Treatment of Pancreatic Neuroendocrine Tumors: Beyond Traditional Surgery and Targeted Therapy
Abstract
:1. Introduction
- Brief overview of PNETs
2. Current Standard Treatments
2.1. Surgery
2.1.1. Potentially Curative Surgery
- Enucleation
- Central pancreatectomy
- Distal pancreatectomy (+/− splenectomy)
- Pancreaticoduodenectomy
- Total pancreatectomy
2.1.2. Conversion Surgery
2.1.3. Palliative Surgery
2.1.4. Bypass Surgery
2.1.5. Debulking Surgery for Metastatic PNETs
2.2. Targeted Drug Therapy for Pancreatic Neuroendocrine Tumor
- Somatostatin analogs (SSA)
- Sunitinib
- Everolimus
- Belzutifan (Welireg)
2.3. Peptide Receptor Radionuclide Therapy (PRRT)
3. Emerging Therapies
3.1. Newer Targeted Therapies
3.2. Immunotherapy
3.3. Novel Molecular Targets
4. Other Drugs for Pancreatic Neuroendocrine Tumors
4.1. Chemotherapy
4.2. Neoadjuvant Therapy
4.3. Adjuvant Therapy
5. Minimally Invasive Techniques
5.1. Ablative Treatments (Ablation)
- Radiofrequency Ablation (RFA):
- Microwave Thermotherapy:
- Ethanol Ablation:
5.2. Embolization
- Arterial Embolization (TAE):
- Chemoembolization:
- Radioembolization:
5.3. Radiation Therapy for Pancreatic Neuroendocrine Tumor
- External Beam Radiation Therapy:
- Radioembolization:
- Peptide Receptor Radionuclide Therapy (PRRT):
6. Challenges and Future Directions
- Patient Selection for Novel Therapies
- Resistance to Targeted Therapies
- Integration of Immunotherapy
- The Role of Multi-Omics
- Disparities in Access to Care
- Quality of Life and Cost Considerations
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sonbol, M.B.; Mazza, G.L.; Mi, L.; Oliver, T.; Starr, J.; Gudmundsdottir, H.; Cleary, S.P.; Hobday, T.; Halfdanarson, T.R. Survival and incidence patterns of pancreatic neuroendocrine tumors over the last 2 decades: A SEER database analysis. Oncologist 2022, 27, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Younis, F.; Shor, D.B.A.; Lubezky, N.; Geva, R.; Osher, E.; Shibolet, O.; Phillips, A.; Scapa, E. Endoscopic ultrasound-guided radiofrequency ablation of premalignant pancreatic-cystic neoplasms and neuroendocrine tumors: Prospective study. Eur. J. Gastroenterol. Hepatol. 2022, 34, 1111–1115. [Google Scholar] [CrossRef]
- Rossi, S.; Viera, F.T.; Ghittoni, G.; Cobianchi, L.; Rosa, L.L.; Siciliani, L.; Bortolotto, C.; Veronese, L.; Vercelli, A.; Gallotti, A.; et al. Radiofrequency ablation of pancreatic neuroendocrine tumors: A pilot study of feasibility, efficacy, and safety. Pancreas 2014, 43, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Pai, M.; Habib, N.; Senturk, H.; Lakhtakia, S.; Reddy, N.; Cicinnati, V.R.; Kaba, I.; Beckebaum, S.; Drymousis, P.; Kahaleh, M.; et al. Endoscopic ultrasound guided radiofrequency ablation, for pancreatic cystic neoplasms and neuroendocrine tumors. World J. Gastrointest. Surg. 2015, 7, 52. [Google Scholar] [CrossRef]
- de Andreis, F.B.; Boškoski, I.; Mascagni, P.; Schepis, T.; Bianchi, A.; Schinzari, G.; Annicchiarico, B.E.; Quero, G.; Tortora, G.; Alfieri, S.; et al. Safety and efficacy of endoscopic ultrasound-guided radiofrequency ablation for pancreatic insulinoma: A single-center experience. Pancreatology 2023, 23, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Radiation Therapy for Pancreatic Neuroendocrine Tumors (PNETs). American Cancer Society, 2023. Available online: https://www.cancer.org/cancer/types/pancreatic-neuroendocrine-tumor/treating/radiation-therapy.html (accessed on 9 February 2025).
- Halfdanarson, T.R.; Rabe, K.G.; Rubin, J.; Petersen, G.M. Pancreatic neuroendocrine tumors (PNETs): Incidence, prognosis and recent trend toward improved survival. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2008, 19, 1727–1733. [Google Scholar] [CrossRef]
- Halfdanarson, T.R.; Strosberg, J.R.; Tang, L.; Bellizzi, A.M.; Bergsland, E.K.; O’Dorisio, T.M.; Halperin, D.M.; Fishbein, L.; Eads, J.; Hope, T.A.; et al. The North American Neuroendocrine Tumor Society Consensus Guidelines for Surveillance and Medical Management of Pancreatic Neuroendocrine Tumors. Pancreas 2020, 49, 863–881. [Google Scholar] [CrossRef]
- Nakao, Y.; Hayashi, H.; Yamashita, Y.I.; Takashi, O.; Matsumura, K.; Uemura, N.; Kitamura, F.; Itoyama, R.; Yusa, T.; Taki, K.; et al. Risk factors for lymph node metastasis in patients with pancreatic neuroendocrine neoplasms. World J. Clin. Oncol. 2022, 13, 520–528. [Google Scholar] [CrossRef]
- Murase, Y.; Esaki, M.; Mizui, T.; Takamoto, T.; Nara, S.; Ban, D.; Hiraoka, N.; Shimada, K. Optimal lymph node dissection area for pancreatic neuroendocrine neoplasms by tumor location, size, and grade. Surgery 2025, 180, 109029. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, Z.; Jiang, L.; Ma, D.; Zhou, Z.; Ju, H.; Zhu, Y. Patterns of Lymph Node Metastasis and Optimal Surgical Strategy in Small (≤20 mm) Gastroenteropancreatic Neuroendocrine Tumors. Front. Endocrinol. 2022, 13, 871830. [Google Scholar] [CrossRef]
- Howe, J.R.; Merchant, N.B.; Conrad, C.; Keutgen, X.M.; Hallet, J.; Drebin, J.A.; Minter, R.M.; Lairmore, T.C.; Tseng, J.F.; Zeh, H.J.; et al. The North American Neuroendocrine Tumor Society Consensus Paper on the Surgical Management of Pancreatic Neuroendocrine Tumors. Pancreas 2020, 49, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Kos-Kudła, B.; Castaño, J.P.; Denecke, T.; Grande, E.; Kjaer, A.; Koumarianou, A.; de Mestier, L.; Partelli, S.; Perren, A.; Stättner, S.; et al. European Neuroendocrine Tumour Society (ENETS) 2023 guidance paper for nonfunctioning pancreatic neuroendocrine tumours. J. Neuroendocrinol. 2023, 35, e13343. [Google Scholar] [CrossRef]
- Hofland, J.; Falconi, M.; Christ, E.; Castaño, J.P.; Faggiano, A.; Lamarca, A.; Perren, A.; Petrucci, S.; Prasad, V.; Ruszniewski, P.; et al. European Neuroendocrine Tumor Society 2023 guidance paper for functioning pancreatic neuroendocrine tumour syndromes. J. Neuroendocrinol. 2023, 35, e13318. [Google Scholar] [CrossRef]
