Neural Correlates of Alexithymia Based on Electroencephalogram (EEG)—A Mechanistic Review
Abstract
:1. Introduction
2. Methods
2.1. Data Sources and Search Strategy
2.2. Study Selection Criteria
2.3. Screening Process
2.3.1. Title and Abstract Screening
2.3.2. Full-Text Assessment
3. Results
3.1. Summary of Included Studies
3.2. EEG Activity in Patients with Alexithymia
4. Discussion
5. Mechanisms of EEG Patterns in Alexithymia
5.1. Right-Hemisphere Dominance and Interhemispheric Dysregulation
5.2. Non-Specific Emotional Hyper-Responsiveness
5.3. Generalized Arousal Versus Emotion-Specific Deficits
5.4. Heightened Autonomic Arousal with Impaired Top-Down Regulation
5.5. Gamma Band Oscillations and Phase Synchrony Deficits
5.6. Attentional Hyperfocus and Increased Cognitive Load
6. Limitations and Future Directions
6.1. Standardization of EEG Protocols
6.2. Larger, More Diverse Samples
6.3. Longitudinal and Developmental Studies
6.4. Multimodal Imaging and Network Analyses
6.5. Intervention Studies and Clinical Translation
6.6. Refinement of Alexithymia Subtypes
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Apfel, R.J.; Sifneos, P.E. Alexithymia: Concept and measurement. Psychother. Psychosom. 1979, 32, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Taylor, G.J.; Bagby, R.M.; Parker, J.D.A. Disorders of Affect Regulation: Alexithymia in Medical and Psychiatric Illness; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Vorst, H.C.M. Validity and reliability of the Bermond—Vorst Alexithymia Questionnaire. Personal. Individ. Differ. 2001, 30, 413–434. [Google Scholar] [CrossRef]
- Sifneos, P.E. The prevalence of ’alexithymic’ characteristics in psychosomatic patients. Psychother. Psychosom. 1973, 22, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Lumley, M.A.; Gustavson, B.J.; Partridge, R.T.; Labouvie-Vief, G. Assessing alexithymia and related emotional ability constructs using multiple methods: Interrelationships among measures. Emotion 2005, 5, 329–342. [Google Scholar] [CrossRef]
- Mattila, A.K.; Salminen, J.K.; Nummi, T.; Joukamaa, M. Age is strongly associated with alexithymia in the general population. J. Psychosom. Res. 2006, 61, 629–635. [Google Scholar] [CrossRef]
- Kojima, M. Alexithymia as a prognostic risk factor for health problems: A brief review of epidemiological studies. BioPsychoSoc. Med. 2012, 6, 21. [Google Scholar] [CrossRef]
- Le, H.N.; Berenbaum, H.; Raghavan, C. Culture and alexithymia: Mean levels, correlates, and the role of parental socialization of emotions. Emotion 2002, 2, 341–360. [Google Scholar] [CrossRef]
- Kinnaird, E.; Stewart, C.; Tchanturia, K. Investigating alexithymia in autism: A systematic review and meta-analysis. Eur. Psychiatry 2019, 55, 80–89. [Google Scholar] [CrossRef]
- Tesio, V.; Di Tella, M.; Ghiggia, A.; Romeo, A.; Colonna, F.; Fusaro, E.; Geminiani, G.C.; Castelli, L. Alexithymia and Depression Affect Quality of Life in Patients With Chronic Pain: A Study on 205 Patients With Fibromyalgia. Front. Psychol. 2018, 9, 442. [Google Scholar] [CrossRef]
- Xiao, Y.; Tian, J.; Pan, Y.F.; Dai, Y.; Sun, Y.J.; Zhou, Y.; Yu, Y.F. The prevalence of alexithymia in schizophrenia: A systematic review and meta-analysis. Asian J. Psychiatr. 2024, 102, 104280. [Google Scholar] [CrossRef]
