Cerebrovascular Management Considerations in Patients on AATs
Abstract
:1. Introduction
2. Role of Intravenous Thrombolysis
3. Endovascular Mechanical Thrombectomy
4. ICH Management
5. Management of ARIA
6. Antiplatelet Management
7. Anticoagulation Management
Study | Device | Study Type | Implantation Success | Results |
---|---|---|---|---|
Reddy et al. (PROTECT-AF) [74] | WATCHMAN | Prospective, randomized, multi-center clinical trial Warfarin control arm | 88% | Composite stroke/systemic embolism/cardiac death: HR 0.71 (95% CI, 0.44–1.30) |
Holmes et al. (PREVAIL) [63] | WATCHMAN | Prospective, randomized, multi-center clinical trial Warfarin control arm | 95% | Composite stroke/systemic embolism/cardiac death: RR 1.07 (95% CI, 0.57–1.89) |
Litwinowicz et al. [70] | LARIAT | Prospective, observational, single-center | 96.4% | Thromboembolism rate: 0.6% (Estimated risk reduction 81%) Severe bleeding rate: 0.8% (Estimated risk reduction 78%) |
Caliskan et al. [73] | AtriClip | Prospective, observation, multi-center registry | 100% | Ischemic stroke rate w/o anticoagulation: 0.5/1000 patient years (Estimated risk reduction 87.5%) |
8. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Shin, J.H. Dementia Epidemiology Fact Sheet 2022. Ann. Rehabil. Med. 2022, 46, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Mayeux, R.; Stern, Y. Epidemiology of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2012, 2, a006239. [Google Scholar] [CrossRef] [PubMed]
- Sojkova, J.; Zhou, Y.; An, Y.; Kraut, M.A.; Ferrucci, L.; Wong, D.F.; Resnick, S.M. Longitudinal patterns of beta-amyloid deposition in nondemented older adults. Arch. Neurol. 2011, 68, 644–649. [Google Scholar] [CrossRef]
- Marini, C.; Baldassarre, M.; Russo, T.; De Santis, F.; Sacco, S.; Ciancarelli, I.; Carolei, A. Burden of first-ever ischemic stroke in the oldest old: Evidence from a population-based study. Neurology 2004, 62, 77–81. [Google Scholar] [CrossRef]
- What Is Dementia? Symptoms, Types, and Diagnosis. 8 December 2022. Available online: https://www.nia.nih.gov/health/what-is-dementia#:~:text=Dementia%20is%20the%20loss%20of,and%20their%20personalities%20may%20change (accessed on 1 April 2025).
- Pinho, J.; Quintas-Neves, M.; Dogan, I.; Reetz, K.; Reich, A.; Costa, A.S. Incident stroke in patients with Alzheimer’s disease: Systematic review and meta-analysis. Sci. Rep. 2021, 11, 16385. [Google Scholar] [CrossRef]
- Budd Haeberlein, S.; Aisen, P.S.; Barkhof, F.; Chalkias, S.; Chen, T.; Cohen, S.; Dent, G.; Hansson, O.; Harrison, K.; von Hehn, C.; et al. Two Randomized Phase 3 Studies of Aducanumab in Early Alzheimer’s Disease. J. Prev. Alzheimers Dis. 2022, 9, 197–210. [Google Scholar] [CrossRef]
- van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; et al. Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 388, 9–21. [Google Scholar] [CrossRef]
- Sims, J.R.; Zimmer, J.A.; Evans, C.D.; Lu, M.; Ardayfio, P.; Sparks, J.; Wessels, A.M.; Shcherbinin, S.; Wang, H.; Monkul Nery, E.S.; et al. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial. JAMA 2023, 330, 512–527. [Google Scholar] [CrossRef]
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Roytman, M.; Mashriqi, F.; Al-Tawil, K.; Schulz, P.E.; Zaharchuk, G.; Benzinger, T.L.S.; Franceschi, A.M. Amyloid-Related Imaging Abnormalities: An Update. AJR Am. J. Roentgenol. 2023, 220, 562–574. [Google Scholar] [CrossRef]
