The Effect of Transcranial Direct Current Stimulation on Basketball Performance—A Scoping Review
Abstract
:1. Introduction
1.1. Physical Demands
1.2. Psychological Demands
2. Methods
2.1. Data Sources and Search Strategy
2.2. Study Selection Criteria
2.3. Screening Process
2.3.1. Title and Abstract Screening
2.3.2. Full-Text Assessment
3. Results
3.1. Summary of Included Studies
3.2. Impact on Shooting Performance
3.3. Impact on Dribbling Performance
3.4. Impact on Reaction Time
3.5. Impact on Jump Performance
3.6. Impact on Sprint Times
3.7. Impact on Fatigue
3.8. Impact on Visuomotor Skills
3.9. Impact on Decision-Making
3.10. Impact on Visual Search Behavior
3.11. Impact on Inhibitory Control
3.12. Impact on Cognitive Workload and Motivation
3.13. Comparative Insight and Methodological Appraisal of the tDCS Evidence in Basketball
3.14. Risk of Bias Assessment
4. Discussion
4.1. Shooting Performance
4.2. Other Basketball-Specific Skills (Dribbling, Head-Fake Susceptibility, Decision-Making)
4.3. Physical Performance (Jumping and Sprinting)
4.4. Influence of Mental Fatigue and Cognitive Tasks
4.5. Timing, Duration, and Location of Stimulation
5. Mechanisms of Action of tDCS in Improving Sports Performance
5.1. Cortical Excitability
5.2. Motor Output and Descending Drive
5.3. Fatigue Resistance: Central and Peripheral
5.4. Perceived Exertion (RPE)
5.5. Autonomic Nervous System Activity
5.6. Synaptic Plasticity and Training Adaptation
6. Limitations and Future Directions
7. Practical Implications
7.1. Skill Training Enhancement
7.2. Cognitive and Decision-Making Benefits
7.3. Fatigue Management
7.4. Accessibility and Ease of Use
7.5. Guidance for Implementation
7.6. Beyond Basketball
7.7. Translating Laboratory Results into Competitive Performance—Is There a Solution?
8. “Neurodoping” via tDCS—Is There Any Risk?
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ben Abdelkrim, N.; El Fazaa, S.; El Ati, J. Time-motion analysis and physiological data of elite under-19-year-old basketball players during competition. Br. J. Sports Med. 2007, 41, 69–75; discussion 75. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhou, H.; Quan, W.; Ma, X.; Chon, T.E.; Fernandez, J.; Gusztav, F.; Kovács, A.; Baker, J.S.; Gu, Y. New Insights Optimize Landing Strategies to Reduce Lower Limb Injury Risk. Cyborg Bionic Syst. 2024, 5, 0126. [Google Scholar] [CrossRef]
- Montgomery, P.G.; Pyne, D.B.; Minahan, C.L. The physical and physiological demands of basketball training and competition. Int. J. Sports Physiol. Perform. 2010, 5, 75–86. [Google Scholar] [CrossRef]
- Delextrat, A.; Cohen, D. Physiological testing of basketball players: Toward a standard evaluation of anaerobic fitness. J. Strength Cond. Res. 2008, 22, 1066–1072. [Google Scholar] [CrossRef]
- Petway, A.J.; Freitas, T.T.; Calleja-González, J.; Leal, D.M.; Alcaraz, P.E. Training load and match-play demands in basketball based on competition level: A systematic review. PLoS ONE 2020, 15, e0229212. [Google Scholar] [CrossRef]
- García, F.; Vázquez-Guerrero, J.; Castellano, J.; Casals, M.; Schelling, X. Differences in Physical Demands between Game Quarters and Playing Positions on Professional Basketball Players during Official Competition. J. Sports Sci. Med. 2020, 19, 256–263. [Google Scholar]
- Stojanović, E.; Stojiljković, N.; Scanlan, A.T.; Dalbo, V.J.; Berkelmans, D.M.; Milanović, Z. The Activity Demands and Physiological Responses Encountered During Basketball Match-Play: A Systematic Review. Sports Med. 2018, 48, 111–135. [Google Scholar] [CrossRef]
- Sosa-Marin, C.; Alonso-Pérez-Chao, E.; Trapero, J.; Ribas, C.; Leicht, A.S.; Lorenzo, A.; Jiménez, S.L. External Physical Demands during Official Under-18 Basketball Games: Consideration of Overtime Periods. J. Hum. Kinet. 2024, 94, 181–190. [Google Scholar]
- Ben Abdelkrim, N.; Castagna, C.; Jabri, I.; Battikh, T.; El Fazaa, S.; El Ati, J. Activity profile and physiological requirements of junior elite basketball players in relation to aerobic-anaerobic fitness. J. Strength Cond. Res. 2010, 24, 2330–2342. [Google Scholar] [CrossRef]
- Hunter, F.; Bray, J.; Towlson, C.; Smith, M.; Barrett, S.; Madden, J.; Abt, G.; Lovell, R. Individualisation of time-motion analysis: A method comparison and case report series. Int. J. Sports Med. 2015, 36, 41–48. [Google Scholar] [CrossRef]