- Taylor, G.J.; Parker, J.D.; Bagby, R.M.; Bourke, M.P. Relationships between alexithymia and psychological characteristics associated with eating disorders. J. Psychosom. Res. 1996, 41, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Morie, K.P.; Yip, S.W.; Nich, C.; Hunkele, K.; Carroll, K.M.; Potenza, M.N. Alexithymia and Addiction: A Review and Preliminary Data Suggesting Neurobiological Links to Reward/Loss Processing. Curr. Addict. Rep. 2016, 3, 239–248. [Google Scholar] [CrossRef]
- Šago, D.; Babić, G.; Bajić, Ž.; Filipčić, I. Panic Disorder as Unthinkable Emotions: Alexithymia in Panic Disorder, a Croatian Cross-Sectional Study. Front. Psychiatry 2020, 11, 466. [Google Scholar] [CrossRef]
- Wood, R.L.; Doughty, C. Alexithymia and avoidance coping following traumatic brain injury. J. Head Trauma Rehabil. 2013, 28, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Leszczyński, P.; Pietras, T.; Mokros, Ł. Post-stroke alexithymia—A review. Postep. Psychiatr. Neurol. 2021, 30, 190–196. [Google Scholar] [CrossRef]
- Ricciardi, L.; Demartini, B.; Fotopoulou, A.; Edwards, M.J. Alexithymia in Neurological Disease: A Review. J. Neuropsychiatry Clin. Neurosci. 2015, 27, 179–187. [Google Scholar] [CrossRef]
- Assogna, F.; Cravello, L.; Orfei, M.D.; Cellupica, N.; Caltagirone, C.; Spalletta, G. Alexithymia in Parkinson’s disease: A systematic review of the literature. Park. Relat Disord. 2016, 28, 1–11. [Google Scholar] [CrossRef]
- Arroyo-Anlló, E.M.; Souchaud, C.; Ingrand, P.; Chamorro Sánchez, J.; Melero Ventola, A.; Gil, R. Alexithymia in Alzheimer’s Disease. J. Clin. Med. 2020, 10, 44. [Google Scholar] [CrossRef]
- Karukivi, M.; Saarijärvi, S. Development of alexithymic personality features. World J. Psychiatry 2014, 4, 91–102. [Google Scholar] [CrossRef]
- Mendia, J.; Zumeta, L.N.; Cusi, O.; Pascual, A.; Alonso-Arbiol, I.; Díaz, V.; Páez, D. Gender differences in alexithymia: Insights from an updated meta-analysis. Personal. Individ. Differ. 2024, 227, 112710. [Google Scholar] [CrossRef]
- Grynberg, D.; Berthoz, S.; Bird, G. Social and interpersonal implications of alexithymia. In Alexithymia: Advances in Research, Theory, and Clinical Practice; Luminet, O., Bagby, R.M., Taylor, G.J., Eds.; Cambridge University Press: Cambridge, UK, 2018; pp. 174–189. [Google Scholar]
- Darrow, S.M.; Follette, W.C. A Behavior Analytic Interpretation of Alexithymia. J. Context. Behav. Sci. 2014, 3, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Norman, H.; Marzano, L.; Coulson, M.; Oskis, A. Effects of mindfulness-based interventions on alexithymia: A systematic review. BMJ Ment. Health 2019, 22, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Tsubaki KAnd Shimizu, E. Psychological Treatments for Alexithymia: A Systematic Review. Behav. Sci. 2024, 14, 1173. [Google Scholar] [CrossRef] [PubMed]
- Teplan, M. Fundamental of EEG Measurement. Meas. Sci. Rev. 2002, 2, 1–11. [Google Scholar]
- Nunez, P.L.; Ramesh, S. Electric Fields of the Brain: The Neurophysics of EEG, 2nd ed.; Oxford Academic: New York, NY, USA, 2006. [Google Scholar]
- Niedermeyer, E.; Lopes da Silva, F.H. (Eds.) Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. [Google Scholar]
