescription and verification | Low ⨁⨁◯◯ |
Shi X et al., 2021 [60] | Belgium | Primary care | Multimorbidity | No | No | No | No | 65,939 | Markov chains and WARM, Weighted Association Rule Mining | Estimate chronic conditions relations | Low ⨁⨁◯◯ |
Siebenhuener K et al., 2017 [61] | Switzerland | Hospital | Multimorbidity | Yes | No | No | No | 1039 | ML algorithms | Estimate combinations of chronic diseases and medications | Low ⨁⨁◯◯ |
Stafford G et al., 2021 [62] | Spain | Primary care | General population | Yes | No | Yes | No | 916,619 | Clustering | Profile multimorbidity and polypharmacy clusters | Low ⨁⨁◯◯ |
Strauss MJ et al., 2021 [17] | Austria | Hospital | General population | No | No | No | No | 478,575 | ANN | Identify disease phenotypes | Low ⨁⨁◯◯ |
Sun M et al., 2023 [63] | China | Hospital | Admitted to ICU b | Yes | No | No | No | 6350 | Hierarchical clustering | Improve the medication recommendation | Low ⨁⨁◯◯ |
Uddin S et al., 2022 [3] | Australia | General | Chronic patients | No | No | No | No | 29,100 | LR, K-NN, NB, RF, XGBoost, MLP, CNN | Predict disease comorbidity and multimorbidity | Low ⨁⨁◯◯ |
Verhoeff M et al., 2023 [64] | Netherlands | Hospital | Oncologic patients with multimorbidity | No | No | No | No | 22,133 | Fuzzy c-means clustering | Profile multimorbidity clusters | Low ⨁⨁◯◯ |
Violan C et al., 2019 [65] | Spain | Primary care | General population | Yes | No | Yes | No | 916,619 | Fuzzy c-means clustering | Profile multimorbidity clusters | Low ⨁⨁◯◯ |
Wang T et al., 2022 [66] | UK | Hospital | Severe mental illness | No | No | No | No | 7728 | Temporal bipartite network model | Estimate hospitalization and multimorbidity profiles | Low ⨁⨁◯◯ |
Wesołowski S et al., 2022 [67] | USA | Hospital | Mother–child pairs | Yes | No | Yes | No | 1,659,372 | Poisson Binomial-based Comorbidity | Predict cardiovascular outcomes | Low ⨁⨁◯◯ |
Yang F et al., 2022 [68] | China | Hospital | Admitted to ICU b | No | No | No | No | 7491 | RNN, MTL, LSTM-NN, RETAIN, Deepcare, DeepMPM-w/o-β, DeepMPM | Predict mortality risk | Low ⨁⨁◯◯ |
Ye C et al., 2018 [69] | USA | Primary care and hospital | General population | Yes | Yes | Yes | No | 1,504,437 | XGBoost | Predict hypertension risk | Low ⨁⨁◯◯ |
Zhang Y et al., 2015 [70] | USA | Hospital | Chronic kidney disease patients with multimorbidity | Yes | Yes | No | No | 664 | ML algorithm | Predict future state | Low ⨁⨁◯◯ |
Zhao B et al., 2023 [71] | USA | Hospital | Admitted to CCU d | No | No | No | No | 46,511 | Graphical modeling | Improve diagnostic decision | Low ⨁⨁◯◯ |
Zheng H et al., 2021 [72] | USA | Primary care | Type 2 diabetes mellitus | Yes | Yes | Yes | No | 16,665 | Reinforcement learning | Improve health outcomes | Low ⨁⨁◯◯ |