- Narazaki, K.; Berg, K.; Stergiou, N.; Chen, B. Physiological demands of competitive basketball. Scand. J. Med. Sci. Sports 2009, 19, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Torres-Ronda, L.; Beanland, E.; Whitehead, S.; Sweeting, A.; Clubb, J. Tracking Systems in Team Sports: A Narrative Review of Applications of the Data and Sport Specific Analysis. Sports Med. Open. 2022, 8, 15. [Google Scholar] [CrossRef]
- Figueira, B.; Gonçalves, B.; Abade, E.; Paulauskas, R.; Masiulis, N.; Kamarauskas, P.; Sampaio, J. Repeated Sprint Ability in Elite Basketball Players: The Effects of 10 × 30 m vs. 20 × 15 m Exercise Protocols on Physiological Variables and Sprint Performance. J. Hum. Kinet. 2021, 77, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Scanlan, A.; Dascombe, B.; Reaburn, P. A comparison of the activity demands of elite and sub-elite Australian men’s basketball competition. J. Sports Sci. 2011, 29, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Chao, E.A.; Gómez, M.A.; Lisboa, P.; Trapero, J.; Jiménez, S.L.; Lorenzo, A. Fluctuations in External Peak Demands across Quarters during Basketball Games. Front. Physiol. 2022, 13, 868009. [Google Scholar] [CrossRef]
- Harper, D.J.; McBurnie, A.J.; Santos, T.D.; Eriksrud, O.; Evans, M.; Cohen, D.D.; Rhodes, D.; Carling, C.; Kiely, J. Biomechanical and Neuromuscular Performance Requirements of Horizontal Deceleration: A Review with Implications for Random Intermittent Multi-Directional Sports. Sports Med. 2022, 52, 2321–2354. [Google Scholar] [CrossRef]
- Brini, S.; Delextrat, A.; Bouassida, A. Variation in Lower Limb Power and Three Point Shot Performance Following Repeated Sprints: One Vs. Five Changes of Direction in Male Basketball Players. J. Hum. Kinet. 2021, 77, 169–179. [Google Scholar] [CrossRef]
- Pehar, M.; Sekulic, D.; Sisic, N.; Spasic, M.; Uljevic, O.; Krolo, A.; Milanovic, Z.; Sattler, T. Evaluation of different jumping tests in defining position-specific and performance-level differences in high level basketball players. Biol. Sport 2017, 34, 263–272. [Google Scholar] [CrossRef]
- Lees, A.; Vanrenterghem, J.; De Clercq, D. The maximal and submaximal vertical jump: Implications for strength and conditioning. J. Strength Cond. Res. 2004, 18, 787–791. [Google Scholar] [CrossRef]
- Sahlin, K. Muscle energetics during explosive activities and potential effects of nutrition and training. Sports Med. 2014, 44 (Suppl. 2), S167–S173. [Google Scholar] [CrossRef]
- Gottlieb, R.; Shalom, A.; Calleja-Gonzalez, J. Physiology of Basketball—Field Tests. Review Article. J. Hum. Kinet. 2021, 77, 159–167. [Google Scholar] [CrossRef]
- Aksović, N.; Milanović, F.; Nikolić, D.; Singh, L.S. Blood lactate concentration during a basketball match. Sport I Zdr. 2022, 17, 91–99. [Google Scholar]
- McInnes, S.E.; Carlson, J.S.; Jones, C.J.; McKenna, M.J. The physiological load imposed on basketball players during competition. J. Sports Sci. 1995, 13, 387–397. [Google Scholar] [CrossRef]
- Conte, D.; Lukonaitiene, I.; Matulaitis, K.; Snieckus, A.; Kniubaite, A.; Kreivyte, R.; Kamandulis, S. Recreational 3 × 3 basketball elicits higher heart rate, enjoyment, and physical activity intensities but lower blood lactate and perceived exertion compared to HIIT in active young adults. Biol. Sport 2023, 40, 889–898. [Google Scholar] [CrossRef]
- Matthew, D.; Delextrat, A. Heart rate, blood lactate concentration, and time-motion analysis of female basketball players during competition. J. Sports Sci. 2009, 27, 813–821. [Google Scholar] [CrossRef]
- Rodríguez-Alonso, M.; Fernández-García, B.; Pérez-Landaluce, J.; Terrados, N. Blood lactate and heart rate during national and international women’s basketball. J. Sports Med. Phys. Fit. 2003, 43, 432–436. [Google Scholar]
- Tomlin, D.L.; Wenger, H.A. The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Med. 2001, 31, 1–11. [Google Scholar] [CrossRef]
- Furrer, R.; Hawley, J.A.; Handschin, C. The molecular athlete: Exercise physiology from mechanisms to medals. Physiol. Rev. 2023, 103, 1693–1787. [Google Scholar] [CrossRef]