- Partelli, S.; Massironi, S.; Zerbi, A.; Niccoli, P.; Kwon, W.; Landoni, L.; Panzuto, F.; Tomazic, A.; Bongiovanni, A.; Kaltsas, G.; et al. Management of asymptomatic sporadic non-functioning pancreatic neuroendocrine neoplasms no larger than 2 cm: Interim analysis of prospective ASPEN trial. Br. J. Surg. 2022, 109, 1186–1190. [Google Scholar] [CrossRef] [PubMed]
- Fendrich, V.; Waldmann, J.; Bartsch, D.K.; Langer, P. Surgical Management of Pancreatic Endocrine Tumors. Nat. Rev. Clin. Oncol. 2009, 6, 419–428. [Google Scholar] [CrossRef]
- Heidsma, C.M.; Tsilimigras, D.I.; Van Dieren, S.; Rocha, F.; Abbott, D.E.; Fields, R.; Smith, P.M.; Poultsides, G.A.; Cho, C.; Dillhoff, M.; et al. Indications and outcomes of enucleation versus formal pancreatectomy for pancreatic neuroendocrine tumors. HPB Off. J. Int. Hepato Pancreato Biliary Assoc. 2021, 23, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhuo, Q.; Shi, Y.; Chen, H.; Liu, M.; Liu, W.; Xu, W.; Chen, C.; Ji, S.; Yu, X.; et al. Minimally invasive enucleation of pancreatic tumors: The main pancreatic duct is no longer a restricted area. Heliyon 2023, 9, e21917. [Google Scholar] [CrossRef]
- Shen, X.; Yang, X. Comparison of Outcomes of Enucleation vs. Standard Surgical Resection for Pancreatic Neoplasms: A Systematic Review and Meta-Analysis. Front. Surg. 2022, 8, 744316. [Google Scholar] [CrossRef]
- Johnston, M.E., 2nd; Carter, M.M.; Wilson, G.C.; Ahmad, S.A.; Patel, S.H. Surgical management of primary pancreatic neuroendocrine tumors. J. Gastrointest. Oncol. 2020, 11, 578–589. [Google Scholar] [CrossRef]
- Shirota, T.; Nagakawa, Y.; Sahara, Y.; Takishita, C.; Hijikata, Y.; Hosokawa, Y.; Nakajima, T.; Osakabe, H.; Katsumata, K.; Tsuchida, A. Surgical resection of neuroendocrine tumors of the pancreas (pNETs) by minimally invasive surgery: The laparoscopic approach. Gland Surg. 2018, 7, 12–19. [Google Scholar] [CrossRef]
- Kemmochi, A.; Amura, T.; Shimizu, Y.; Owada, Y.; Ozawa, Y.; Hisakura, K.; Oda, T.; Kawano, Y.; Hanawa, T.; Ohkohchi, N. A novel hydrogel sheet prevents postoperative pancreatic fistula in a rat model. J. Hepato-Biliary-Pancreat. Sci. 2021, 28, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Teo, R.Y.A.; Goh, B.K.P. Surgical resection of pancreatic neuroendocrine neoplasm by minimally invasive surgery-the robotic approach? Gland Surg. 2018, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, F.; Marini, F.; Giusti, F.; Iantomasi, T.; Giudici, F.; Brandi, M.L. Pancreatic Neuroendocrine Tumors in MEN1 Patients: Difference in Post-Operative Complications and Tumor Progression between Major and Minimal Pancreatic Surgeries. Cancers 2023, 15, 4919. [Google Scholar] [CrossRef] [PubMed]
- Ziogas, I.A.; Schmitz, R.; Moris, D.; Vatsaas, C.J. The Role of Surgery for Pancreatic Neuroendocrine Tumors. Anticancer Res. 2022, 42, 629–639. [Google Scholar] [CrossRef]
- Dragomir, M.P.; Sabo, A.A.; Petrescu, G.E.; Li, Y.; Dumitrascu, T. Central pancreatectomy: A comprehensive, up-to-date meta-analysis. Langenbeck’s Arch. Surg. 2019, 404, 945–958. [Google Scholar] [CrossRef]
- Nebbia, M.; Capretti, G.; Nappo, G.; Zerbi, A. Updates in the management of postoperative pancreatic fistula. Int. J. Surg. 2024, 110, 6135–6144. [Google Scholar] [CrossRef]
- Sulciner, M.L.; Clancy, T.E. Surgical Management of Pancreatic Neuroendocrine Tumors. Cancers 2023, 15, 2006. [Google Scholar] [CrossRef]
- Chopde, A.; Gupta, A.; Chaudhari, V.; Parghane, R.; Basu, S.; Ostwal, V.; Ramaswamy, A.; Puranik, A.; Shrikhande, S.V.; Bhandare, M.S. Prognostic predictors for recurrence following curative resection in grade I/II pancreatic neuroendocrine tumours. Langenbeck’s Arch. Surg. 2023, 408, 204. [Google Scholar] [CrossRef]
- Perinel, J.; Nappo, G.; Zerbi, A.; Heidsma, C.M.; van Dijkum, E.J.N.; Han, H.S.; Yoon, Y.S.; Satoi, S.; Demir, I.E.; Friess, H.; et al. Sporadic nonfunctional pancreatic neuroendocrine tumors: Risk of lymph node metastases and aggressiveness according to tumor size: A multicenter international study. Surgery 2022, 172, 975–981. [Google Scholar] [CrossRef]
- Lee, J.S.; Sohn, M.; Kim, K.; Yoon, Y.S.; Lim, S. Glucose Regulation after Partial Pancreatectomy: A Comparison of Pancreaticoduodenectomy and Distal Pancreatectomy in the Short and Long Term. Diabetes Metab. J. 2023, 47, 703–714. [Google Scholar] [CrossRef]
- Hallac, A.; Aleassa, E.M.; Rogers, M.; Falk, G.A.; Morris-Stiff, G. Exocrine pancreatic insufficiency in distal pancreatectomy: Incidence and risk factors. HPB Off. J. Int. Hepato Pancreato Biliary Assoc. 2020, 22, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Kenney, L.M.; Hughes, M. Surgical Management of Gastroenteropancreatic Neuroendocrine Tumors. Cancers 2025, 17, 377. [Google Scholar] [CrossRef]
- Santucci, N.; Gaujoux, S.; Binquet, C.; Reichling, C.; Lifante, J.C.; Carnaille, B.; Pattou, F.; Mirallié, E.; Facy, O.; Mathonnet, M. Pancreatoduodenectomy for Neuroendocrine Tumors in Patients with Multiple Endocrine Neoplasia Type 1: An AFCE (Association Francophone de Chirurgie Endocrinienne) and GTE (Groupe d’étude des Tumeurs Endocrines) Study. World J. Surg. 2021, 45, 1794–1802. [Google Scholar] [CrossRef] [PubMed]
- Haugvik, S.P.; Labori, K.J.; Waage, A.; Line, P.D.; Mathisen, Ø.; Gladhaug, I.P. Pancreatic surgery with vascular reconstruction in patients with locally advanced pancreatic neuroendocrine tumors. J. Gastrointest. Surg. Off. J. Soc. Surg. Aliment. Tract 2013, 17, 1224–1232. [Google Scholar] [CrossRef]
- Florentin, L.M.; Dulcich, G.; López Grove, R.; Paladini, J.I.; Spina, J.C. Imaging assessment after pancreaticoduodenectomy: Reconstruction techniques-normal findings and complications. Insights Into Imaging 2022, 13, 170. [Google Scholar] [CrossRef]
- Krogh, S.; Grønbæk, H.; Knudsen, A.R.; Kissmeyer-Nielsen, P.; Hummelshøj, N.E.; Dam, G. Predicting Progression, Recurrence, and Survival in Pancreatic Neuroendocrine Tumors: A Single Center Analysis of 174 Patients. Front. Endocrinol. 2022, 13, 925632. [Google Scholar] [CrossRef]