- Barakos, J.; Purcell, D.; Suhy, J.; Chalkias, S.; Burkett, P.; Marsica Grassi, C.; Castrillo-Viguera, C.; Rubino, I.; Vijverberg, E. Detection and Management of Amyloid-Related Imaging Abnormalities in Patients with Alzheimer’s Disease Treated with Anti-Amyloid Beta Therapy. J. Prev. Alzheimers Dis. 2022, 9, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Salloway, S.; Chalkias, S.; Barkhof, F.; Burkett, P.; Barakos, J.; Purcell, D.; Suhy, J.; Forrestal, F.; Tian, Y.; Umans, K.; et al. Amyloid-Related Imaging Abnormalities in 2 Phase 3 Studies Evaluating Aducanumab in Patients with Early Alzheimer Disease. JAMA Neurol. 2022, 79, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Lees, K.R.; Bluhmki, E.; von Kummer, R.; Brott, T.G.; Toni, D.; Grotta, J.C.; Albers, G.W.; Kaste, M.; Marler, J.R.; Hamilton, S.A.; et al. Time to treatment with intravenous alteplase and outcome in stroke: An updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 2010, 375, 1695–1703. [Google Scholar] [CrossRef]
- Burgos, A.M.; Saver, J.L. Evidence that Tenecteplase Is Noninferior to Alteplase for Acute Ischemic Stroke. Stroke 2019, 50, 2156–2162. [Google Scholar] [CrossRef]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar] [CrossRef]
- Berge, E.; Whiteley, W.; Audebert, H.; De Marchis, G.M.; Fonseca, A.C.; Padiglioni, C.; de la Ossa, N.P.; Strbian, D.; Tsivgoulis, G.; Turc, G. European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur. Stroke J. 2021, 6, I–LXII. [Google Scholar] [CrossRef]
- Chacon-Portillo, M.A.; Llinas, R.H.; Marsh, E.B. Cerebral microbleeds shouldn’t dictate treatment of acute stroke: A retrospective cohort study evaluating risk of intracerebral hemorrhage. BMC Neurol. 2018, 18, 33. [Google Scholar] [CrossRef]
- Schlemm, L.; Endres, M.; Werring, D.J.; Nolte, C.H. Benefit of Intravenous Thrombolysis in Acute Ischemic Stroke Patients with High Cerebral Microbleed Burden. Stroke 2020, 51, 232–239. [Google Scholar] [CrossRef]
- Schlemm, L.; Braemswig, T.B.; Boutitie, F.; Vynckier, J.; Jensen, M.; Galinovic, I.; Simonsen, C.Z.; Cheng, B.; Cho, T.H.; Fiehler, J.; et al. Cerebral Microbleeds and Treatment Effect of Intravenous Thrombolysis in Acute Stroke: An Analysis of the WAKE-UP Randomized Clinical Trial. Neurology 2022, 98, e302–e314. [Google Scholar] [CrossRef]
- Ganesh, A.; Fraser, J.F.; Gordon Perue, G.L.; Amin-Hanjani, S.; Leslie-Mazwi, T.M.; Greenberg, S.M.; Couillard, P.; Asdaghi, N.; Goyal, M.; American Heart Association Stroke Council. Endovascular Treatment and Thrombolysis for Acute Ischemic Stroke in Patients with Premorbid Disability or Dementia: A Scientific Statement from the American Heart Association/American Stroke Association. Stroke 2022, 53, e204–e217. [Google Scholar] [CrossRef]
- Reish, N.J.; Jamshidi, P.; Stamm, B.; Flanagan, M.E.; Sugg, E.; Tang, M.; Donohue, K.L.; McCord, M.; Krumpelman, C.; Mesulam, M.M.; et al. Multiple Cerebral Hemorrhages in a Patient Receiving Lecanemab and Treated with t-PA for Stroke. N. Engl. J. Med. 2023, 388, 478–479. [Google Scholar] [CrossRef] [PubMed]
- Peripheral and Central Nervous System Drugs Advisory Committee. Donanemab for the Treatment of Patients with Early Symptomatic Alzheimer’s Disease: Sponsor Briefing Document; Eli Lilly and Company: Indianapolis, IN, USA, 2024. [Google Scholar]
- Cummings, J.; Apostolova, L.; Rabinovici, G.D.; Atri, A.; Aisen, P.; Greenberg, S.; Hendrix, S.; Selkoe, D.; Weiner, M.; Petersen, R.C.; et al. Lecanemab: Appropriate Use Recommendations. J. Prev. Alzheimers Dis. 2023, 10, 362–377. [Google Scholar] [CrossRef] [PubMed]
- Treatment with Endovascular Intervention for Stroke Patients with Existing Disability. 26 September 2023. Available online: https://www.pcori.org/research-results/2022/treatment-endovascular-intervention-stroke-patients-existing-disability (accessed on 1 September 2023).