- Prichep, L.S. Use of normative databases and statistical methods in demonstrating clinical utility of QEEG: Importance and cautions. Clin. EEG Neurosci. 2005, 36, 82–87. [Google Scholar] [CrossRef]
- John, E.R.; Prichep, L.S. The relevance of QEEG to the evaluation of behavioral disorders and pharmacological interventions. Clin. EEG Neurosci. 2006, 37, 135–143. [Google Scholar] [CrossRef]
- Barry, R.J.; Clarke, A.R.; Johnstone, S.J. A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clin. Neurophysiol. 2003, 114, 171–183. [Google Scholar]
- Fingelkurts, A.A.; Fingelkurts, A.A. Quantitative Electroencephalogram (qEEG) as a Natural and Non-Invasive Window into Living Brain and Mind in the Functional Continuum of Healthy and Pathological Conditions. Appl. Sci. 2022, 12, 9560. [Google Scholar] [CrossRef]
- Livint Popa, L.; Dragos, H.; Pantelemon, C.; Verisezan Rosu, O.; Strilciuc, S. The Role of Quantitative EEG in the Diagnosis of Neuropsychiatric Disorders. J. Med. Life 2020, 13, 8–15. [Google Scholar] [CrossRef]
- Kopańska, M.; Ochojska, D.; Dejnowicz-Velitchkov, A.; Banaś-Ząbczyk, A. Quantitative Electroencephalography (QEEG) as an Innovative Diagnostic Tool in Mental Disorders. Int. J. Env. Res. Public Health 2022, 19, 2465. [Google Scholar] [CrossRef]
- Aftanas, L.I.; Varlamov, A.A. Effects of alexithymia on the activity of the anterior and posterior areas of the cortex of the right hemisphere in positive and negative emotional activation. Neurosci. Behav. Physiol. 2007, 37, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Aftanas, L.; Varlamov, A. Associations of alexithymia with anterior and posterior activation asymmetries during evoked emotions: EEG evidence of right hemisphere “electrocortical effort”. Int. J. Neurosci. 2004, 114, 1443–1462. [Google Scholar] [CrossRef] [PubMed]
- Imperatori, C.; Della Marca, G.; Brunetti, R.; Carbone, G.A.; Massullo, C.; Valenti, E.M.; Amoroso, N.; Maestoso, G.; Contardi, A.; Farina, B. Default Mode Network alterations in alexithymia: An EEG power spectra and connectivity study. Sci. Rep. 2016, 6, 36653. [Google Scholar] [CrossRef]
- Matsumoto, A.; Ichikawa, Y.; Kanayama, N.; Ohira, H.; Iidaka, T. Gamma band activity and its synchronization reflect the dysfunctional emotional processing in alexithymic persons. Psychophysiology. 2006, 43, 533–540. [Google Scholar] [CrossRef]
- Jin, S.H.; Ham, B.J.; Byun, J.H.; Choi, S.; Lee, B.C.; Kim, E.G. Asymmetry and Coherence in Alexithymic Individuals. Clin. Psychopharmacol. Neurosci. 2006, 4, 40–44. [Google Scholar]
- Houtveen, J.H. Psychological and Physiological Responses to Stress. Ph.D. Thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands, 2001. [Google Scholar]
- Flasbeck, V.; Popkirov, S.; Brüne, M. Frontal EEG asymmetry in borderline personality disorder is associated with alexithymia. Borderline Pers. Disord. Emot. Dysregul. 2017, 4, 20. [Google Scholar] [CrossRef]
- Aftanas, L.I.; Varlamov, A.A.; Reva, N.V.; Pavlov, S.V. Disruption of early event-related theta synchronization of human EEG in alexithymics viewing affective pictures. Neurosci. Lett. 2003, 340, 57–60. [Google Scholar] [CrossRef]
- Tancoo, V. Exploring Empathy and the Right Hemisphere: From Neurological Foundations to Clinical Insights. Eureka 2024, 9. [Google Scholar] [CrossRef]