- Zhou, B.; Duan, J.; Yan, S.; Zhou, J.; Zheng, S. Prognostic factors of long-term outcome in surgically resectable pancreatic neuroendocrine tumors: A 12-year experience from a single center. Oncol. Lett. 2017, 13, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Duan, J.; Yan, S.; Zhou, J.; Zheng, S. Risk factors for postoperative pancreatic fistula: Analysis of 539 successive cases of pancreaticoduodenectomy. World J. Gastroenterol. 2016, 22, 7797–7805. [Google Scholar] [CrossRef]
- Beger, H.G.; Poch, B.; Mayer, B.; Siech, M. New Onset of Diabetes and Pancreatic Exocrine Insufficiency After Pancreaticoduodenectomy for Benign and Malignant Tumors: A Systematic Review and Meta-analysis of Long-term Results. Ann. Surg. 2018, 267, 259–270. [Google Scholar] [CrossRef]
- Patrone, R.; Mongardini, F.M.; Conzo, A.; Cacciatore, C.; Cozzolino, G.; Catauro, A.; Lanza, E.; Izzo, F.; Belli, A.; Palaia, R.; et al. Pancreatic Neuroendocrine Tumors: What Is the Best Surgical Option? J. Clin. Med. 2024, 13, 3015. [Google Scholar] [CrossRef]
- Kim, J.; Hong, S.S.; Kim, S.H.; Hwang, H.K.; Kang, C.M. Optimal surgical management of unifocal vs. multifocal NF-PNETs: A respective cohort study. World J. Surg. Oncol. 2024, 22, 115. [Google Scholar] [CrossRef] [PubMed]
- Danilo, C.O.C.O.; Leanza, S.; Guerra, F. Total Pancreatectomy: Indications, Advantages and Disadvantages—A Review. Maedica 2019, 14, 391–396. [Google Scholar] [CrossRef]
- Boudiaf, Z.; Bentabak, K. Re: Contemporary Report of Surgical Outcomes After Single-Stage Total Pancreatectomy: A 10-Year Experience. J. Surg. Oncol. 2024, 131, 95–96. [Google Scholar] [CrossRef]
- Hashimoto, D.; Chikamoto, A.; Masuda, T.; Nakagawa, S.; Imai, K.; Yamashita, Y.I.; Reber, H.A.; Baba, H. Pancreatic Cancer Arising From the Remnant Pancreas: Is It a Local Recurrence or New Primary Lesion? Pancreas 2017, 46, 1083–1090. [Google Scholar] [CrossRef]
- Weng, Y.; Chen, M.; Gemenetzis, G.; Shi, Y.; Ying, X.; Deng, X.; Peng, C.; Jin, J.; Shen, B. Robotic-assisted versus open total pancreatectomy: A propensity score-matched study. Hepatobiliary Surg. Nutr. 2020, 9, 759–770. [Google Scholar] [CrossRef] [PubMed]
- Bergquist, J.R.; Shariq, O.A.; Li, A.Y.; Worth, P.J.; Chatzizacharias, N.; Soonawalla, Z.; Athanasopoulos, P.; Toumpanakis, C.; Hansen, P.; Parks, R.W.; et al. Clinical features and postoperative survival in patients with sporadic versus multiple endocrine neoplasia type 1-related pancreatic neuroendocrine tumors: An international cohort study. Surgery 2022, 172, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Niwano, F.; Babaya, N.; Hiromine, Y.; Matsumoto, I.; Kamei, K.; Noso, S.; Taketomo, Y.; Takeyama, Y.; Kawabata, Y.; Ikegami, H. Glucose Metabolism After Pancreatectomy: Opposite Extremes Between Pancreaticoduodenectomy and Distal Pancreatectomy. J. Clin. Endocrinol. Metab. 2021, 106, e2203–e2214. [Google Scholar] [CrossRef]
- Oh, M.Y.; Kim, E.J.; Kim, H.; Byun, Y.; Han, Y.; Choi, Y.J.; Kang, J.S.; Kwon, W.; Jang, J.Y. Changes in postoperative long-term nutritional status and quality of life after total pancreatectomy. Ann. Surg. Treat. Res. 2021, 100, 200–208. [Google Scholar] [CrossRef]
- Javed, A.A.; Aziz, K.; Bagante, F.; Wolfgang, C.L. Pancreatic Fistula and Delayed Gastric Emptying After Pancreatectomy: Where do We Stand? Indian J. Surg. 2015, 77, 409–425. [Google Scholar] [CrossRef]
- Niederle, B.; Selberherr, A.; Bartsch, D.K.; Brandi, M.L.; Doherty, G.M.; Falconi, M.; Goudet, P.; Halfdanarson, T.R.; Ito, T.; Jensen, R.T.; et al. Multiple Endocrine Neoplasia Type 1 and the Pancreas: Diagnosis and Treatment of Functioning and Non-Functioning Pancreatic and Duodenal Neuroendocrine Neoplasia within the MEN1 Syndrome—An International Consensus Statement. Neuroendocrinology 2021, 111, 609–630. [Google Scholar] [CrossRef]
- Li, Y.; Fan, Z.; Zhang, F.; Yang, J.; Shi, M.; Liu, S.; Meng, Y.; Zhan, H. Neoadjuvant therapy in pancreatic neuroendocrine neoplasms: A systematic review and meta-analysis. Front. Oncol. 2022, 12, 981575. [Google Scholar] [CrossRef] [PubMed]
- Partelli, S.; Landoni, L.; Bartolomei, M.; Zerbi, A.; Grana, C.M.; Boggi, U.; Butturini, G.; Casadei, R.; Salvia, R.; Falconi, M. Neoadjuvant 177Lu-DOTATATE for non-functioning pancreatic neuroendocrine tumours (NEOLUPANET): Multicentre phase II study. Br. J. Surg. 2024, 111, znae178. [Google Scholar] [CrossRef]
- Schiavo Lena, M.; Partelli, S.; Castelli, P.; Andreasi, V.; Smart, C.E.; Pisa, E.; Bartolomei, M.; Bertani, E.; Zamboni, G.; Falconi, M.; et al. Histopathological and Immunophenotypic Changes of Pancreatic Neuroendocrine Tumors after Neoadjuvant Peptide Receptor Radionuclide Therapy (PRRT). Endocr. Pathol. 2020, 31, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Klaiber, U.; Hackert, T. Conversion Surgery for Pancreatic Cancer-The Impact of Neoadjuvant Treatment. Front. Oncol. 2020, 9, 1501. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.L.; Dong, J.; Xu, J.; Yu, X.J. Efficacy of conversion therapy and direct surgical resection in patients with metastatic pancreatic neuroendocrine tumors. Zhonghua Yi Xue Za Zhi 2022, 102, 1007–1013. [Google Scholar] [CrossRef]
- Baron, T.H. Management of Simultaneous Biliary and Duodenal Obstruction: The Endoscopic Perspective. Gut Liver 2010, 4 (Suppl. S1), S50–S56. [Google Scholar] [CrossRef]
- Tamura, T.; Mamoru, T.; Terai, T.; Ogura, T.; Tani, M.; Shimokawa, T.; Kitahata, Y.; Matsumoto, I.; Mitoro, A.; Asakuma, M.; et al. Gastrojejunostomy Versus Endoscopic Duodenal Stent Placement for Gastric Outlet Obstruction in Patients With Unresectable Pancreatic Cancer: A Propensity Score-Matched Analysis. Surg. Endosc. 2023, 37, 1890–1900. [Google Scholar] [CrossRef]
- Perone, J.A.; Riall, T.S.; Olino, K. Palliative Care for Pancreatic and Periampullary Cancer. Surg. Clin. N. Am. 2016, 96, 1415–1430. [Google Scholar] [CrossRef]
- Pavel, M.; O’Toole, D.; Costa, F.; Capdevila, J.; Gross, D.; Kianmanesh, R.; Krenning, E.; Knigge, U.; Salazar, R.; Pape, U.F.; et al. ENETS Consensus Guidelines Update for the Management of Distant Metastatic Disease of Intestinal, Pancreatic, Bronchial Neuroendocrine Neoplasms (NEN) and NEN of Unknown Primary Site. Neuroendocrinology 2016, 103, 172–185. [Google Scholar] [CrossRef]