- Agbonon, R.; Forestier, G.; Bricout, N.; Benhassen, W.; Turc, G.; Bretzner, M.; Pasi, M.; Benzakoun, J.; Seners, P.; Derraz, I.; et al. Cerebral microbleeds and risk of symptomatic hemorrhagic transformation following mechanical thrombectomy for large vessel ischemic stroke. J. Neurol. 2024, 271, 2631–2638. [Google Scholar] [CrossRef]
- Weller, J.M.; Enkirch, S.J.; Bogs, C.; Braemswig, T.B.; Deb-Chatterji, M.; Keil, F.; Kindler, C.; Maywald, S.; Schirmer, M.D.; Stosser, S.; et al. Endovascular Treatment for Acute Stroke in Cerebral Amyloid Angiopathy. Stroke 2021, 52, e581–e585. [Google Scholar] [CrossRef]
- Yang, P.; Zhang, Y.; Zhang, L.; Zhang, Y.; Treurniet, K.M.; Chen, W.; Peng, Y.; Han, H.; Wang, J.; Wang, S.; et al. Endovascular Thrombectomy with or without Intravenous Alteplase in Acute Stroke. N. Engl. J. Med. 2020, 382, 1981–1993. [Google Scholar] [CrossRef]
- Salloway, S.; Sperling, R.; Fox, N.C.; Blennow, K.; Klunk, W.; Raskind, M.; Sabbagh, M.; Honig, L.S.; Porsteinsson, A.P.; Ferris, S.; et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 2014, 370, 322–333. [Google Scholar] [CrossRef]
- Agarwal, A.; Gupta, V.; Brahmbhatt, P.; Desai, A.; Vibhute, P.; Joseph-Mathurin, N.; Bathla, G. Amyloid-related Imaging Abnormalities in Alzheimer Disease Treated with Anti-Amyloid-beta Therapy. Radiographics 2023, 43, e230009. [Google Scholar] [CrossRef]
- Greenberg, S.; Battioui, C.; Lu, M.; Biffi, A.; Ardayfio, P.; Zimmer, J.; Evans, C.; Wang, H.; Monkul Nery, E.; Sparks, J. ARIA insights from the donanemab trials. Neurology 2024, 102, P1-9.001. [Google Scholar] [CrossRef]
- Greenberg, S.M.; Ziai, W.C.; Cordonnier, C.; Dowlatshahi, D.; Francis, B.; Goldstein, J.N.; Hemphill, J.C., 3rd; Johnson, R.; Keigher, K.M.; Mack, W.J.; et al. 2022 Guideline for the Management of Patients with Spontaneous Intracerebral Hemorrhage: A Guideline From the American Heart Association/American Stroke Association. Stroke 2022, 53, e282–e361. [Google Scholar] [CrossRef]
- de Bruin, O.F.; Voigt, S.; Schoones, J.W.; Moojen, W.A.; van Etten, E.S.; Wermer, M.J.H. Surgical intervention for cerebral amyloid angiopathy-related lobar intracerebral hemorrhage: A systematic review. J. Neurosurg. 2024, 141, 955–965. [Google Scholar] [CrossRef]
- Pradilla, G.; Ratcliff, J.J.; Hall, A.J.; Saville, B.R.; Allen, J.W.; Paulon, G.; McGlothlin, A.; Lewis, R.J.; Fitzgerald, M.; Caveney, A.F.; et al. Trial of Early Minimally Invasive Removal of Intracerebral Hemorrhage. N. Engl. J. Med. 2024, 390, 1277–1289. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R.A.; Jack, C.R., Jr.; Black, S.E.; Frosch, M.P.; Greenberg, S.M.; Hyman, B.T.; Scheltens, P.; Carrillo, M.C.; Thies, W.; Bednar, M.M.; et al. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: Recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement. 2011, 7, 367–385. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Cecchetti, G.; Spinelli, E.G.; Vezzulli, P.; Falini, A.; Agosta, F. Amyloid-Related Imaging Abnormalities and beta-Amyloid-Targeting Antibodies: A Systematic Review. JAMA Neurol. 2022, 79, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Kozberg, M.G.; Perosa, V.; Gurol, M.E.; van Veluw, S.J. A practical approach to the management of cerebral amyloid angiopathy. Int. J. Stroke 2021, 16, 356–369. [Google Scholar] [CrossRef]