- Gainotti, G. The Role of the Right Hemisphere in Emotional and Behavioral Disorders of Patients With Frontotemporal Lobar Degeneration: An Updated Review. Front. Aging Neurosci. 2019, 11, 55. [Google Scholar] [CrossRef]
- Cavanagh, J.F.; Frank, M.J. Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 2014, 18, 414–421. [Google Scholar] [CrossRef]
- Larsen, J.K.; Brand, N.; Bermond, B.; Hijman, R. Cognitive and emotional characteristics of alexithymia: A review of neurobiological studies. J. Psychosom. Res. 2003, 54, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Van der Velde, J.; Servaas, M.N.; Goerlich, K.S.; Bruggeman, R.; Horton, P.; Costafreda, S.G.; Aleman, A. Neural correlates of alexithymia: A meta-analysis of emotion processing studies. Neurosci. Biobehav. Rev. 2013, 37, 1774–1785. [Google Scholar] [CrossRef] [PubMed]
- Moriguchi, Y.; Decety, J.; Ohnishi, T.; Maeda, M.; Ishii, K.; Komaki, G. Empathy and judging other’s pain: An fMRI study of alexithymia. Cereb. Cortex. 2007, 17, 2223–2234. [Google Scholar] [CrossRef] [PubMed]
- Bird, G.; Cook, R. Mixed emotions: The contribution of alexithymia to the emotional symptoms of autism. Transl. Psychiatry 2013, 3, e285. [Google Scholar] [CrossRef]
- Kano, M.; Hamaguchi, T.; Itoh, M.; Yanai, K.; Fukudo, S. Correlations among alexithymia, pain, and other symptoms in irritable bowel syndrome (IBS). Psychosom. Med. 2007, 69, 127–134. [Google Scholar]
- Van der Velde, J.; Gromann, P.M.; Swart, M.; Wiersma, D.; de Haan, L.; Bruggeman, R. Alexithymia influences brain activation during emotion perception but not regulation. Soc. Cogn. Affect. Neurosci. 2015, 10, 285–293. [Google Scholar] [CrossRef]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Allen, J.J.B.; Coan, J.A.; Nazarian, M. Issues and assumptions on the road from raw signals to metrics of frontal EEG asymmetry in emotion. Biol. Psychol. 2004, 67, 183–218. [Google Scholar] [CrossRef]
- Lane, R.D.; Ahern, G.L.; Schwartz, G.E.; Kaszniak, A.W. Is alexithymia the emotional equivalent of blindsight? Biol. Psychiatry 1997, 42, 834–844. [Google Scholar]
- Karlsson, H.; Marttila, R.J.; Karjalainen, A.V.; Joukamaa, M. Alexithymic features and psychosomatic symptoms among patients with major depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2008, 32, 2152–2156. [Google Scholar]
- Pollatos, O.; Gramann, K.; Schandry, R. Neural systems connecting interoceptive awareness and feelings. Hum. Brain Mapping. 2007, 28, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Taylor, G.J.; Bagby, R.M. New trends in alexithymia research. Psychother. Psychosom. 2004, 73, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Li, C.S.; Sinha, R. Alexithymia and stress-induced brain activation in cocaine-dependent men and women. J. Psychiatry Neurosci. 2006, 31, 115–121. [Google Scholar]
- Honkalampi, K.; Hintikka, J.; Laukkanen, E.; Lehtonen, J.; Viinamäki, H. Alexithymia and depression: A prospective study of patients with major depressive disorder. Psychosomatics 2000, 41, 426–431. [Google Scholar] [CrossRef]
- Pollatos, O.; Herbert, B.M. Alexithymia and body awareness. In Alexithymia: Advances in Research, Theory, and Clinical Practice; Luminet, O., Bagby, R.M., Taylor, G.J., Eds.; Cambridge University Press: Cambridge, UK, 2018; pp. 321–333. [Google Scholar]