- Huang, X.T.; Xie, J.Z.; Chen, L.H.; Cai, J.P.; Chen, W.; Liang, L.J.; Zhang, N.; Yin, X.Y. Values of debulking surgery for unresectable well-differentiated metastatic pancreatic neuroendocrine tumors: A comparative study. Gastroenterol. Rep. 2023, 11, goad010. [Google Scholar] [CrossRef]
- Ito, T.; Masui, T.; Komoto, I.; Doi, R.; Osamura, R.Y.; Sakurai, A.; Ikeda, M.; Takano, K.; Igarashi, H.; Shimatsu, A. JNETS clinical practice guidelines for gastroenteropancreatic neuroendocrine neoplasms: Diagnosis, treatment, and follow-up: A synopsis. J. Gastroenterol. 2021, 56, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Panzuto, F.; Ricci, C.; Rinzivillo, M.; Magi, L.; Marasco, M.; Lamberti, G.; Casadei, R.; Campana, D. The Antiproliferative Activity of High-Dose Somatostatin Analogs in Gastro-Entero-Pancreatic Neuroendocrine Tumors: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 6127. [Google Scholar] [CrossRef]
- La Salvia, A.; Sesti, F.; Grinzato, C.; Mazzilli, R.; Tarsitano, M.G.; Giannetta, E.; Faggiano, A. Somatostatin Analogue Therapy in MEN1-Related Pancreatic Neuroendocrine Tumors from Evidence to Clinical Practice: A Systematic Review. Pharmaceuticals 2021, 14, 1039. [Google Scholar] [CrossRef]
- Rinke, A.; Müller, H.H.; Schade-Brittinger, C.; Klose, K.J.; Barth, P.; Wied, M.; Mayer, C.; Aminossadati, B.; Pape, U.F.; Bläker, M.; et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: A report from the PROMID Study Group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 4656–4663. [Google Scholar] [CrossRef]
- Faivre, S.; Niccoli, P.; Castellano, D.; Valle, J.W.; Hammel, P.; Raoul, J.L.; Vinik, A.; Van Cutsem, E.; Bang, Y.J.; Lee, S.H.; et al. Sunitinib in pancreatic neuroendocrine tumors: Updated progression-free survival and final overall survival from a phase III randomized study. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017, 28, 339–343. [Google Scholar] [CrossRef]
- Fazio, N.; Kulke, M.; Rosbrook, B.; Fernandez, K.; Raymond, E. Updated Efficacy and Safety Outcomes for Patients with Well-Differentiated Pancreatic Neuroendocrine Tumors Treated with Sunitinib. Target. Oncol. 2021, 16, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Pavel, M.; Öberg, K.; Falconi, M.; Krenning, E.P.; Sundin, A.; Perren, A.; Berruti, A. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2020, 31, 844–860. [Google Scholar] [CrossRef] [PubMed]
- Del Rivero, J.; Perez, K.; Kennedy, E.B.; Mittra, E.S.; Vijayvergia, N.; Arshad, J.; Basu, S.; Chauhan, A.; Dasari, A.N.; Bellizzi, A.M.; et al. Systemic Therapy for Tumor Control in Metastatic Well-Differentiated Gastroenteropancreatic Neuroendocrine Tumors: ASCO Guideline. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 5049–5067. [Google Scholar] [CrossRef]
- Medici, B.; Caffari, E.; Maculan, Y.; Benatti, S.; Piacentini, F.; Dominici, M.; Gelsomino, F. Everolimus in the Treatment of Neuroendocrine Tumors: Lights and Shadows. Biomedicines 2025, 13, 455. [Google Scholar] [CrossRef]
- Capozzi, M.; Caterina, I.; De Divitiis, C.; von Arx, C.; Maiolino, P.; Tatangelo, F.; Cavalcanti, E.; Di Girolamo, E.; Iaffaioli, R.V.; Scala, S.; et al. Everolimus and pancreatic neuroendocrine tumors (PNETs): Activity, resistance and how to overcome it. Int. J. Surg. 2015, 21 (Suppl. S1), S89–S94. [Google Scholar] [CrossRef]
- Yao, J.C.; Shah, M.H.; Ito, T.; Bohas, C.L.; Wolin, E.M.; Van Cutsem, E.; Hobday, T.J.; Okusaka, T.; Capdevila, J.; de Vries, E.G.E.; et al. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 2011, 364, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.C.; Pavel, M.; Lombard-Bohas, C.; Van Cutsem, E.; Voi, M.; Brandt, U.; He, W.; Chen, D.; Capdevila, J.; De Vries, E.G.; et al. Everolimus for the Treatment of Advanced Pancreatic Neuroendocrine Tumors: Overall Survival and Circulating Biomarkers From the Randomized, Phase III RADIANT-3 Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 3906–3913. [Google Scholar] [CrossRef]
- Cella, C.A.; Spada, F.; Berruti, A.; Bertolini, F.; Mancuso, P.; Barberis, M.; Pisa, E.; Rubino, M.; Gervaso, L.; Laffi, A.; et al. Addressing the Role of Angiogenesis in Patients with Advanced Pancreatic Neuroendocrine Tumors Treated with Everolimus: A Biological Prospective Analysis of Soluble Biomarkers and Clinical Outcomes. Cancers 2022, 14, 4471. [Google Scholar] [CrossRef]
- Shimoyama, R.; Hijioka, S.; Mizuno, N.; Ogawa, G.; Kataoka, T.; Katayama, H.; Machida, N.; Honma, Y.; Boku, N.; Hamaguchi, T.; et al. Study protocol for a multi-institutional randomized phase III study comparing combined everolimus plus lanreotide therapy and everolimus monotherapy in patients with unresectable or recurrent gastroenteropancreatic neuroendocrine tumors; Japan Clinical Oncology Group Study JCOG1901 (STARTER-NET study). Pancreatol. Off. J. Int. Assoc. Pancreatol. (IAP) 2020, 20, 1183–1188. [Google Scholar] [CrossRef]
- Else, T.; Jonasch, E.; Iliopoulos, O.; Beckermann, K.E.; Narayan, V.; Maughan, B.L.; Oudard, S.; Maranchie, J.K.; Iversen, A.B.; Goldberg, C.M.; et al. Belzutifan for von Hippel-Lindau Disease: Pancreatic Lesion Population of the Phase 2 LITESPARK-004 Study. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2024, 30, 1750–1757. [Google Scholar] [CrossRef] [PubMed]
- Fallah, J.; Brave, M.H.; Weinstock, C.; Mehta, G.U.; Bradford, D.; Gittleman, H.; Bloomquist, E.W.; Charlab, R.; Hamed, S.S.; Miller, C.P.; et al. FDA Approval Summary: Belzutifan for von Hippel-Lindau Disease-Associated Tumors. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2022, 28, 4843–4848. [Google Scholar] [CrossRef]
- Zandee, W.T.; Brabander, T.; Blažević, A.; Kam, B.L.; Teunissen, J.J.; Feelders, R.A.; Hofland, J.; De Herder, W.W. Symptomatic and Radiological Response to 177Lu-DOTATATE for the Treatment of Functioning Pancreatic Neuroendocrine Tumors. J. Clin. Endocrinol. Metab. 2019, 104, 1336–1344. [Google Scholar] [CrossRef]
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef]
