Hematopoietic Stem Cell Transplantation: Recent Advances
Author Contributions
Conflicts of Interest
References
- Thomas, E.D.; Buckner, C.D.; Cheever, M.A.; Clift, R.A.; Einstein, A.B.; Fefer, A.; Neiman, P.E.; Sanders, J.; Storb, R.; Weiden, P.L. Marrow transplantation for leukemia and aplastic anemia. Transplant. Proc. 1976, 8, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Weiden, P.L.; Flournoy, N.; Thomas, E.D.; Prentice, R.; Fefer, A.; Buckner, C.D.; Storb, R. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N. Engl. J. Med. 1979, 300, 1068–1073. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- Loke, J.; Buka, R.; Craddock, C. Allogeneic stem cell transplantation for acute myeloid leukemia: Who, when, and how? Front. Immunol. 2021, 12, 659595. [Google Scholar] [CrossRef] [PubMed]
- Gooley, T.A.; Chien, J.W.; Pergam, S.A.; Hingorani, S.; Sorror, M.L.; Boeckh, M.; Martin, P.J.; Sandmaier, B.M.; Marr, K.A.; Appelbaum, F.R.; et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N. Engl. J. Med. 2010, 363, 2091–2101. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bearman, S.I.; Appelbaum, F.R.; Buckner, C.D.; Petersen, F.B.; Fisher, L.D.; Clift, R.A.; Thomas, E.D. Regimen-related toxicity in patients undergoing bone marrow transplantation. J. Clin. Oncol. 1988, 6, 1562–1568. [Google Scholar] [CrossRef] [PubMed]
- Haire, W.D. Multiple organ dysfunction syndrome in hematopoietic stem cell transplantation. Crit. Care Med. 2002, 30 (Suppl. 5), S257–S262. [Google Scholar] [CrossRef] [PubMed]
- Carreras, E.; Diaz-Ricart, M. The role of the endothelium in the short-term complications of hematopoietic SCT. Bone Marrow Transplant. 2011, 46, 1495–1502. [Google Scholar] [CrossRef] [PubMed]
- Palomo, M.; Diaz-Ricart, M.; Carbo, C.; Rovira, M.; Fernandez-Aviles, F.; Martine, C.; Ghita, G.; Escolar, G.; Carreras, E. Endothelial dysfunction after hematopoietic stem cell transplantation: Role of the conditioning regimen and the type of transplantation. Biol. Blood Marrow Transplant. 2010, 16, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Milone, G.; Bellofiore, C.; Leotta, S.; Milone, G.A.; Cupri, A.; Duminuco, A.; Garibaldi, B.; Palumbo, G. Endothelial Dysfunction after Hematopoietic Stem Cell Transplantation: A Review Based on Physiopathology. J. Clin. Med. 2022, 11, 623. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jethava, Y.S.; Sica, S.; Savani, B.; Socola, F.; Jagasia, M.; Mohty, M.; Nagler, A.; Bacigalupo, A. Conditioning regimens for allogeneic hematopoietic stem cell transplants in acute myeloid leukemia. Bone Marrow Transplant. 2017, 52, 1504–1511. [Google Scholar] [CrossRef] [PubMed]
- Tuazon, S.A.; Sandmaier, B.M.; Gooley, T.A.; Fisher, D.R.; Holmberg, L.A.; Becker, P.S.; Lundberg, S.J.; Orozco, J.J.; Gopal, A.K.; Till, B.G.; et al. 90Y-labeled anti-CD45 antibody allogeneic hematopoietic cell transplantation for high-risk multiple myeloma. Bone Marrow Transplant. 2021, 56, 202–209. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Griffin, J.M.; Healy, F.M.; Dahal, L.N.; Floisand, Y.; Woolley, J.F. Worked to the bone: Antibody-based conditioning as the future of transplant biology. J. Hematol. Oncol. 2022, 15, 65. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Volta, L.; Myburgh, R.; Hofstetter, M.; Koch, C.; Kiefer, J.D.; Gobbi, C.; Manfredi, F.; Zimmermann, K.; Kaufmann, P.; Fazio, S.; et al. A single-chain variable fragment-based bispecific T-cell activating antibody against CD117 enables T-cell mediated lysis of acute myeloid leukemia and hematopoietic stem and progenitor cells. Hemasphere 2024, 8, e70055. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stoffel, T.; Bacher, U.; Banz, Y.; Daskalakis, M.; Novak, U.; Pabst, T. BeEAM High-Dose Chemotherapy with Polatuzumab (Pola-BeEAM) before ASCT in Patients with DLBCL—A Pilot Study. J. Clin. Med. 2022, 11, 3748. [Google Scholar] [CrossRef]
- Larsen, K.; Spencer, H.; Mohan, M.; Bailey, C.; Hill, K.; Kottarathara, M.; Parikh, R.; Hoque, S.; Erra, A.; Mitma, A.A.; et al. Feasibility of Outpatient Stem Cell Transplantation in Multiple Myeloma and Risk Factors Predictive of Hospital Admission. J. Clin. Med. 2022, 11, 1640. [Google Scholar] [CrossRef]