- Regenhardt, R.W.; Thon, J.M.; Das, A.S.; Thon, O.R.; Charidimou, A.; Viswanathan, A.; Gurol, M.E.; Chwalisz, B.K.; Frosch, M.P.; Cho, T.A.; et al. Association Between Immunosuppressive Treatment and Outcomes of Cerebral Amyloid Angiopathy-Related Inflammation. JAMA Neurol. 2020, 77, 1261–1269. [Google Scholar] [CrossRef]
- Greenberg, S.M.; Aparicio, H.J.; Furie, K.L.; Goyal, M.S.; Hinman, J.D.; Kozberg, M.; Leonard, A.; Fisher, M.J.; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology. Vascular Neurology Considerations for Antiamyloid Immunotherapy: A Science Advisory from the American Heart Association. Stroke 2025, 56, e30–e38. [Google Scholar] [CrossRef]
- Honig, L.S.; Sabbagh, M.N.; van Dyck, C.H.; Sperling, R.A.; Hersch, S.; Matta, A.; Giorgi, L.; Gee, M.; Kanekiyo, M.; Li, D. Updated safety results from phase 3 lecanemab study in early Alzheimer’s disease. Alzheimer’s Res. Ther. 2024, 16, 105. [Google Scholar] [CrossRef]
- Bushnell, C.; Kernan, W.N.; Sharrief, A.Z.; Chaturvedi, S.; Cole, J.W.; Cornwell, W.K., 3rd; Cosby-Gaither, C.; Doyle, S.; Goldstein, L.B.; Lennon, O.; et al. 2024 Guideline for the Primary Prevention of Stroke: A Guideline from the American Heart Association/American Stroke Association. Stroke 2024, 55, e344–e424. [Google Scholar] [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e563–e595. [Google Scholar] [CrossRef]
- Akoudad, S.; Portegies, M.L.; Koudstaal, P.J.; Hofman, A.; van der Lugt, A.; Ikram, M.A.; Vernooij, M.W. Cerebral Microbleeds Are Associated with an Increased Risk of Stroke: The Rotterdam Study. Circulation 2015, 132, 509–516. [Google Scholar] [CrossRef]
- Biffi, A.; Halpin, A.; Towfighi, A.; Gilson, A.; Busl, K.; Rost, N.; Smith, E.E.; Greenberg, M.S.; Rosand, J.; Viswanathan, A. Aspirin and recurrent intracerebral hemorrhage in cerebral amyloid angiopathy. Neurology 2010, 75, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.S.; Chan, Y.L.; Liu, J.Y.; Gao, S.; Lam, W.W. Asymptomatic microbleeds as a risk factor for aspirin-associated intracerebral hemorrhages. Neurology 2003, 60, 511–513. [Google Scholar] [CrossRef] [PubMed]
- Ha, A.C.T.; Bhatt, D.L.; Rutka, J.T.; Johnston, S.C.; Mazer, C.D.; Verma, S. Intracranial Hemorrhage During Dual Antiplatelet Therapy: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2021, 78, 1372–1384. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.C.; Easton, J.D.; Farrant, M.; Barsan, W.; Conwit, R.A.; Elm, J.J.; Kim, A.S.; Lindblad, A.S.; Palesch, Y.Y.; Neurological Emergencies Treatment Trials Network; et al. Clopidogrel and Aspirin in Acute Ischemic Stroke and High-Risk TIA. N. Engl. J. Med. 2018, 379, 215–225. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Zhao, X.; Liu, L.; Wang, D.; Wang, C.; Wang, C.; Li, H.; Meng, X.; Cui, L.; et al. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N. Engl. J. Med. 2013, 369, 11–19. [Google Scholar] [CrossRef]