- Chan, J.A.; Geyer, S.; Zemla, T.; Knopp, M.V.; Behr, S.; Pulsipher, S.; Ou, F.S.; Dueck, A.C.; Acoba, J.; Shergill, A.; et al. Phase 3 Trial of Cabozantinib to Treat Advanced Neuroendocrine Tumors. N. Engl. J. Med. 2025, 392, 653–665. [Google Scholar] [CrossRef]
- Corti, F.; Brizzi, M.P.; Amoroso, V.; Giuffrida, D.; Panzuto, F.; Campana, D.; Prinzi, N.; Milione, M.; Cascella, T.; Spreafico, C. Assessing the safety and activity of cabozantinib combined with lanreotide in gastroenteropancreatic and thoracic neuroendocrine tumors: Rationale and protocol of the phase II LOLA trial. BMC Cancer 2023, 23, 908. [Google Scholar] [CrossRef]
- Capdevila, J.; Fazio, N.; Lopez, C.; Teulé, A.; Valle, J.W.; Tafuto, S.; Custodio, A.; Reed, N.; Raderer, M.; Grande, E.; et al. Lenvatinib in Patients With Advanced Grade 1/2 Pancreatic and Gastrointestinal Neuroendocrine Tumors: Results of the Phase II TALENT Trial (GETNE1509). J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021, 39, 2304–2312. [Google Scholar] [CrossRef]
- Gubbi, S.; Vijayvergia, N.; Jian, Q.Y.; Klubo-Gwiezdzinska, J.; Koch, C.A. Immune Checkpoint Inhibitor Therapy in Neuroendocrine Tumors. Horm. Metab. Res. 2022, 54, 795–812. [Google Scholar] [CrossRef]
- Marinoni, I.; Kurrer, A.S.; Vassella, E.; Dettmer, M.; Rudolph, T.; Banz, V.; Hunger, F.; Pasquinelli, S.; Speel, E.J.; Perren, A. Loss of DAXX and ATRX Are Associated with Chromosome Instability and Reduced Survival of Patients with Pancreatic Neuroendocrine Tumors. Gastroenterology 2014, 146, 453–460.e5. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Ito, T.; Jensen, R.T. Everolimus in the Treatment of Neuroendocrine Tumors: Efficacy, Side-Effects, Resistance, and Factors Affecting Its Place in the Treatment Sequence. Expert Opin. Pharmacother. 2018, 19, 909–928. [Google Scholar] [CrossRef] [PubMed]
- Capdevila, J.; Ducreux, M.; García Carbonero, R.; Grande, E.; Halfdanarson, T.; Pavel, M.; Tafuto, S.; Welin, S.; Valentí, V.; Salazar, R. Streptozotocin, 1982-2022: Forty Years from the FDA’s Approval to Treat Pancreatic Neuroendocrine Tumors. Neuroendocrinology 2022, 112, 1155–1167. [Google Scholar] [CrossRef] [PubMed]
- La Salvia, A.; Bellino, S.; Fanciulli, G. Streptozotocin in pancreatic neuroendocrine tumors: A focus on efficacy and safety. Expert Opin. Pharmacother. 2025, 26, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Salazar, R.; Tafuto, S.; Krogh, M.; Teule, A.; Garcia-Carbonero, R.; Klumpen, H.J.; Cremer, B.; Sevilla, I.; Eriksson, B.; Tabaksblat, E.; et al. LBA45 Randomized open label phase III study comparing the efficacy and safety of everolimus followed by chemotherapy (CT) with streptozotocin (STZ)-5FU upon progression or the reverse sequence, in advanced progressive panNETs: The SEQTOR study (GETNE 1206). Ann. Oncol. 2022, 33, S1412. [Google Scholar] [CrossRef]
- Kunz, P.L.; Graham, N.T.; Catalano, P.J.; Nimeiri, H.S.; Fisher, G.A.; Longacre, T.A.; Suarez, C.J.; Martin, B.A.; Yao, J.C.; Kulke, M.H.; et al. Randomized Study of Temozolomide or Temozolomide and Capecitabine in Patients with Advanced Pancreatic Neuroendocrine Tumors (ECOG-ACRIN E2211). J. Clin. Oncol. 2023, 41, 1359–1369. [Google Scholar] [CrossRef]
- de Mestier, L.; Walter, T.; Evrard, C.; de Boissieu, P.; Hentic, O.; Cros, J.; Tougeron, D.; Lombard-Bohas, C.; Rebours, V.; Hammel, P.; et al. Temozolomide Alone or Combined with Capecitabine for the Treatment of Advanced Pancreatic Neuroendocrine Tumor. Neuroendocrinology 2020, 110, 83–91. [Google Scholar] [CrossRef]
- Strosberg, J.R.; Fine, R.L.; Choi, J.; Nasir, A.; Coppola, D.; Chen, D.T.; Helm, J.; Kvols, L. First-Line Chemotherapy with Capecitabine and Temozolomide in Patients with Metastatic Pancreatic Endocrine Carcinomas. Cancer 2011, 117, 268–275. [Google Scholar] [CrossRef]
- Ferrarotto, R.; Testa, L.; Riechelmann, R.P.; Sahade, M.; Siqueira, L.T.; Costa, F.P.; Hoff, P.M. Combination of Capecitabine and Oxaliplatin is an Effective Treatment Option for Advanced Neuroendocrine Tumors. Rare Tumors 2013, 5, e35. [Google Scholar] [CrossRef] [PubMed]
- Bajetta, E.; Catena, L.; Procopio, G.; De Dosso, S.; Bichisao, E.; Ferrari, L.; Martinetti, A.; Platania, M.; Verzoni, E.; Formisano, B.; et al. Are Capecitabine and Oxaliplatin (XELOX) Suitable Treatments for Progressing Low-Grade and High-Grade Neuroendocrine Tumours? Cancer Chemother. Pharmacol. 2007, 59, 637–642. [Google Scholar] [CrossRef]
- Qiu, M.Z.; Bai, Y.; Wang, J.; Gu, K.; Yang, M.; He, Y.; Yi, C.; Jin, Y.; Liu, B.; Wang, F.; et al. Addition of SHR-1701 to First-Line Capecitabine and Oxaliplatin (XELOX) Plus Bevacizumab for Unresectable Metastatic Colorectal Cancer. Signal Transduct. Target. Ther. 2024, 9, 349. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Zhu, N.; Zhong, C.; Wang, L.; Li, J.; Weng, S.; Hu, H.; Dong, C.; Li, D.; Song, Y.; et al. Sintilimab Plus Bevacizumab, Oxaliplatin and Capecitabine as First-Line Therapy in RAS-Mutant, Microsatellite Stable, Unresectable Metastatic Colorectal Cancer: An Open-Label, Single-Arm, Phase II Trial. EClinicalMedicine 2023, 62, 102123. [Google Scholar] [CrossRef]
- Al-Toubah, T.; Morse, B.; Pelle, E.; Strosberg, J. Efficacy of FOLFOX in Patients with Aggressive Pancreatic Neuroendocrine Tumors After Prior Capecitabine/Temozolomide. Oncologist 2021, 26, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Taherifard, E.; Bakhtiar, M.; Mahnoor, M.; Ahmed, R.; Cavalcante, L.; Zhang, J.; Saeed, A. Efficacy and Safety of Temozolomide-Based Regimens in Advanced Pancreatic Neuroendocrine Tumors: A Systematic Review and Meta-Analysis. BMC Cancer 2024, 24, 192. [Google Scholar] [CrossRef]
- Stefàno, E.; De Castro, F.; Ciccarese, A.; Muscella, A.; Marsigliante, S.; Benedetti, M.; Fanizzi, F.P. An Overview of Altered Pathways Associated with Sensitivity to Platinum-Based Chemotherapy in Neuroendocrine Tumors: Strengths and Prospects. Int. J. Mol. Sci. 2024, 25, 8568. [Google Scholar] [CrossRef]
- Iwasa, S.; Morizane, C.; Okusaka, T.; Ueno, H.; Ikeda, M.; Kondo, S.; Tanaka, T.; Nakachi, K.; Mitsunaga, S.; Kojima, Y.; et al. Cisplatin and Etoposide as First-Line Chemotherapy for Poorly Differentiated Neuroendocrine Carcinoma of the Hepatobiliary Tract and Pancreas. Jpn J. Clin. Oncol. 2010, 40, 313–318. [Google Scholar] [CrossRef]