- Berkelmans, D.M.; Dalbo, V.J.; Kean, C.O.; Milanović, Z.; Stojanović, E.; Stojiljković, N.; Scanlan, A.T. Heart Rate Monitoring in Basketball: Applications, Player Responses, and Practical Recommendations. J. Strength Cond. Res. 2018, 32, 2383–2399. [Google Scholar] [CrossRef]
- Sánchez, R.P.; Alonso-Pérez-Chao, E.; Calleja-González, J.; Jiménez Sáiz, S.L. Heart Rate Variability in Basketball: The Golden Nugget of Holistic Adaptation? Appl. Sci. 2024, 14, 10013. [Google Scholar] [CrossRef]
- Vaquera, A.; Refoyo, I.; Villa, J.; Calleja, J.; Rodríguez-Marroyo, J.; García-López, J.; Sampedro, J. Heart Rate Response to Game-Play in Professional Basketball Players. J. Hum. Sport Exerc. 2008, III, 1–9. [Google Scholar] [CrossRef]
- Garcia-Tabar, I.; Llodio, I.; Sánchez-Medina, L.; Ruesta, M.; Ibañez, J.; Gorostiaga, E.M. Heart Rate-Based Prediction of Fixed Blood Lactate Thresholds in Professional Team-Sport Players. J. Strength Cond. Res. 2015, 29, 2794–2801. [Google Scholar] [CrossRef] [PubMed]
- Sirnik, M.; Erčulj, F.; Rošker, J. Research of visual attention in basketball shooting: A systematic review with meta-analysis. Int. J. Sports Sci. Coach. 2022, 17, 1195–1210. [Google Scholar] [CrossRef]
- DeCaro, M.S.; Thomas, R.D.; Albert, N.B.; Beilock, S.L. Choking under pressure: Multiple routes to skill failure. J. Exp. Psychol. Gen. 2011, 140, 390–406. [Google Scholar] [CrossRef]
- Craft, L.L.; Magyar, T.M.; Becker, B.J.; Feltz, D.L. The relationship between the Competitive State Anxiety Inventory-2 and sport performance: A meta-analysis. J. Sport Exerc. Psychol. 2023, 25, 44–65. [Google Scholar] [CrossRef]
- Hardy, J.T.; Hardy, J.; Oliver, E.; Tod, D.; Mellalieu, S.D. A framework for the study and application of self-talk within sport. In Advances in Applied Sport Psychology; Routledge: London, UK, 2009; pp. 37–74. [Google Scholar]
- Cao, S.; Geok, S.K.; Roslan, S.; Sun, H.; Lam, S.K.; Qian, S. Mental Fatigue and Basketball Performance: A Systematic Review. Front. Psychol. 2022, 12, 819081. [Google Scholar] [CrossRef]
- Angius, L.; Hopker, J.G.; Marcora, S.M.; Mauger, A.R. The effect of transcranial direct current stimulation of the motor cortex on exercise-induced pain. Eur. J. Appl. Physiol. 2015, 115, 2311–2319. [Google Scholar] [CrossRef]
- Salehinejad, M.A.; Siniatchkin, M. Safety of noninvasive brain stimulation in children. Curr. Opin. Psychiatry. 2024, 37, 78–86. [Google Scholar] [CrossRef]
- Bikson, M.; Grossman, P.; Thomas, C.; Zannou, A.L.; Jiang, J.; Adnan, T.; Adnan, T.; Kronberg, G.; Kronberg, G.; Truong, D. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016, 9, 641–661. [Google Scholar] [CrossRef]
- Lefaucheur, J.P. Neurophysiology of cortical stimulation. Int. Rev. Neurobiol. 2012, 107, 57–85. [Google Scholar]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527 Pt 3, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Polanía, R.; Nitsche, M.A.; Ruff, C.C. Studying and modifying brain function with non-invasive brain stimulation. Nat. Neurosci. 2018, 21, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Doemkes, S.; Karaköse, T.; Antal, A.; Liebetanz, D.; Lang, N.; Tergau, F.; Paulus, W. Shaping the effects of transcranial direct current stimulation of the human motor cortex. J. Neurophysiol. 2007, 97, 3109–3117. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Fricke, K.; Henschke, U.; Schlitterlau, A.; Liebetanz, D.; Lang, N.; Henning, S.; Tergau, F.; Paulus, W. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. 2003, 553, 293–301. [Google Scholar] [CrossRef]
- Kronberg, G.; Bridi, M.; Abel, T.; Bikson, M.; Parra, L.C. Direct Current Stimulation Modulates LTP and LTD: Activity Dependence and Dendritic Effects. Brain Stimul. 2017, 10, 51–58. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Liebetanz, D.; Schlitterlau, A.; Henschke, U.; Fricke, K.; Frommann, K.; Lang, N.; Henning, S.; Paulus, W.; Tergau, F. GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. Eur. J. Neurosci. 2004, 19, 2720–2726. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Seeber, A.; Frommann, K.; Klein, C.C.; Rochford, C.; Nitsche, M.S.; Fricke, K.; Liebetanz, D.; Lang, N.; Antal, A.; et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J. Physiol. 2005, 568 Pt 1, 291–303. [Google Scholar] [CrossRef]