- Kano, M.; Hamaguchi, T.; Itoh, M.; Yanai, K.; Fukudo, S. Correlation between alexithymia and hypersensitivity to visceral stimulation in human. Pain 2007, 132, 252–263. [Google Scholar] [CrossRef]
- Craig, A.D. How do you feel—now? The anterior insula and human awareness. Nat. Rev. Neurosci. 2009, 10, 59–70. [Google Scholar]
- Ochsner, K.N.; Gross, J.J. The cognitive control of emotion. Trends Cogn. Sci. 2005, 9, 242–249. [Google Scholar] [CrossRef]
- Knyazev, G.G. Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neurosci. Biobehav. Rev. 2007, 31, 377–395. [Google Scholar] [CrossRef]
- Tallon-Baudry, C.; Bertrand, O. Oscillatory gamma activity in humans and its role in object representation. Trends Cogn. Sci. 1999, 3, 151–162. [Google Scholar] [CrossRef]
- Jensen, O.; Kaiser, J.; Lachaux, J.P. Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci. 2007, 30, 317–324. [Google Scholar] [CrossRef]
- Keil, A.; Müller, M.M.; Ray, W.J.; Gruber, T.; Elbert, T. Human gamma band activity and perception of a gestalt. J. Neurosci. 1999, 19, 7152–7161. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.M.; Keil, A. Neuronal synchronization and selective color processing in the human brain. J. Cogn. Neurosci. 2004, 16, 503–522. [Google Scholar] [CrossRef] [PubMed]
- Stout, D.M.; Shackman, A.J.; Johnson, J.S.; Larson, C.L. Worry is associated with impaired gating of threat from working memory. Emotion 2015, 15, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.; Kujala, J.; Hamalainen, M.; Timmermann, L.; Schnitzler, A.; Salmelin, R. Dynamic imaging of coherent sources: Studying neural interactions in the human brain. Proc. Natl. Acad. Sci. USA 2001, 98, 694–699. [Google Scholar] [CrossRef]
- Keil, A.; Debener, S.; Gratton, G.; Junghöfer, M.; Kappenman, E.S.; Luck, S.J.; Luu, P.; Miller, G.A.; Yee, C.M. Committee report: Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology 2014, 51, 1–21. [Google Scholar] [CrossRef]
- Jung, T.P.; Makeig, S.; Humphries, C.; Lee, T.W.; McKeown, M.J.; Iragui, V.; Sejnowski, T.J. Removing electroencephalographic artifacts by blind source separation. Psychophysiology 2000, 37, 163–178. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Schaefer, A.; Nils, F.; Sanchez, X.; Philippot, P. Assessing the effectiveness of a large database of emotion-eliciting films: A new tool for emotion researchers. Cogn. Emot. 2010, 24, 1153–1172. [Google Scholar] [CrossRef]
- Button, K.S.; Ioannidis, J.P.; Mokrysz, C.; Nosek, B.A.; Flint, J.; Robinson, E.S.; Munafò, M.R. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013, 14, 365–376. [Google Scholar] [CrossRef]
- Open Science Collaboration. PSYCHOLOGY. Estimating the reproducibility of psychological science. Science 2015, 349, aac4716. [Google Scholar] [CrossRef]
- Matsumoto, D.; Yoo, S.H.; Fontaine, J.; Anguas-Wong, A.M.; Arriola, M.; Ataca, B.; Bond, M.H.; Boratav, H.B.; Breugelmans, S.M.; Cabecinhas, R.; et al. Mapping expressive differences around the world: The relationship between emotional display rules and individualism versus collectivism. J. Cross-Cult. Psychol. 2008, 39, 55–74. [Google Scholar] [CrossRef]