- Weaver, J.M.; Hubner, R.A.; Valle, J.W.; McNamara, M.G. Selection of Chemotherapy in Advanced Poorly Differentiated Extra-Pulmonary Neuroendocrine Carcinoma. Cancers 2023, 15, 4951. [Google Scholar] [CrossRef]
- Guan, Y.; Yao, Q.; Hao, Y.; Zeng, X.; Wang, W.; Gu, X.; Xiang, J.; Sun, Y.; Song, Z. The Combination of Etoposide and Platinum for the Treatment of Thymic Neuroendocrine Neoplasms: A Retrospective Analysis. Cancer Med. 2023, 12, 16011–16018. [Google Scholar] [CrossRef]
- Li, J.; Lu, M.; Lu, Z.; Li, Z.; Liu, Y.; Yang, L.; Li, J.; Zhang, X.; Zhou, J.; Wang, X.; et al. Irinotecan Plus Cisplatin Followed by Octreotide Long-Acting Release Maintenance Treatment in Advanced Gastroenteropancreatic Neuroendocrine Carcinoma: IPO-NEC Study. Oncotarget 2017, 8, 25669–25678. [Google Scholar] [CrossRef] [PubMed]
- Morizane, C.; Machida, N.; Honma, Y.; Okusaka, T.; Boku, N.; Kato, K.; Nomura, S.; Hiraoka, N.; Sekine, S.; Taniguchi, H.; et al. Effectiveness of Etoposide and Cisplatin vs Irinotecan and Cisplatin Therapy for Patients With Advanced Neuroendocrine Carcinoma of the Digestive System: The TOPIC-NEC Phase 3 Randomized Clinical Trial. JAMA Oncol. 2022, 8, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
- Lania, A.; Ferraù, F.; Rubino, M.; Modica, R.; Colao, A.; Faggiano, A. Neoadjuvant Therapy for Neuroendocrine Neoplasms: Recent Progresses and Future Approaches. Front. Endocrinol. 2021, 12, 651438. [Google Scholar] [CrossRef] [PubMed]
- Ostwal, V.; Basu, S.; Bhargava, P.; Shah, M.; Parghane, R.V.; Srinivas, S.; Chaudhari, V.; Bhandare, M.S.; Shrikhande, S.V.; Ramaswamy, A. Capecitabine-Temozolomide in Advanced Grade 2 and Grade 3 Neuroendocrine Neoplasms: Benefits of Chemotherapy in Neuroendocrine Neoplasms with Significant 18FDG Uptake. Neuroendocrinology 2021, 111, 998–1004. [Google Scholar] [CrossRef]
- van Vliet, E.I.; van Eijck, C.H.; de Krijger, R.R.; van Dijkum, E.J.N.; Teunissen, J.J.; Kam, B.L.; de Herder, W.W.; Feelders, R.A.; Bonsing, B.A.; Brabander, T.; et al. Neoadjuvant Treatment of Nonfunctioning Pancreatic Neuroendocrine Tumors with [177Lu-DOTA0,Tyr3] Octreotate. J. Nucl. Med. 2015, 56, 1647–1653. [Google Scholar] [CrossRef]
- Barrett, J.R.; Rendell, V.; Pokrzywa, C.; Lopez-Aguiar, A.G.; Cannon, J.; Poultsides, G.A.; Rocha, F.; Crown, A.; Beal, E.; Michael Pawlik, T.; et al. Adjuvant therapy following resection of gastroenteropancreatic neuroendocrine tumors provides no recurrence or survival benefit. J. Surg. Oncol. 2020, 121, 1067–1073. [Google Scholar] [CrossRef]
- Masi, A.; Misawa, R.; Zhobin, M.; Renz, J.F.; Gruessner, A.; Gruessner, R.; Serafini, F.M. Adjuvant chemotherapy for pancreatic neuroendocrine tumor: Is there a real benefit? HPB 2019, 21, S179–S180. [Google Scholar] [CrossRef]
- Guo, S.; Wu, H.; Gao, S.; Hu, W.; Jiang, H.; Bian, Y.; Zhang, Y.; Li, B.; Li, G.; Xu, X.; et al. Real-world effectiveness of adjuvant octreotide therapy in patients with pancreatic neuroendocrine tumors at high recurrence risk: A multicenter retrospective cohort study. J. Neuroendocrinol. 2024, 36, e13442. [Google Scholar] [CrossRef]
- Soares, H.P.; Guthrie, K.A.; Ahmad, S.A.; Washington, M.K.; Ramnaraign, B.H.; Raj, N.P.; Seigel, C.; Bellasea, S.; Chiorean, E.G.; Dasari, A.; et al. Randomized phase II trial of postoperative adjuvant capecitabine and temozolomide versus observation in high-risk pancreatic neuroendocrine tumors. SWOG 2022, S2104, TPS515. [Google Scholar] [CrossRef]
- Imperatore, N.; de Nucci, G.; Mandelli, E.D.; de Leone, A.; Zito, F.P.; Lombardi, G.; Manes, G. Endoscopic ultrasound-guided radiofrequency ablation of pancreatic neuroendocrine tumors: A systematic review of the literature. Endosc. Int. Open 2020, 8, E1759–E1764. [Google Scholar] [CrossRef]
- Rossi, G.; Petrone, M.C.; Healey, A.J.; Arcidiacono, P.G. Approaching small neuroendocrine tumors with radiofrequency ablation. Diagnostics 2023, 13, 1561. [Google Scholar] [CrossRef] [PubMed]
- Marasco, M.; Galasso, D.; Larghi, A.; Panzuto, F. When Should We Adopt EUS-Guided Radiofrequency Ablation in Pancreatic Neuroendocrine Tumors? J. Clin. Med. 2023, 12, 4581. [Google Scholar] [CrossRef] [PubMed]
- Armellini, E.; Facciorusso, A.; Crino, S.F. Efficacy and safety of endoscopic ultrasound-guided radiofrequency ablation for pancreatic neuroendocrine tumors: A systematic review and metanalysis. Medicina 2023, 59, 359. [Google Scholar] [CrossRef]
- Egorov, A.V.; Vasilyev, I.A.; Musayev, G.H.; Mironova, A.V. The role of microwave ablation in management of functioning pancreatic neuroendocrine tumors. Gland Surg. 2019, 8, 766. [Google Scholar] [CrossRef] [PubMed]
- Ardeshna, D.R.; Leupold, M.; Cruz-Monserrate, Z.; Pawlik, T.M.; Cloyd, J.M.; Ejaz, A.; Shah, H.; Burlen, J.; Krishna, S.G. Advancements in Microwave Ablation Techniques for Managing Pancreatic Lesions. Life 2023, 13, 2162. [Google Scholar] [CrossRef]
- Robles-Medranda, C.; Arevalo-Mora, M.; Oleas, R.; Alcivar-Vasquez, J.; Del Valle, R. Novel EUS-guided microwave ablation of an unresectable pancreatic neuroendocrine tumor. VideoGIE 2022, 7, 74–76. [Google Scholar] [CrossRef]
- Lakhtakia, S. Therapy of pancreatic neuroendocrine tumors: Fine needle intervention including ethanol and radiofrequency ablation. Clin. Endosc. 2017, 50, 546–551. [Google Scholar] [CrossRef]
- So, H.; Ko, S.W.; Shin, S.H.; Kim, E.H.; Son, J.; Ha, S.; Song, K.B.; Kim, H.J.; Kim, M.H.; Park, D.H. Comparison of EUS-guided ablation and surgical resection for nonfunctioning small pancreatic neuroendocrine tumors: A propensity score–matching study. Gastrointest. Endosc. 2023, 97, 741–751. [Google Scholar] [CrossRef]
- Garg, R.; Mohammed, A.; Singh, A.; Harnegie, M.P.; Rustagi, T.; Stevens, T.; Chahal, P. EUS-guided radiofrequency and ethanol ablation for pancreatic neuroendocrine tumors: A systematic review and meta-analysis. Endosc. Ultrasound 2022, 11, 170–185. [Google Scholar] [CrossRef]