- Stagg, C.J.; Best, J.G.; Stephenson, M.C.; O’Shea, J.; Wylezinska, M.; Kincses, Z.T.; Morris, P.G.; Matthews, P.M.; Johansen-Berg, H. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J. Neurosci. 2009, 29, 5202–5206. [Google Scholar] [CrossRef]
- Reed, T.; Cohen Kadosh, R. Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity. J. Inherit. Metab. Dis. 2018, 41, 1123–1130. [Google Scholar] [CrossRef]
- Stagg, C.J.; Antal, A.; Nitsche, M.A. Physiology of transcranial direct current stimulation. J. ECT 2018, 34, 144–152. [Google Scholar] [CrossRef]
- Shyamali Kaushalya, F.; Romero-Arenas, S.; García-Ramos, A.; Colomer-Poveda, D.; Marquez, G. Acute effects of transcranial direct current stimulation on cycling and running performance. A systematic review and meta-analysis. Eur. J. Sport Sci. 2022, 22, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Winker, M.; Hoffmann, S.; Laborde, S.; Javelle, F. The acute effects of motor cortex transcranial direct current stimulation on athletic performance in healthy adults: A systematic review and meta-analysis. Eur. J. Neurosci. 2024, 60, 5086–5110. [Google Scholar] [CrossRef] [PubMed]
- Alix-Fages, C.; Romero-Arenas, S.; Castro-Alonso, M.; Colomer-Poveda, D.; Río-Rodriguez, D.; Jerez-Martínez, A.; Fernandez-Del-Olmo, M.; Márquez, G. Short-Term Effects of Anodal Transcranial Direct Current Stimulation on Endurance and Maximal Force Production. A Systematic Review and Meta-Analysis. J. Clin. Med. 2019, 8, 536. [Google Scholar] [CrossRef] [PubMed]
- Maudrich, T.; Ragert, P.; Perrey, S.; Kenville, R. Single-session anodal transcranial direct current stimulation to enhance sport-specific performance in athletes: A systematic review and meta-analysis. Brain Stimul. 2022, 15, 1517–1529. [Google Scholar] [CrossRef] [PubMed]
- Taubert, M.; Draganski, B.; Anwander, A.; Müller, K.; Horstmann, A.; Villringer, A.; Ragert, P. Dynamic properties of human brain structure: Learning-related changes in cortical areas and associated fiber connections. J. Neurosci. 2010, 30, 11670–11677. [Google Scholar] [CrossRef]
- Boyke, J.; Driemeyer, J.; Gaser, C.; Büchel, C.; May, A. Training-induced brain structure changes in the elderly. J. Neurosci. 2008, 28, 7031–7035. [Google Scholar] [CrossRef]
- Draganski, B.; Gaser, C.; Busch, V.; Schuierer, G.; Bogdahn, U.; May, A. Neuroplasticity: Changes in grey matter induced by training. Nature 2004, 427, 311–312. [Google Scholar] [CrossRef]
- Taubert, M.; Mehnert, J.; Pleger, B.; Villringer, A. Rapid and specific gray matter changes in M1 induced by balance training. Neuroimage 2016, 133, 399–407. [Google Scholar] [CrossRef]
- Scholz, J.; Klein, M.C.; Behrens, T.E.; Johansen-Berg, H. Training induces changes in white-matter architecture. Nat. Neurosci. 2009, 12, 1370–1371. [Google Scholar] [CrossRef]
- Sampaio-Baptista, C.; Khrapitchev, A.A.; Foxley, S.; Schlagheck, T.; Scholz, J.; Jbabdi, S.; DeLuca, G.C.; Miller, K.L.; Taylor, A.; Thomas, N.; et al. Motor skill learning induces changes in white matter microstructure and myelination. J. Neurosci. 2013, 33, 19499–19503. [Google Scholar] [CrossRef]
- Luo, S.; Shi, L.; Liu, T.; Jin, Q. Aerobic exercise training improves learning and memory performance in hypoxic-exposed rats by activating the hippocampal PKA-CREB-BDNF signaling pathway. BMC Neurosci. 2025, 26, 13. [Google Scholar] [CrossRef] [PubMed]
- Weavil, J.C.; Amann, M. Corticospinal excitability during fatiguing whole body exercise. Prog. Brain Res. 2018, 240, 219–246. [Google Scholar] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Veldema, J.; Engelhardt, A.; Jansen, P. Does anodal tDCS improve basketball performance? A randomized controlled trial. Eur. J. Sport Sci. 2022, 22, 126–135. [Google Scholar] [CrossRef]
- Friehs, M.A.; Güldenpenning, I.; Frings, C.; Weigelt, M. Electrify your Game! Anodal tDCS Increases the Resistance to Head Fakes in Basketball. J. Cogn. Enhanc. 2020, 4, 62–70. [Google Scholar] [CrossRef]
- Naghizadeh, Z.; Movahedi, A.; Namazizadeh, M.; Mirdamadi, M. Effect of Transcranial Direct Current Stimulation on Performance of Basketball two Point Field Throws in Skilled Basketball Players. J. Sports Mot. Dev. Learn. 2020, 12, 293–312. [Google Scholar]
- Naghizadeh, Z.; Movahedi, A.; Namazizadeh, M.; Mirdamadi, M. Effect of transcranial direct current stimulation on performance of basketball free throws in skilled basketball players. Motor Behav. 2024, 16, 17–34. [Google Scholar]