- Kornej, J.; Borschel, C.S.; Benjamin, E.J.; Schnabel, R.B. Epidemiology of Atrial Fibrillation in the 21st Century: Novel Methods and New Insights. Circ. Res. 2020, 127, 4–20. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Trogdon, J.G.; Khavjou, O.A.; Butler, J.; Dracup, K.; Ezekowitz, M.D.; Finkelstein, E.A.; Hong, Y.; Johnston, S.C.; Khera, A.; et al. Forecasting the future of cardiovascular disease in the United States: A policy statement from the American Heart Association. Circulation 2011, 123, 933–944. [Google Scholar] [CrossRef]
- Connolly, S.J.; Eikelboom, J.; Joyner, C.; Diener, H.C.; Hart, R.; Golitsyn, S.; Flaker, G.; Avezum, A.; Hohnloser, S.H.; Diaz, R.; et al. Apixaban in patients with atrial fibrillation. N. Engl. J. Med. 2011, 364, 806–817. [Google Scholar] [CrossRef]
- Granger, C.B.; Alexander, J.H.; McMurray, J.J.; Lopes, R.D.; Hylek, E.M.; Hanna, M.; Al-Khalidi, H.R.; Ansell, J.; Atar, D.; Avezum, A.; et al. Apixaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2011, 365, 981–992. [Google Scholar] [CrossRef]
- Patel, M.R.; Mahaffey, K.W.; Garg, J.; Pan, G.; Singer, D.E.; Hacke, W.; Breithardt, G.; Halperin, J.L.; Hankey, G.J.; Piccini, J.P.; et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 2011, 365, 883–891. [Google Scholar] [CrossRef]
- Giugliano, R.P.; Ruff, C.T.; Braunwald, E.; Murphy, S.A.; Wiviott, S.D.; Halperin, J.L.; Waldo, A.L.; Ezekowitz, M.D.; Weitz, J.I.; Spinar, J.; et al. Edoxaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2013, 369, 2093–2104. [Google Scholar] [CrossRef] [PubMed]
- Diener, H.C.; Connolly, S.J.; Ezekowitz, M.D.; Wallentin, L.; Reilly, P.A.; Yang, S.; Xavier, D.; Di Pasquale, G.; Yusuf, S.; The RE-LY Study Group. Dabigatran compared with warfarin in patients with atrial fibrillation and previous transient ischaemic attack or stroke: A subgroup analysis of the RE-LY trial. Lancet Neurol. 2010, 9, 1157–1163. [Google Scholar] [CrossRef] [PubMed]
- Flaker, G.C.; Eikelboom, J.W.; Shestakovska, O.; Connolly, S.J.; Kaatz, S.; Budaj, A.; Husted, S.; Yusuf, S.; Lip, G.Y.; Hart, R.G. Bleeding during treatment with aspirin versus apixaban in patients with atrial fibrillation unsuitable for warfarin: The apixaban versus acetylsalicylic acid to prevent stroke in atrial fibrillation patients who have failed or are unsuitable for vitamin K antagonist treatment (AVERROES) trial. Stroke 2012, 43, 3291–3297. [Google Scholar] [CrossRef]
- Wilson, D.; Ambler, G.; Shakeshaft, C.; Brown, M.M.; Charidimou, A.; Al-Shahi Salman, R.; Lip, G.Y.H.; Cohen, H.; Banerjee, G.; Houlden, H.; et al. Cerebral microbleeds and intracranial haemorrhage risk in patients anticoagulated for atrial fibrillation after acute ischaemic stroke or transient ischaemic attack (CROMIS-2): A multicentre observational cohort study. Lancet Neurol. 2018, 17, 539–547. [Google Scholar] [CrossRef]
- Mast, J. Death of Patient in Closely Watched Alzheimer’s Trial Raises Concern About Risk for Some Groups. 2022. Available online: https://www.statnews.com/2022/10/28/patient-death-lecanemab-alzheimers-trial/?utm_source=STAT+Newsletters&utm_campaign=77dcde7c5f-MR_COPY_01&utm (accessed on 3 April 2025).