Zulman DM et al., 2015 [73] | USA | Primary Care and Hospital | Hypertension | Yes | Yes | No | No | 5997 | Decision Support Systems (ATHENA—HTN) | Identify comorbidity interrelatedness | Low ⨁⨁◯◯ |
Study [Ref] | Model a | Precision | Recall | Accuracy | F1 Score | Other b |
---|---|---|---|---|---|---|
Bendayan R et al., 2022 [33] | NLP | 0.82–1.00 | 0.85–1.00 | 0.91–1.00 | ||
Cruz-Ávila HA et al., 2020 [36] | CVC | Jaccard: 0.121–0.828 | ||||
Dashtban A et al., 2023 [37] | XGBoost | 0.95 | 0.84–0.97 | Se: 0.81–0.98 | ||
NB | 0.59–0.65 | 0.09–0.84 | Se: 0.22–0.84 | |||
K-NN | 0.78 | 0.59–0.86 | Se: 0.44–0.97 | |||
DT | 0.92 | 0.78–0.95 | Se: 0.77–0.97 | |||
Dorr DA et al., 2022 [38] | LR | C-index: 0.53–0.81 | ||||
Dworzynski P et al., 2020 [39] | RLR | AUC: 0.66–0.74 | ||||
LR | AUC: 0.68–0.77 | |||||
RF | AUC: 0.67–0.77 | |||||
XGBoost | AUC: 0.69–0.80 | |||||
Fahmi A et al., 2023 [40] | RF | C-index: 0.62–0.66; DOR: 4.06–7.16 | ||||
Hossain ME et al., 2021 [44] | LR | 0.83 | 0.83 | 0.83 | 0.83 | |
SVM | 0.83 | 0.83 | 0.83 | 0.83 | ||
DT | 0.84 | 0.92 | 0.83 | 0.88 | ||
RF | 0.80 | 1.00 | 0.87 | 0.89 | ||
NB | 0.82 | 0.75 | 0.79 | 0.78 | ||
K-NN | 0.77 | 0.83 | 0.79 | 0.80 | ||
Khader F et al., 2023 [46] | MDL | AUC: 0.70–0.77; Sp: 0.65–0.72; Se: 0.66–0.70; PPV: 0.34–0.40 | ||||
Li R et al., 2023 [49] | PIMNet | 0.69 | PRAUC: 0.76; Jaccard: 0.54 | |||
Linden T et al., 2021 [50] | DeepLORI | Uno’s C-index: 0.72–0.77 | ||||
Lip GYH et al., 2022 [51] | LR | C-index: 0.95 | ||||
ANN | C-index: 0.90 | |||||
Lu H et al., 2022 [52] | ANN | 0.70–0.90 | AUC: 0.76–0.90; mAP: 0.47–0.68; NDCG: 0.54–0.74 | |||
Mahajan A et al., 2021 [54] | ML | AUC: 0.82–0.89; Sp: 0.75–0.83; Se: 0.72–0.82 | ||||
Nielsen AB et al., 2019 [55] | ANN | AUC: 0.79; DOR: 0.41; PPV: 0.59 | ||||
Nikolaou V et al., 2021 [56] | RF | 0.86 | Sp: 0.17–0.96; Se: 0.00–0.87; PPV: 0.00–0.98; NPV: 0.02–0.99 | |||
DT | 0.34 | Sp: 0.14–0.97; Se: 0.06–0.88; PPV: 0.21–0.35; NPV: 0.69–0.79 | ||||
XGBoost | 0.39 | Sp: 0.15–0.97; Se: 0.06–0.89; PPV: 0.22–0.40; NPV: 0.70–0.84 | ||||
MLR | 0.33 | Sp: 0.15–0.97; Se: 0.05–0.90; PPV: 0.15–0.42; NPV: 0.74–0.86 | ||||
Oh SH et al., 2021 [57] | CNN | 0.52–0.85 | 0.61–0.89 | 0.54–0.86 | 0.55–0.92 | |
Sae-Ang A et al., 2022 [59] | NN | 0.45 | 0.75 | Hit: 0.97; NDCG: 0.77; Macro-AP: 0.25; Micro-AP: 0.62; Macro-AUC: 0.71; Micro-AUC: 0.88 | ||
LR | 0.45 | 0.75 | Hit: 0.97; NDCG: 0.77; Macro-AP: 0.23; Micro-AP: 0.63; Macro-AUC: 0.69; Micro-AUC: 0.89 | |||
RF | 0.46 | 0.76 | Hit: 0.97; NDCG: 0.76; Macro-AP: 0.33; Micro-AP: 0.64; Macro-AUC: 0.73; Micro-AUC: 0.89 | |||
MLP | 0.46 | 0.76 | Hit: 0.97; NDCG: 0.79; Macro-AP: 0.32; Micro-AP: 0.67; Macro-AUC: 0.76; Micro-AUC: 0.90 | |||