- O’Donnell, P.V.; Luznik, L.; Jones, R.J.; Vogelsang, G.B.; Leffell, M.S.; Phelps, M.; Rhubart, P.; Cowan, K.; Piantados, S.; Fuchs, E.J. Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using posttransplantation cyclophosphamide. Biol. Blood Marrow Transplant. 2002, 8, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Luznik, L.; O’Donnell, P.V.; Symons, H.J.; Chen, A.R.; Leffell, M.S.; Zahurak, M.; Gooley, T.A.; Piantadosi, S.; Kaup, M.; Ambinder, R.F.; et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol. Blood Marrow Transplant. 2008, 14, 641–650. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Auletta, J.J.; Kou, J.; Chen, M.; Bolon, Y.T.; Broglie, L.; Bupp, C.; Christianson, D.; Cusatis, R.N.; Devine, S.M.; Eapen, M.; et al. Real-World Data Showing Trends and Outcomes by Race and Ethnicity in Allogeneic Hematopoietic Cell Transplantation: A Report from the Center for International Blood and Marrow Transplant Research. Transplant. Cell. Ther. 2023, 29, e1–e346. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bolanos-Meade, J. Post-transplantation cyclophosphamide-based graft-versus-host disease prophylaxis. N. Engl. J. Med. 2023, 388, 2338. [Google Scholar] [CrossRef]
- Duléry, R.; Brissot, E.; Mohty, M. Combining post-transplant cyclophosphamide with anti-thymocyte globulin for graft-versus-host disease prophylaxis in haematological malignancies. Blood Rev. 2023, 62, 101080. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, D.P.; Liu, Q.F.; Xu, L.P.; Liu, K.Y.; Zhang, X.H.; Yu, W.-J.; Xu, Y.; Huang, F.; Huang, X.-J. Low-dose post-transplant cyclophosphamide and anti-thymocyte globulin as an effective strategy for GVHD prevention in haploidentical patients. J. Hematol. Oncol. 2019, 12, 88. [Google Scholar] [CrossRef]
- Li, T.; He, Q.; Yang, J.; Cai, Y.; Huang, C.; Xu, X.; Qiu, H.; Niu, J.; Zhou, K.; Zhang, Y.; et al. Low-Dose Anti-Thymocyte Globulin Plus Low-Dose Posttransplant Cyclophosphamide as an Effective Regimen for Prophylaxis of Graft versus Host Disease After Haploidentical Peripheral Blood Stem Cell Transplantation With Maternal/Collateral Related Donors. Cell Transplant. 2022, 31, 9636897221139103. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, D.H.; Shin, D.Y.; Koh, Y.; Kim, I.; Yoon, S.S.; Byun, J.M.; Hong, J. Dual T-cell depletion with individually tailored anti-thymocyte globulin and attenuated dose of post-transplant cyclophosphamide in haploidentical peripheral stem cell transplantation. Sci. Rep. 2024, 14, 13885. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xue, E.; Lorentino, F.; Lupo Stanghellini, M.T.; Giglio, F.; Piemontese, S.; Clerici, D.T.; Farina, F.; Mastaglio, S.; Bruno, A.; Campodonico, E.; et al. Addition of a Single Low Dose of Anti T-Lymphocyte Globulin to Post-Transplant Cyclophosphamide after Allogeneic Hematopoietic Stem Cell Transplant: A Pilot Study. J. Clin. Med. 2022, 11, 1106. [Google Scholar] [CrossRef] [PubMed]
- Barriga, F.; Lima, A.C.M. Donor selection in allogeneic stem cell transplantation. Curr. Opin. Hematol. 2024, 31, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Timofeeva, O.A.; Philogene, M.C.; Zhang, Q.J. Current donor selection strategies for allogeneic hematopoietic cell transplantation. Hum. Immunol. 2022, 83, 674–686. [Google Scholar] [CrossRef] [PubMed]
- Spellman, S.R.; Sparapani, R.; Maiers, M.; Shaw, B.E.; Laud, P.; Bupp, C.; He, M.; Devine, S.M.; Logan, B.R. Novel machine learning technique further clarifies unrelated donor selection to optimize transplantation outcomes. Blood Adv. 2024, 8, 6082–6087. [Google Scholar] [CrossRef] [PubMed]
- Crocchiolo, R.; Rombolà, G. Human Leucocyte Antigen System and Selection of Unrelated Hematopoietic Stem Cell Donors: Impact of Patient–Donor (Mis)matching and New Challenges with the Current Technologies. J. Clin. Med. 2023, 12, 646. [Google Scholar] [CrossRef]