- de Vries, T.A.C.; Hirsh, J.; Xu, K.; Mallick, I.; Bhagirath, V.C.; Eikelboom, J.W.; Ginsberg, J.S.; Kruger, P.C.; Chan, N.C. Apixaban for Stroke Prevention in Atrial Fibrillation: Why are Event Rates Higher in Clinical Practice than in Randomized Trials?—A Systematic Review. Thromb. Haemost. 2020, 120, 1323–1329. [Google Scholar] [CrossRef]
- Perreault, S.; Cote, R.; Dragomir, A.; White-Guay, B.; Lenglet, A.; Dorais, M. Effectiveness and safety of low-dose versus standard-dose rivaroxaban and apixaban in patients with atrial fibrillation. PLoS ONE 2022, 17, e0277744. [Google Scholar] [CrossRef]
- Mobius-Winkler, S.; Sandri, M.; Mangner, N.; Lurz, P.; Dahnert, I.; Schuler, G. The WATCHMAN left atrial appendage closure device for atrial fibrillation. J. Vis. Exp. 2012, 60, e3671. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Mobius-Winkler, S.; Miller, M.A.; Neuzil, P.; Schuler, G.; Wiebe, J.; Sick, P.; Sievert, H. Left atrial appendage closure with the Watchman device in patients with a contraindication for oral anticoagulation: The ASAP study (ASA Plavix Feasibility Study with Watchman Left Atrial Appendage Closure Technology). J. Am. Coll. Cardiol. 2013, 61, 2551–2556. [Google Scholar] [CrossRef]
- Holmes, D.R., Jr.; Kar, S.; Price, M.J.; Whisenant, B.; Sievert, H.; Doshi, S.K.; Huber, K.; Reddy, V.Y. Prospective randomized evaluation of the Watchman Left Atrial Appendage Closure device in patients with atrial fibrillation versus long-term warfarin therapy: The PREVAIL trial. J. Am. Coll. Cardiol. 2014, 64, 1–12. [Google Scholar] [CrossRef]
- Holmes, D.R., Jr.; Doshi, S.K.; Kar, S.; Price, M.J.; Sanchez, J.M.; Sievert, H.; Valderrabano, M.; Reddy, V.Y. Left Atrial Appendage Closure as an Alternative to Warfarin for Stroke Prevention in Atrial Fibrillation: A Patient-Level Meta-Analysis. J. Am. Coll. Cardiol. 2015, 65, 2614–2623. [Google Scholar] [CrossRef]
- Blanc, C.; Blanc, G.; Boveda, S.; Calviere, L.; Combes, N.; Viguier, A.; Mondoly, P.; Albucher, J.F.; Gollion, C.; Fabry, V.; et al. Left Atrial Appendage Closure in Patients with Atrial Fibrillation and Coexisting Cerebral Amyloid Angiopathy. Stroke 2021, 52, e792–e793. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.; Zwischenberger, B.A.; Liu, A.J. Pearls and Oy-sters: A Patient on Lecanemab Newly Diagnosed with Atrial Fibrillation. Neurology 2024, 103, e210125. [Google Scholar] [CrossRef] [PubMed]
- Massumi, A.; Chelu, M.G.; Nazeri, A.; May, S.A.; Afshar-Kharaghan, H.; Saeed, M.; Razavi, M.; Rasekh, A. Initial experience with a novel percutaneous left atrial appendage exclusion device in patients with atrial fibrillation, increased stroke risk, and contraindications to anticoagulation. Am. J. Cardiol. 2013, 111, 869–873. [Google Scholar] [CrossRef]
- Bartus, K.; Han, F.T.; Bednarek, J.; Myc, J.; Kapelak, B.; Sadowski, J.; Lelakowski, J.; Bartus, S.; Yakubov, S.J.; Lee, R.J. Percutaneous left atrial appendage suture ligation using the LARIAT device in patients with atrial fibrillation: Initial clinical experience. J. Am. Coll. Cardiol. 2013, 62, 108–118. [Google Scholar] [CrossRef]
- Stone, D.; Byrne, T.; Pershad, A. Early results with the LARIAT device for left atrial appendage exclusion in patients with atrial fibrillation at high risk for stroke and anticoagulation. Catheter. Cardiovasc. Interv. 2015, 86, 121–127. [Google Scholar] [CrossRef]