- Del Prete, M.; Fiore, F.; Modica, R.; Marotta, V.; Marciello, F.; Ramundo, V.; Di Sarno, A.; Carratù, A.; de Luca di Roseto, C.; Tafuto, S.; et al. Hepatic arterial embolization in patients with neuroendocrine tumors. J. Exp. Clin. Cancer Res. 2014, 33, 43. [Google Scholar] [CrossRef]
- Bai, J.; Song, J.; Zhang, Y.; Li, X.; Yan, L.; Hu, P.; Tang, Q. Transcatheter arterial embolization in patients with neuroendocrine neoplasms related to liver metastasis with different blood supplies. Cancer Med. 2023, 12, 18578–18587. [Google Scholar] [CrossRef]
- Chen, L.; Yang, D.; Yusufu, Y.; Liu, H.; Liu, M.; Lin, Y.; Luo, Y.; He, Q.; Chen, M.; Zeng, Z.; et al. Trans-Arterial Embolization for Liver Metastases of Gastroenteropancreatic Neuroendocrine Tumors: Response Indicates Survival Benefit? Cancers 2025, 17, 309. [Google Scholar] [CrossRef] [PubMed]
- Touloupas, C.; Faron, M.; Hadoux, J.; Deschamps, F.; Roux, C.; Ronot, M.; Yevich, S.; Joskin, J.; Gelli, M.; Barbé, R.; et al. Long term efficacy and assessment of tumor response of transarterial chemoembolization in neuroendocrine liver metastases: A 15-year monocentric experience. Cancers 2021, 13, 5366. [Google Scholar] [CrossRef]
- Ngo, L.; Elnahla, A.; Attia, A.S.; Hussein, M.; Toraih, E.A.; Kandil, E.; Killackey, M. Chemoembolization versus radioembolization for neuroendocrine liver metastases: A meta-analysis comparing clinical outcomes. Ann. Surg. Oncol. 2021, 28, 1950–1958. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.E.; Armstrong, E.; Martin, R.C.; Scoggins, C.R.; Philips, P.; Shah, M.; Konda, B.; Dillhoff, M.; Pawlik, T.M.; Cloyd, J.M. Transarterial chemoembolization vs radioembolization for neuroendocrine liver metastases: A multi-institutional analysis. J. Am. Coll. Surg. 2020, 230, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Ramdhani, K.; Braat, A.J.A.T. The evolving role of radioembolization in the treatment of neuroendocrine liver metastases. Cancers 2022, 14, 3415. [Google Scholar] [CrossRef]
- Schaarschmidt, B.M.; Wildgruber, M.; Kloeckner, R.; Nie, J.; Steinle, V.; Braat, A.J.; Lohoefer, F.; Kim, H.S.; Lahner, H.; Weber, M.; et al. 90Y radioembolization in the treatment of neuroendocrine neoplasms: Results of an international multicenter retrospective study. J. Nucl. Med. 2022, 63, 679–685. [Google Scholar] [CrossRef]
- Wong, T.Y.; Zhang, K.S.; Gandhi, R.T.; Collins, Z.S.; O’Hara, R.; Wang, E.A.; Vaheesan, K.; Matsuoka, L.; Sze, D.Y.; Kennedy, A.S.; et al. Long-term outcomes following 90Y Radioembolization of neuroendocrine liver metastases: Evaluation of the radiation-emitting SIR-spheres in non-resectable liver tumor (RESiN) registry. BMC Cancer 2022, 22, 224. [Google Scholar] [CrossRef]
- Chan, D.L.; Thompson, R.; Lam, M.; Pavlakis, N.; Hallet, J.; Law, C.; Singh, S.; Myrehaug, S. External beam radiotherapy in the treatment of gastroenteropancreatic neuroendocrine tumours: A systematic review. Clin. Oncol. 2018, 30, 400–408. [Google Scholar] [CrossRef]
- Pusceddu, S.; Prinzi, N.; Tafuto, S.; Ibrahim, T.; Filice, A.; Brizzi, M.P.; Panzuto, F.; Baldari, S.; Grana, C.M.; Campana, D.; et al. Association of upfront peptide receptor radionuclide therapy with progression-free survival among patients with enteropancreatic neuroendocrine tumors. JAMA Netw. Open 2022, 5, e220290. [Google Scholar] [CrossRef]
- Puliani, G.; Chiefari, A.; Mormando, M.; Bianchini, M.; Lauretta, R.; Appetecchia, M. New insights in PRRT: Lessons from 2021. Front. Endocrinol. 2022, 13, 861434. [Google Scholar] [CrossRef] [PubMed]
- Hindié, E.; Baudin, E.; Hicks, R.J.; Taïeb, D. The Latest Advances in Peptide Receptor Radionuclide Therapy for Gastroenteropancreatic Neuroendocrine Tumors. J. Nucl. Med. 2023, 64, 522–524. [Google Scholar] [CrossRef] [PubMed]
- Clement, D.; Navalkissoor, S.; Srirajaskanthan, R.; Courbon, F.; Dierickx, L.; Eccles, A.; Lewington, V.; Mitjavila, M.; Percovich, J.C.; Lequoy, B.; et al. Efficacy and safety of 177Lu-DOTATATE in patients with advanced pancreatic neuroendocrine tumours: Data from the NETTER-R international, retrospective study. Eur. J. Nucl. Med. 2022, 49, 3529–3537. [Google Scholar] [CrossRef]
- Pavel, M.E.; Rinke, A.; Baum, R.P. COMPETE trial: Peptide receptor radionuclide therapy (PRRT) with 177Lu-edotreotide vs. everolimus in progressive GEP-NET. Ann. Oncol. 2018, 29, viii478. [Google Scholar] [CrossRef]
- Megdanova-Chipeva, V.G.; Lamarca, A.; Backen, A.; McNamara, M.G.; Barriuso, J.; Sergieva, S.; Gocheva, L.; Mansoor, W.; Manoharan, P.; Valle, J.W. Systemic treatment selection for patients with advanced pancreatic neuroendocrine tumours (PanNETs). Cancers 2020, 12, 1988. [Google Scholar] [CrossRef]
- Mpilla, G.B.; Philip, P.A.; El-Rayes, B.; Azmi, A.S. Pancreatic neuroendocrine tumors: Therapeutic challenges and research limitations. World J. Gastroenterol. 2020, 26, 4036. [Google Scholar] [CrossRef]
- Hijioka, S.; Morizane, C.; Ikeda, M.; Ishii, H.; Okusaka, T.; Furuse, J. Current status of medical treatment for gastroenteropancreatic neuroendocrine neoplasms and future perspectives. Jpn. J. Clin. Oncol. 2021, 51, 1185–1196. [Google Scholar] [CrossRef]
- Chan, J.; Geyer, S.; Ou, F.-S.; Knopp, M.; Behr, S.; Zemla, T.; Acoba, J.; Shergill, A.; Wolin, E.; Halfdanarson, T.; et al. LBA53 Alliance A021602: Phase III, double-blinded study of cabozantinib versus placebo for advanced neuroendocrine tumors (NET) after progression on prior therapy (CABINET). Ann. Oncol. 2023, 34, S1292. [Google Scholar] [CrossRef]
- Antonuzzo, L.; Del Re, M.; Barucca, V.; Spada, F.; Meoni, G.; Restante, G.; Danesi, R.; Di Costanzo, F.; Fazio, N. Critical focus on mechanisms of resistance and toxicity of m-TOR inhibitors in pancreatic neuroendocrine tumors. Cancer Treat. Rev. 2017, 57, 28–35. [Google Scholar] [CrossRef]