- Kharfan-Dabaja, M.A.; Kumar, A.; Ayala, E.; Aljurf, M.; Nishihori, T.; Marsh, R.; Burroughs, L.M.; Majhail, N.; Al-Homsi, A.S.; Al-Kadhimi, Z.S.; et al. Standardizing Definitions of Hematopoietic Recovery, Graft Rejection, Graft Failure, Poor Graft Function, and Donor Chimerism in Allogeneic Hematopoietic Cell Transplantation: A Report on Behalf of the American Society for Transplantation and Cellular Therapy. Transplant. Cell. Ther. 2021, 27, 642–649. [Google Scholar]
- Kongtim, P.; Vittayawacharin, P.; Zou, J.; Srour, S.; Shaffer, B.; Shapiro, R.M.; Varma, A.; McGuirk, J.; Dholaria, B.R.; McCurdy, S.R.; et al. ASTCT Consensus Recommendations on Testing and Treatment of Patients with Donor-specific Anti-HLA Antibodies. Transplant. Cell. Ther. 2024, 30, 1139–1154. [Google Scholar] [CrossRef] [PubMed]
- Mulas, O.; Mola, B.; Caocci, G.; La Nasa, G. Conditioning Regimens in Patients with β-Thalassemia Who Underwent Hematopoietic Stem Cell Transplantation: A Scoping Review. J. Clin. Med. 2022, 11, 907. [Google Scholar] [CrossRef] [PubMed]
- Zephir, H.; Puyade, M.; Gueguen, A.; Michel, L.; Terriou, L.; Dive, D.; Laureys, G.; Mathey, G.; Labauge, P.; Marjanovic, Z.; et al. Indications de l’autogreffe dans la sclérose en plaques: Recommandations de la Société francophone de greffe de moelle et de thérapie cellulaire (SFGM-TC) en lien avec la Société francophone de la sclérose en plaques [Indications and follow-up for autologous hematopoietic stem cell transplantation in multiple sclerosis: Guidelines from the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC) in association with the Francophone Society of Multiple Sclerosis]. Bull. Cancer 2019, 106, S92–S101. [Google Scholar] [CrossRef] [PubMed]
- Patti, F.; Chisari, C.G.; Toscano, S.; Arena, S.; Finocchiaro, C.; Cimino, V.; Milone, G. Autologous Hematopoietic Stem Cell Transplantation in Multiple Sclerosis Patients: Monocentric Case Series and Systematic Review of the Literature. J. Clin. Med. 2022, 11, 942. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, Y.; Zou, Z.; Yang, Y.; Wang, X.; Xin, X.; Tu, S.; Li, Y. Combination strategies to optimize the efficacy of chimeric antigen receptor T cell therapy in haematological malignancies. Front. Immunol. 2022, 13, 954235. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghobadi, A.; Foley, N.C.; Cohen, J.; Rettig, M.P.; Cashen, A.F.; Gehrs, L.; Christ, S.; Street, E.; Wallace, N.; Ritchey, J.; et al. Blinatumomab consolidation post-autologous stem cell transplantation in patients with diffuse large B-cell lymphoma. Blood Adv. 2024, 8, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Edinger, M.; Hoffmann, P.; Ermann, J.; Drago, K.; Fathman, C.G.; Strober, S.; Negrin, R.S. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat. Med. 2003, 9, 1144–1150. [Google Scholar] [CrossRef] [PubMed]
- Godefroy, E.; Chevallier, P.; Haspot, F.; Vignes, C.; Daguin, V.; Lambot, S.; Verdon, M.; De Seilhac, M.; Letailleur, V.; Jarry, A.; et al. Human gut microbiota-reactive DP8α Tregs prevent acute graft-versus-host disease in a CD73-dependent manner. JCI Insight. 2024, 9, e179458. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yazdandoust, E.; Hajifathali, A.; Roshandel, E.; Zarif, M.N.; Pourfathollah, A.A.; Parkhideh, S.; Mehdizadeh, M.; Amini-Kafiabad, S. Gut microbiota intervention by pre and probiotics can induce regulatory T cells and reduce the risk of severe acute GVHD following allogeneic hematopoietic stem cell transplantation. Transpl. Immunol. 2023, 78, 101836. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milone, G.; Leotta, S.; Cupri, A. Hematopoietic Stem Cell Transplantation: Recent Advances. J. Clin. Med. 2025, 14, 3379. https://doi.org/10.3390/jcm14103379
Milone G, Leotta S, Cupri A. Hematopoietic Stem Cell Transplantation: Recent Advances. Journal of Clinical Medicine. 2025; 14(10):3379. https://doi.org/10.3390/jcm14103379
Chicago/Turabian StyleMilone, Giuseppe, Salvatore Leotta, and Alessandra Cupri. 2025. "Hematopoietic Stem Cell Transplantation: Recent Advances" Journal of Clinical Medicine 14, no. 10: 3379. https://doi.org/10.3390/jcm14103379
APA StyleMilone, G., Leotta, S., & Cupri, A. (2025). Hematopoietic Stem Cell Transplantation: Recent Advances. Journal of Clinical Medicine, 14(10), 3379. https://doi.org/10.3390/jcm14103379