- Moreira, A.; Moscaleski, L.; Machado, D.G.D.S.; Bikson, M.; Unal, G.; Bradley, P.S.; Cevada, T.; Silva, F.T.G.D.; Baptista, A.F.; Morya, E.; et al. Transcranial direct current stimulation during a prolonged cognitive task: The effect on cognitive and shooting performances in professional female basketball players. Ergonomics 2023, 66, 492–505. [Google Scholar] [CrossRef]
- Chen, C.-H.; Chen, Y.-C.; Jiang, R.-S.; Lo, L.-Y.; Wang, I.-L.; Chiu, C.-H. Transcranial Direct Current Stimulation Decreases the Decline of Speed during Repeated Sprinting in Basketball Athletes. Int. J. Environ. Res. Public Health 2021, 18, 6967. [Google Scholar] [CrossRef]
- Mahdipour, R.; Namazizadeh, M.; Badami, R.; Mirhosseini, H. A Comparison of the Effect of the Transcranial Direct Current Stimulation (tDCS) of Vision and Motor Cortex on Learning of Basketball Free Throw Skill. J. Sports Mot. Dev. Learn. 2020, 12, 153–168. [Google Scholar]
- Bahrami, A.; Moradi, J.; Etaati, Z. The Effects of Transcranial Direct Current Stimulation (TDCS) on Mental Fatigue and performance of Basketball Player. Sport Psychol. Stud. 2021, 10, 167–186. [Google Scholar]
- Fortes, L.S.; Ferreira, M.E.C.; Faro, H.; Penna, E.M.; Almeida, S.S. Brain Stimulation Over the Motion-Sensitive Midtemporal Area Reduces Deleterious Effects of Mental Fatigue on Perceptual-Cognitive Skills in Basketball Players. J. Sport Exerc. Psychol. 2022, 44, 272–285. [Google Scholar] [CrossRef] [PubMed]
- Mehdipoor, R.; Namazizadeh, M.; Badami, R.; Mir Hosseini, H. The simultaneous effect of the transcranial direct current stimulation (tDSC) and observational learning on learning of basketball free throw. J. Sports Mot. Dev. Learn. 2022, 14, 55–67. [Google Scholar]
- Mousavi, M.-S.; Aminianfar, A.; Bagheri, R. Comparative Study of Effect of Mental Imagery and Transcranial Direct Current Stimulation (tDCS) on Basketball Shooting Skill in Non-elite Basketball Players: A double-blinded randomized clinical trial. Koomesh 2023, 25, e152842. [Google Scholar]
- Patel, R.; Ashcroft, J.; Patel, A.; Ashrafian, H.; Woods, A.J.; Singh, H.; Darzi, A.; Leff, D.R. The Impact of Transcranial Direct Current Stimulation on Upper-Limb Motor Performance in Healthy Adults: A Systematic Review and Meta-Analysis. Front. Neurosci. 2019, 13, 1213. [Google Scholar] [CrossRef]
- Baharlouei, H.; Goosheh, M.; Moore, M.; Ramezani Ahmadi, A.H.; Yassin, M.; Jaberzadeh, S. The effect of transcranial direct current stimulation on rating of perceived exertion: A systematic review of the literature. Psychophysiology 2024, 61, e14520. [Google Scholar] [CrossRef]
- Chinzara, T.T.; Buckingham, G.; Harris, D.J. Transcranial direct current stimulation and sporting performance: A systematic review and meta-analysis of transcranial direct current stimulation effects on physical endurance, muscular strength and visuomotor skills. Eur. J. Neurosci. 2022, 55, 468–486. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001, 57, 1899–1901. [Google Scholar] [CrossRef]
- Kennedy, D.S.; McNeil, C.J.; Gandevia, S.C.; Taylor, J.L. Effects of fatigue on corticospinal excitability of the human knee extensors. Exp Physiol. 2016, 101, 1552–1564. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, B.; Xiao, S.; Zhang, C.; Zhan, J.; Li, J.; Fu, W.; Jin, J. The Effect of Transcranial Direct Current Stimulation on Lower-Limb Endurance Performance: A Systematic Review. Bioengineering 2024, 11, 1088. [Google Scholar] [CrossRef]
- Zénon, A.; Sidibé, M.; Olivier, E. Disrupting the supplementary motor area makes physical effort appear less effortful. J. Neurosci. 2015, 35, 8737–8744. [Google Scholar] [CrossRef] [PubMed]
- Tankisi, H.; Versace, V.; Kuppuswamy, A.; Cole, J. The role of clinical neurophysiology in the definition and assessment of fatigue and fatigability. Clin. Neurophysiol. Pract. 2023, 9, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Angius, L.; Mauger, A.R.; Hopker, J.; Pascual-Leone, A.; Santarnecchi, E.; Marcora, S.M. Bilateral extracephalic transcranial direct current stimulation improves endurance performance in healthy individuals. Brain Stimul. 2018, 11, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Angius, L.; Santarnecchi, E.; Pascual-Leone, A.; Marcora, S.M. Transcranial Direct Current Stimulation over the Left Dorsolateral Prefrontal Cortex Improves Inhibitory Control and Endurance Performance in Healthy Individuals. Neuroscience 2019, 419, 34–45. [Google Scholar] [CrossRef]