- Bongiovanni, A.; Maiorano, B.A.; Azzali, I.; Liverani, C.; Bocchini, M.; Fausti, V.; Di Menna, G.; Grassi, I.; Sansovini, M.; Riva, N. Activity and safety of immune checkpoint inhibitors in neuroendocrine neoplasms: A systematic review and meta-analysis. Pharmaceuticals 2021, 14, 476. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, W.; Lou, X.; Ye, Z.; Qin, Y.; Chen, J.; Xu, X.; Yu, X.; Ji, S. Recent research hotspots in sequencing and the pancreatic neuroendocrine tumor microenvironment. Cancer Biol. Med. 2023, 20, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kunnath, A.P.; Priyashini, T. Potential applications of circulating tumor DNA technology as a cancer diagnostic tool. Cureus 2019, 11, e4907. [Google Scholar] [CrossRef] [PubMed]
- Riechelmann, R.P.; Weschenfelder, R.F.; Costa, F.P.; Andrade, A.C.; Osvaldt, A.B.; Quidute, A.R.P.; Dos Santos, A.; Hoff, A.A.O.; Gumz, B.; Buchpiguel, C.; et al. Guidelines for the management of neuroendocrine tumours by the Brazilian gastrointestinal tumour group. Ecancermedicalscience 2017, 11, 716. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, Y.; Wei, X.; Yang, K.; Tan, W.; Qiu, Z.; Li, S.; Chen, Q.; Song, Y.; Gao, S. Racial disparities in pancreatic neuroendocrine tumors survival: A SEER study. Cancer Med. 2017, 6, 2745–2756. [Google Scholar] [CrossRef] [PubMed]
- Gosain, R.; Gupta, M.; Roy, A.M.; Strosberg, J.; Glaser, K.M.; Iyer, R. Health-related quality of life (HRQoL) in neuroendocrine tumors: A systematic review. Cancers 2022, 14, 1428. [Google Scholar] [CrossRef]
- Brabander, T.; van der Zwan, W.A.; Teunissen, J.J.; Kam, B.L.; Feelders, R.A.; de Herder, W.W.; van Eijck, C.H.; Franssen, G.J.; Krenning, E.P.; Kwekkeboom, D.J. Long-term efficacy, survival, and safety of [177Lu-DOTA0, Tyr3] octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors. Clin. Cancer Res. 2017, 23, 4617–4624. [Google Scholar] [CrossRef]
- White, B.E.; Mujica-Mota, R.; Snowsill, T.; Gamper, E.M.; Srirajaskanthan, R.; Ramage, J.K. Evaluating cost-effectiveness in the management of neuroendocrine neoplasms. Rev. Endocr. Metab. Disord. 2021, 22, 647–663. [Google Scholar] [CrossRef]
Type | Differentiation | Grade | Mitotic Rate (/10 HPF) | Ki-67 Index (%) |
---|---|---|---|---|
NET, G1 | Well differentiated | Low | <2 | <3 |
NET, G2 | Well differentiated | Intermediate | 2–20 | 3–20 |
NET, G3 | Well differentiated | High | >20 | >20 |
NEC, small cell type | Poorly differentiated | High | >20 | >20 |
NEC, large cell type | Poorly differentiated | High | >20 | >20 |
MiNEN | Well or poorly differentiated | Variable | Variable | Variable |
Biochemical/Endocrine work up confirming Functional PNET | ||
Imaging study confirming absence of metastatic disease | ||
EUS-guided core needle biopsy to establish histological grade | ||
Insulinoma | Other functional PNET (Gastrinoma, VIPoma, Glucagonoma, ACTHoma) | |
Risk of metastasis and malignancy: <15% | >60% | |
<2 cm | >2 cm or >Grade 1 | Impact of size or grade less known |
Ablation vs. Surgery | Surgery | Surgery |
Ablation in non-operative candidates and for post-surgical recurrence |
DOTATE Imaging to confirm absence of metastasis | |||
Suspected NF PNET < 1 cm | Suspected NF PNET > 1–2 cm | ||
No disease specific mortality at 45–65 months after diagnosis | EUS-guided Core Biopsy to confirm Histologic Grade | ||
Grade 1 | Grade 2 | Grade 3 | |
3–5% LN mets | 16% LN mets | >80% LN mets | |
Surveillance | Surveillance vs Ablation | Ablation vs Surgery | Surgery |
Feature | Enucleation | Central Pancreatectomy | Distal Pancreatectomy | Pancreaticoduodenectomy | Total Pancreatectomy |
---|---|---|---|---|---|
Typical Tumor Location | Superficial, any location (preferably head) | Neck or proximal body | Body and tail | Head | Entire gland (diffuse or multifocal) |
Tumor Criteria | ≤2 cm, G1, not abutting main duct | ≤2–3 cm, G1, non-invasive | >2 cm, G2–G3, or functional | >2 cm, G2–G3, or functional | Multifocal, recurrent, or locally advanced involving whole gland |
Functional Preservation | Excellent | Excellent | Moderate | Low | None |
Lymph Node Dissection | No | No | Yes | Yes | Yes |
Main Indications | Functional tumors (e.g., insulinomas), small low-grade NF-PNETs | Low-grade tumors in neck, not amenable to enucleation | NF- or F-PNETs in distal pancreas needing oncologic clearance | Large or high-grade tumors in the head; duct involvement | MEN1 with multifocal disease, extensive tumors |
POPF Risk | High (~30–40%) | High (20–40%) | Moderate (~20–30%) | Moderate to High (15–25%) | Comparable to PD |
Endocrine Insufficiency Risk | Very Low | Low (~5–10%) | Moderate | High | 100% (brittle diabetes) |
Exocrine Insufficiency Risk | Very Low | Low | Moderate | High | 100% (lifelong enzyme replacement) |
Preferred Surgical Approach | Open, laparoscopic, robotic | Open, laparoscopic, robotic | Open, laparoscopic, robotic | Open, laparoscopic (limited), robotic | Open or robotic |
Limitations | Not suitable for invasive/high-grade tumors; no nodal staging | Technically demanding, no LN dissection, higher POPF risk | Loss of tail function, possible splenectomy | High morbidity, long recovery, metabolic impact | High metabolic burden, last-resort option |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bidani, K.; Marinovic, A.G.; Moond, V.; Harne, P.; Broder, A.; Thosani, N. Treatment of Pancreatic Neuroendocrine Tumors: Beyond Traditional Surgery and Targeted Therapy. J. Clin. Med. 2025, 14, 3389. https://doi.org/10.3390/jcm14103389
Bidani K, Marinovic AG, Moond V, Harne P, Broder A, Thosani N. Treatment of Pancreatic Neuroendocrine Tumors: Beyond Traditional Surgery and Targeted Therapy. Journal of Clinical Medicine. 2025; 14(10):3389. https://doi.org/10.3390/jcm14103389
Chicago/Turabian StyleBidani, Khyati, Angela G. Marinovic, Vishali Moond, Prateek Harne, Arkady Broder, and Nirav Thosani. 2025. "Treatment of Pancreatic Neuroendocrine Tumors: Beyond Traditional Surgery and Targeted Therapy" Journal of Clinical Medicine 14, no. 10: 3389. https://doi.org/10.3390/jcm14103389
APA StyleBidani, K., Marinovic, A. G., Moond, V., Harne, P., Broder, A., & Thosani, N. (2025). Treatment of Pancreatic Neuroendocrine Tumors: Beyond Traditional Surgery and Targeted Therapy. Journal of Clinical Medicine, 14(10), 3389. https://doi.org/10.3390/jcm14103389