- Onor, M.; Trevisiol, M.; Spano, M.; Aguglia, E.; Paradiso, S. Alexithymia and aging: A neuropsychological perspective. J. Nerv. Ment. Dis. 2010, 198, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Bagby, R.M.; Parker, J.D.A.; Taylor, G.J. Twenty-five years with the 20-item Toronto Alexithymia Scale. J. Psychosom. Res. 2020, 131, 109940. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, B.; Frijda, N.H. Cultural variations in emotions: A review. Psychol. Bull. 1992, 112, 179–204. [Google Scholar] [CrossRef]
- Knyazev, G.G.; Savostyanov, A.N.; Volf, N.V.; Liou, M.; Bocharov, A.V. EEG correlates of spontaneous self-referential thoughts: A cross-cultural study. Int. J. Psychophysiol. 2012, 86, 173–181. [Google Scholar] [CrossRef]
- Da Silva, A.N.; Vasco, A.B.; Watson, J.C. Alexithymia and emotional processing: A longitudinal mixed methods research. Res. Psychother. 2018, 21, 292. [Google Scholar] [CrossRef]
- Liu, R.; Bell, M.A. Fearful temperament in middle childhood predicts adolescent attention bias and anxiety symptoms: The moderating role of frontal EEG asymmetry. Dev. Psychopathol. 2023, 35, 1335–1345. [Google Scholar] [CrossRef]
- Yen, C.; Lin, C.L.; Chiang, M.C. Exploring the Frontiers of Neuroimaging: A Review of Recent Advances in Understanding Brain Functioning and Disorders. Life 2023, 13, 1472. [Google Scholar] [CrossRef]
- Michels, L.; Bucher, K.; Lüchinger, R.; Klaver, P.; Martin, E.; Jeanmonod, D.; Brandeis, D. Simultaneous EEG-fMRI during a working memory task: Modulations in low and high frequency bands. PLoS ONE 2010, 5, e10298. [Google Scholar] [CrossRef]
- Goldman, R.I.; Stern, J.M.; Engel, J., Jr.; Cohen, M.S. Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 2002, 13, 2487–2492. [Google Scholar] [CrossRef]
- Ebrahimzadeh, E.; Saharkhiz, S.; Rajabion, L.; Oskouei, H.B.; Seraji, M.; Fayaz, F.; Saliminia, S.; Sadjadi, S.M.; Soltanian-Zadeh, H. Simultaneous electroencephalography-functional magnetic resonance imaging for assessment of human brain function. Front. Syst. Neurosci. 2022, 16, 934266. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Marqui, R.D.; Michel, C.M.; Lehmann, D. Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 1994, 18, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Attar, E.T.; Balasubramanian, V.; Subasi, E.; Kaya, M. Stress Analysis Based on Simultaneous Heart Rate Variability and EEG Monitoring. IEEE J. Transl. Eng. Health Med. 2021, 9, 2700607. [Google Scholar] [CrossRef] [PubMed]
- Dupuy, F.E.; Clarke, A.R.; Barry, R.J.; Selikowitz, M.; McCarthy, R. EEG and electrodermal activity in girls with Attention-Deficit/Hyperactivity Disorder. Clin. Neurophysiol. 2014, 125, 491–499. [Google Scholar] [CrossRef]
- Wang, G.Y.; Crook-Rumsey, M.; Sumich, A.; Dulson, D.K.; Gao, T.T.; Premkumar, P. The relationships between expressed emotion, cortisol, and EEG alpha asymmetry. Physiol. Behav. 2023, 269, 114276. [Google Scholar] [CrossRef]
- Sitaram, R.; Ros, T.; Stoeckel, L.; Haller, S.; Scharnowski, F.; Lewis-Peacock, J.; Weiskopf, N.; Blefari, M.L.; Rana, M.; Oblak, E.; et al. Closed-loop brain training: The science of neurofeedback. Nat. Rev. Neurosci. 2017, 18, 86–100. [Google Scholar] [CrossRef]
- Samara, Z.; Elzinga, B.M.; Slagter, H.A.; Nieuwenhuis, S. Do Horizontal Saccadic Eye Movements Increase Interhemispheric Coherence? Investigation of a Hypothesized Neural Mechanism Underlying EMDR. Front. Psychiatry 2011, 2, 4. [Google Scholar] [CrossRef]