- Cogiamanian, F.; Marceglia, S.; Ardolino, G.; Barbieri, S.; Priori, A. Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. Eur. J. Neurosci. 2007, 26, 242–249. [Google Scholar] [CrossRef]
- Williams, P.S.; Hoffman, R.L.; Clark, B.C. Preliminary evidence that anodal transcranial direct current stimulation enhances time to task failure of a sustained submaximal contraction. PLoS ONE 2013, 8, e81418. [Google Scholar] [CrossRef]
- Vitor-Costa, M.; Okuno, N.M.; Bortolotti, H.; Bertollo, M.; Boggio, P.S.; Fregni, F.; Altimari, L.R. Improving cycling performance: Transcranial direct current stimulation increases time to exhaustion in cycling. PLoS ONE 2015, 10, e0144916. [Google Scholar] [CrossRef]
- Oki, K.; Mahato, N.K.; Nakazawa, M.; Amano, S.; France, C.R.; Russ, D.W.; Clark, B.C. Preliminary evidence that excitatory transcranial direct current stimulation extends time to task failure of a sustained, submaximal muscular contraction in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1109–1112. [Google Scholar] [CrossRef]
- Angius, L.; Marcora, S.; Hopker, J.; Mauger, L. Transcranial direct current stimulation improves cycling performance in healthy individuals. Proc. Physiol. Soc. 2016, 35, C03. [Google Scholar]
- Garcia-Sillero, M.; Chulvi-Medrano, I.; Maroto-Izquierdo, S.; Bonilla, D.A.; Vargas-Molina, S.; Benítez-Porres, J. Effects of Preceding Transcranial Direct Current Stimulation on Movement Velocity and EMG Signal during the Back Squat Exercise. J. Clin. Med. 2022, 11, 5220. [Google Scholar] [CrossRef]
- Krishnan, C.; Ranganathan, R.; Kantak, S.S.; Dhaher, Y.Y.; Rymer, W.Z. Anodal transcranial direct current stimulation alters elbow flexor muscle recruitment strategies. Brain Stimul. 2014, 7, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Alix-Fages, C.; García-Ramos, A.; Calderón-Nadal, G.; Colomer-Poveda, D.; Romero-Arenas, S.; Fernández-Del-Olmo, M.; Márquez, G. Anodal transcranial direct current stimulation enhances strength training volume but not the force-velocity profile. Eur. J. Appl. Physiol. 2020, 120, 1881–1891. [Google Scholar] [CrossRef] [PubMed]
- Okano, A.H.; Fontes, E.B.; Montenegro, R.A.; Farinatti Pde, T.; Cyrino, E.S.; Li, L.M.; Bikson, M.; Noakes, T.D. Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br. J. Sports Med. 2015, 49, 1213–1218. [Google Scholar] [CrossRef] [PubMed]
- Okano, A.H.; Machado, D.G.S.; Oliveira Neto, L.; Farias-Junior, L.F.; Agrícola, P.M.D.; Arruda, A.; Fonteles, A.I.; Li, L.M.; Fontes, E.B.; Elsangedy, H.M.; et al. Can Transcranial Direct Current Stimulation Modulate Psychophysiological Response in Sedentary Men during Vigorous Aerobic Exercise? Int. J. Sports Med. 2017, 38, 493–500. [Google Scholar] [CrossRef]
- Tornero-Aguilera, J.F.; Jimenez-Morcillo, J.; Rubio-Zarapuz, A.; Clemente-Suárez, V.J. Central and Peripheral Fatigue in Physical Exercise Explained: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 3909. [Google Scholar] [CrossRef]
- Taylor, J.L.; Todd, G.; Gandevia, S.C. Evidence for a supraspinal contribution to human muscle fatigue. Clin. Exp. Pharmacol. Physiol. 2006, 33, 400–405. [Google Scholar] [CrossRef]
- Silva, F.T.; Rêgo, J.T.; Raulino, F.R.; Silva, M.R.; Reynaud, F.; Egito, E.S.; Dantas, P.M. Transcranial direct current stimulation on the autonomic modulation and exercise time in individuals with spinal cord injury. A case report. Auton. Neurosci. 2015, 193, 152–155. [Google Scholar] [CrossRef]
- Inzlicht, M.; Marcora, S.M. The Central Governor Model of Exercise Regulation Teaches Us Precious Little about the Nature of Mental Fatigue and Self-Control Failure. Front. Psychol. 2016, 7, 656. [Google Scholar] [CrossRef]
- Marcora, S. Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. J. Appl. Physiol. 2009, 106, 2060–2062. [Google Scholar] [CrossRef]
- van Duinen, H.; Renken, R.; Maurits, N.; Zijdewind, I. Effects of motor fatigue on human brain activity, an fMRI study. Neuroimage 2007, 35, 1438–1449. [Google Scholar] [CrossRef]