Strauss MJ et al., 2021 [17] | ANN | 0.00–1.00 | 0.00–1.00 | 0.04–0.78 | ||
Sun M et al., 2023 [63] | HC | 0.63 | PRAUC: 0.71; Jaccard: 0.48 | |||
Uddin S et al., 2022 [3] | LR | 0.75 | 0.74 | 0.74 | 0.73 | |
K-NN | 0.76 | 0.76 | 0.76 | 0.75 | ||
NB | 0.61 | 0.63 | 0.63 | 0.54 | ||
RF | 0.88 | 0.87 | 0.87 | 0.87 | ||
XGBoost | 0.95 | 0.95 | 0.95 | 0.95 | ||
MLP | 0.84 | 0.74 | 0.74 | 0.75 | ||
CNN | 0.92 | 0.92 | 0.92 | 0.92 | ||
Yang F et al., 2022 [68] | RNN | 0.74 | 0.76 | 0.75 | AUC: 0.83 | |
MTL | 0.62 | 0.58 | 0.59 | AUC: 0.64 | ||
LSTM-NN | 0.76 | 0.75 | 0.76 | AUC: 0.83 | ||
RETAIN | 0.76 | 0.78 | 0.77 | AUC: 0.83 | ||
Deepcare | 0.79 | 0.77 | 0.78 | AUC: 0.79 | ||
DeepMPM-w/o-β | 0.77 | 0.78 | 0.77 | AUC: 0.84 | ||
DeepMPM | 0.77 | 0.80 | 0.78 | AUC: 0.85 | ||
Ye C et al., 2018 [69] | XGBoost | AUC: 0.87–0.92; Sp: 0.03–0.61; Se: 0.07–0.35; PPV: 0.01–0.51 | ||||
Zhang Y et al., 2015 [70] | ML | 0.07–0.75 | FN: 0.00; FP: 0.00–0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioakeim-Skoufa, I.; Cebollada-Herrera, C.; Marín-Bárcena, C.; Roque, V.; Roque, F.; Atkins, K.; Hernández-Rodríguez, M.Á.; Aza-Pascual-Salcedo, M.; Fanlo-Villacampa, A.; Coelho, H.; et al. Electronic Health Records: A Gateway to AI-Driven Multimorbidity Solutions—A Comprehensive Systematic Review. J. Clin. Med. 2025, 14, 3434. https://doi.org/10.3390/jcm14103434
Ioakeim-Skoufa I, Cebollada-Herrera C, Marín-Bárcena C, Roque V, Roque F, Atkins K, Hernández-Rodríguez MÁ, Aza-Pascual-Salcedo M, Fanlo-Villacampa A, Coelho H, et al. Electronic Health Records: A Gateway to AI-Driven Multimorbidity Solutions—A Comprehensive Systematic Review. Journal of Clinical Medicine. 2025; 14(10):3434. https://doi.org/10.3390/jcm14103434
Chicago/Turabian StyleIoakeim-Skoufa, Ignatios, Celeste Cebollada-Herrera, Concepción Marín-Bárcena, Vitor Roque, Fátima Roque, Kerry Atkins, Miguel Ángel Hernández-Rodríguez, Mercedes Aza-Pascual-Salcedo, Ana Fanlo-Villacampa, Helena Coelho, and et al. 2025. "Electronic Health Records: A Gateway to AI-Driven Multimorbidity Solutions—A Comprehensive Systematic Review" Journal of Clinical Medicine 14, no. 10: 3434. https://doi.org/10.3390/jcm14103434
APA StyleIoakeim-Skoufa, I., Cebollada-Herrera, C., Marín-Bárcena, C., Roque, V., Roque, F., Atkins, K., Hernández-Rodríguez, M. Á., Aza-Pascual-Salcedo, M., Fanlo-Villacampa, A., Coelho, H., Lasala-Aza, C., Ledesma-Calvo, R., Gimeno-Miguel, A., & Vicente-Romero, J. (2025). Electronic Health Records: A Gateway to AI-Driven Multimorbidity Solutions—A Comprehensive Systematic Review. Journal of Clinical Medicine, 14(10), 3434. https://doi.org/10.3390/jcm14103434