- Litwinowicz, R.; Bartus, M.; Burysz, M.; Brzezinski, M.; Suwalski, P.; Kapelak, B.; Vuddanda, V.; Lakkireddy, D.; Lee, R.J.; Trabka, R.; et al. Long term outcomes after left atrial appendage closure with the LARIAT device—Stroke risk reduction over five years follow-up. PLoS ONE 2018, 13, e0208710. [Google Scholar] [CrossRef]
- Salzberg, S.P.; Plass, A.; Emmert, M.Y.; Desbiolles, L.; Alkadhi, H.; Grunenfelder, J.; Genoni, M. Left atrial appendage clip occlusion: Early clinical results. J. Thorac. Cardiovasc. Surg. 2010, 139, 1269–1274. [Google Scholar] [CrossRef]
- Ailawadi, G.; Gerdisch, M.W.; Harvey, R.L.; Hooker, R.L.; Damiano, R.J., Jr.; Salamon, T.; Mack, M.J. Exclusion of the left atrial appendage with a novel device: Early results of a multicenter trial. J. Thorac. Cardiovasc. Surg. 2011, 142, 1002–1009.e1. [Google Scholar] [CrossRef]
- Caliskan, E.; Sahin, A.; Yilmaz, M.; Seifert, B.; Hinzpeter, R.; Alkadhi, H.; Cox, J.L.; Holubec, T.; Reser, D.; Falk, V.; et al. Epicardial left atrial appendage AtriClip occlusion reduces the incidence of stroke in patients with atrial fibrillation undergoing cardiac surgery. Europace 2018, 20, e105–e114. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Sievert, H.; Halperin, J.; Doshi, S.K.; Buchbinder, M.; Neuzil, P.; Huber, K.; Whisenant, B.; Kar, S.; Swarup, V.; et al. Percutaneous left atrial appendage closure vs warfarin for atrial fibrillation: A randomized clinical trial. JAMA 2014, 312, 1988–1998. [Google Scholar] [CrossRef]
ARIA Subtype | Radiographic Severity | ||
---|---|---|---|
Mild | Moderate | Severe | |
ARIA-E | FLAIR hyperintensity confined to a sulcus, cortex, or subcortical white matter confined to one location < 5 cm | FLAIR hyperintensity of a single lesion measuring 5–10 cm or more than one site < 1 cm | FLAIR hyperintensity > 10 cm with significant subcortical white matter and/or sulcal involvement with one or more sites of involvement |
ARIA-H microhemorrhage | ≤4 new incident microhemorrhage | 5–9 new incident microhemorrhages | ≥10 new incident microhemorrhages |
ARIA-H superficial siderosis | 1 focal area of superficial siderosis | 2 focal areas of superficial siderosis | >2 focal areas of superficial siderosis |
Drug | Number of Subjects | Incidence ARIA-E—APOE ε4 Noncarrier | Incidence ARIA-E—APOE ε4 Carrier | Incidence ARIA-H—APOE ε4 Noncarrier | Incidence ARIA-H—APOE ε4 Carrier |
---|---|---|---|---|---|
Aducanumab (10 mg/kg) [13] | 1029 | 20.3% | 43.0% | 12.4% | 22.7% |
Lecanemab (10 mg/kg) [8] | 859 | 5.4% | 15.8% | 11.9% | 19.7% |
Donanemab (700 mg for 3 doses then 1400 mg) [9] | 853 | 15.7% | 27.1% | 19.7% (not reported separately) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryan, D.; Feng, W.; Liu, A.J. Cerebrovascular Management Considerations in Patients on AATs. J. Clin. Med. 2025, 14, 3420. https://doi.org/10.3390/jcm14103420
Ryan D, Feng W, Liu AJ. Cerebrovascular Management Considerations in Patients on AATs. Journal of Clinical Medicine. 2025; 14(10):3420. https://doi.org/10.3390/jcm14103420
Chicago/Turabian StyleRyan, Dylan, Wuwei Feng, and Andy J. Liu. 2025. "Cerebrovascular Management Considerations in Patients on AATs" Journal of Clinical Medicine 14, no. 10: 3420. https://doi.org/10.3390/jcm14103420
APA StyleRyan, D., Feng, W., & Liu, A. J. (2025). Cerebrovascular Management Considerations in Patients on AATs. Journal of Clinical Medicine, 14(10), 3420. https://doi.org/10.3390/jcm14103420