- Teymoori, H.; Amiri, E.; Tahmasebi, W.; Hoseini, R.; Grospretre, S.; Machado, D.G.D.S. Effect of tDCS targeting the M1 or left DLPFC on physical performance, psychophysiological responses, and cognitive function in repeated all-out cycling: A randomized controlled trial. J. Neuroeng. Rehabil. 2023, 20, 97. [Google Scholar] [CrossRef] [PubMed]
- de Lima, F.d.R.; Barreto, C.B.; Franco-Alvarenga, P.E.; Asano, R.Y.; Viana, B.F.; Santos, T.M.; Pires, F.O. Traditional models of fatigue and physical performance. J. Phys. Educ. 2017, 29, e2915. [Google Scholar]
- Kamali, A.M.; Saadi, Z.K.; Yahyavi, S.S.; Zarifkar, A.; Aligholi, H.; Nami, M. Transcranial direct current stimulation to enhance athletic performance outcome in experienced bodybuilders. PLoS ONE 2019, 14, e0220363. [Google Scholar] [CrossRef] [PubMed]
- de Morree, H.M.; Klein, C.; Marcora, S.M. Perception of effort reflects central motor command during movement execution. Psychophysiology 2012, 49, 1242–1253. [Google Scholar] [CrossRef]
- Chen, T.-C.; García de Frutos, J.M.; Colomer-Poveda, D.; Márquez, G.; Kaushalya Fernando, S.; Orquín-Castrillón, F.J.; Romero-Arenas, S. Impact of Transcranial Direct Current Stimulation on the Capacity to Perform Burpees: A Randomized Controlled Trial. Appl. Sci. 2024, 14, 5832. [Google Scholar] [CrossRef]
- Critchley, H.D.; Harrison, N.A. Visceral influences on brain and behavior. Neuron 2013, 77, 624–638. [Google Scholar] [CrossRef]
- Soutschek, A.; Tobler, P.N. Causal role of lateral prefrontal cortex in mental effort and fatigue. Hum. Brain Mapp. 2020, 41, 4630–4640. [Google Scholar] [CrossRef]
- Etemadi, M.; Amiri, E.; Tadibi, V.; Grospretre, S.; Valipour Dehnou, V.; Machado, D.G.D.S. Anodal tDCS over the left DLPFC but not M1 increases muscle activity and improves psychophysiological responses, cognitive function, and endurance performance in normobaric hypoxia: A randomized controlled trial. BMC Neurosci. 2023, 24, 25. [Google Scholar] [CrossRef]
- da Silva, W.Q.A.; Cabral, D.A.R.; Bigliassi, M.; Bortolotti, H.; Hussey, E.; Ward, N.; Fontes, E.B. The mediating role of inhibitory control in the relationship between prefrontal cortex hemodynamics and exercise performance in adults with overweight or obesity. Physiol. Behav. 2022, 257, 113966. [Google Scholar] [CrossRef]
- Gordan, R.; Gwathmey, J.K.; Xie, L.H. Autonomic and endocrine control of cardiovascular function. World J. Cardiol. 2015, 7, 204–214. [Google Scholar] [CrossRef]
- Nogueira, M.; Magalhães, J.D.S.; Sampaio, A.; Sousa, S.; Coutinho, J.F. Examining Insula-Default Mode Network Functional Connectivity and Its Relationship with Heart Rate Variability. Brain Sci. 2025, 15, 37. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, V.A.; Tracey, K.J. The vagus nerve and the inflammatory reflex—linking immunity and metabolism. Nat. Rev. Endocrinol. 2012, 8, 743–754. [Google Scholar] [CrossRef] [PubMed]
- de Lartigue, G. Role of the vagus nerve in the development and treatment of diet-induced obesity. J. Physiol. 2016, 594, 5791–5815. [Google Scholar] [CrossRef] [PubMed]
- Gourine, A.V.; Ackland, G.L. Cardiac Vagus and Exercise. Physiology 2019, 34, 71–80. [Google Scholar] [CrossRef]
- Manresa-Rocamora, A.; Sarabia, J.M.; Javaloyes, A.; Flatt, A.A.; Moya-Ramón, M. Heart Rate Variability-Guided Training for Enhancing Cardiac-Vagal Modulation, Aerobic Fitness, and Endurance Performance: A Methodological Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 10299. [Google Scholar] [CrossRef]
- Agboada, D.; Mosayebi-Samani, M.; Kuo, M.F.; Nitsche, M.A. Induction of long-term potentiation-like plasticity in the primary motor cortex with repeated anodal transcranial direct current stimulation—Better effects with intensified protocols? Brain Stimul. 2020, 13, 987–997. [Google Scholar] [CrossRef]
- Fritsch, B.; Reis, J.; Martinowich, K.; Schambra, H.M.; Ji, Y.; Cohen, L.G.; Lu, B. Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications for motor learning. Neuron 2010, 66, 198–204. [Google Scholar] [CrossRef]
- Tseng, S.C.; Chang, S.H.; Hoerth, K.M.; Nguyen, A.A.; Perales, D. Anodal Transcranial Direct Current Stimulation Enhances Retention of Visuomotor Stepping Skills in Healthy Adults. Front. Hum. Neurosci. 2020, 14, 251. [Google Scholar] [CrossRef]
- Longo, V.; Barbati, S.A.; Re, A.; Paciello, F.; Bolla, M.; Rinaudo, M.; Miraglia, F.; Alù, F.; Di Donna, M.G.; Vecchio, F.; et al. Transcranial Direct Current Stimulation Enhances Neuroplasticity and Accelerates Motor Recovery in a Stroke Mouse Model. Stroke 2022, 53, 1746–1758. [Google Scholar] [CrossRef]
- Haller, N.; Behringer, M.; Reichel, T.; Wahl, P.; Simon, P.; Krüger, K.; Zimmer, P.; Stöggl, T. Blood-Based Biomarkers for Managing Workload in Athletes: Considerations and Recommendations for Evidence-Based Use of Established Biomarkers. Sports Med. 2023, 53, 1315–1333. [Google Scholar] [CrossRef]
Key Findings | Task Type | tDCS Parameters | tDCS Target Area | Participants | Study |
---|---|---|---|---|---|
Shooting and dribbling improved significantly under tDCS vs. sham. | 100-shot accuracy & Illinois ball-dribbling test | 1 mA for 20 min | Primary motor cortex (C3 or C4) | 52 sports students (19 men, 33 women) | [65] |
Anodal tDCS reduced reaction times in deception-based tasks. | Reaction time in head-fake deception task | 0.5 mA for 19 min | Left DLPFC (F3) | 50 right-handed adults (limited basketball experience) | [66] |
Free-throw accuracy improved with tDCS + point-light modeling, with sustained effects. | Free-throw shooting after point-light modeling | 1.5 mA for 20 min | Left premotor cortex | 26 skilled male basketball players (mean age 16.5) | [67] |
No immediate effects, but significant improvements in two-point field throws at post-test and follow-up. | Two-point field throws after point-light modeling | 1.5 mA for 20 min | Left premotor cortex | 26 skilled male basketball players | [68] |
No significant improvement in shooting performance or cognitive workload. | Three-point shooting | 2 mA, 20 min | Left and right DLPFC (F3, F4) | 8 professional female basketball players | [69] |
tDCS increased jump height, sprint speed, and fatigue resistance. | Jump height & repeated sprint performance | 2 mA for 20 min | Motor cortex (Cz, C5, C6) | 13 trained male basketball players (mean age 20) | [70] |
Motor cortex tDCS improved free-throw accuracy more than visual cortex tDCS. | Free-throw shooting (motor vs. visual tDCS) | 1.5 mA for 15 min | Motor cortex (C3) & visual cortex (Oz) | 45 female university students (novice players) | [71] |
tDCS improved three-point shooting under mental fatigue but had no effect on fatigue itself. | Three-point shooting under mental fatigue | 1.5 mA for 25 min | DLPFC (F3) | 18 male basketball players | [72] |
tDCS protected against mental fatigue effects, improving decision-making and visual search efficiency. | Decision-making, visual search, and fatigue assessment | 2 mA for 30 min | Motion-sensitive middle temporal area (CP5) | 20 professional male basketball players (aged 18–31) | [73] |
tDCS with model observation significantly improved free-throw performance, with long-term retention effects. | Free-throw shooting with observational learning | 1.5 mA for 15 min | Motor cortex (C3 anode, Fp2 cathode) | 30 novice female basketball players | [74] |
tDCS led to greater improvements in free-throw accuracy compared to mental imagery, with sustained skill retention over time | Free-throw shooting with mental im.agery vs. tDCS | 2 mA for 20 min | Motor cortex (M1, left hemisphere) | 36 non-elite basketball players (18–25 years old) | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmiel, J.; Buryta, R. The Effect of Transcranial Direct Current Stimulation on Basketball Performance—A Scoping Review. J. Clin. Med. 2025, 14, 3354. https://doi.org/10.3390/jcm14103354
Chmiel J, Buryta R. The Effect of Transcranial Direct Current Stimulation on Basketball Performance—A Scoping Review. Journal of Clinical Medicine. 2025; 14(10):3354. https://doi.org/10.3390/jcm14103354
Chicago/Turabian StyleChmiel, James, and Rafał Buryta. 2025. "The Effect of Transcranial Direct Current Stimulation on Basketball Performance—A Scoping Review" Journal of Clinical Medicine 14, no. 10: 3354. https://doi.org/10.3390/jcm14103354
APA StyleChmiel, J., & Buryta, R. (2025). The Effect of Transcranial Direct Current Stimulation on Basketball Performance—A Scoping Review. Journal of Clinical Medicine, 14(10), 3354. https://doi.org/10.3390/jcm14103354