- Kang, J.; Li, Y.; Lv, S.; Hao, P.; Li, X. Effects of transcranial direct current stimulation on brain activity and cortical functional connectivity in children with autism spectrum disorders. Front. Psychiatry 2024, 15, 1407267. [Google Scholar] [CrossRef]
- Todd, J.; Aspell, J.E. Mindfulness, Interoception, and the Body. Brain Sci. 2022, 12, 696. [Google Scholar] [CrossRef]
- Schuman-Olivier, Z.; Trombka, M.; Lovas, D.A.; Brewer, J.A.; Vago, D.R.; Gawande, R.; Dunne, J.P.; Lazar, S.W.; Loucks, E.B.; Fulwiler, C. Mindfulness and Behavior Change. Harv. Rev. Psychiatry. 2020, 28, 371–394. [Google Scholar] [CrossRef]
- Price, C.J.; Hooven, C. Interoceptive Awareness Skills for Emotion Regulation: Theory and Approach of Mindful Awareness in Body-Oriented Therapy (MABT). Front. Psychol. 2018, 9, 798. [Google Scholar] [CrossRef] [PubMed]
- Baikie, K.A.; Wilhelm, K. Emotional and physical health benefits of expressive writing. Adv. Psychiatr. Treatment. 2005, 11, 338–346. [Google Scholar] [CrossRef]
- Schroeders, U.; Kubera, F.; Gnambs, T. The Structure of the Toronto Alexithymia Scale (TAS-20): A Meta-Analytic Confirmatory Factor Analysis. Assessment 2022, 29, 1806–1823. [Google Scholar] [CrossRef] [PubMed]
- Bermond, B.; Bierman, D.J.; Cladder, M.A.; Moormann, P.P.; Vorst, H.C. The cognitive and affective alexithymia dimensions in the regulation of sympathetic responses. Int. J. Psychophysiol. 2010, 75, 227–233. [Google Scholar] [CrossRef]
- Weerdmeester, J.; van Rooij, M.M.; Engels, R.C.; Granic, I. An Integrative Model for the Effectiveness of Biofeedback Interventions for Anxiety Regulation: Viewpoint. J. Med. Internet Res. 2020, 22, e14958. [Google Scholar] [CrossRef]
- Gibson, J. Mindfulness, Interoception, and the Body: A Contemporary Perspective. Front. Psychol. 2019, 10, 2012. [Google Scholar] [CrossRef]
Study | Aim/Focus | Participants | EEG Method | Emotional/Resting Paradigm | Key Findings |
---|---|---|---|---|---|
[35] | Investigate how alexithymia influences cortical activity during emotional stimulation, focusing on interhemispheric asymmetry and right-hemisphere involvement. | 44 right-handed university students (17 with TAS ≥ 70, 27 with TAS ≤ 62), matched for sex, ages 18–26. | 62-channel EEG Spectral power in theta, alpha, beta, gamma | Eight film clips evoking happiness, anger, disgust, fear, and stress; two neutral clips used for baseline | EEG: Alexithymics showed heightened right-hemisphere activity (theta ↑, alpha ↓) during emotional stimuli. Behavior: No significant differences in subjective emotional intensity between groups. |
[36] | Examine how alexithymia affects hemispheric asymmetry in EEG spectral power while viewing emotional film clips. | 44 university students (17 with TAS > 74, 27 with TAS < 62), matched for age and sex. | 62-channel EEG Spectral power (theta-2, alpha-1, alpha-2) | Ten film clips inducing relaxation, joy, sexual arousal, anger, fear, disgust, sadness, and stress, plus two neutral clips | EEG: Marked right-hemisphere dominance in the alexithymic group, with alpha-2 desynchronization in right centroparietal regions. Behavior: No group differences in self-reported emotional intensity. |
[37] | Investigate resting-state DMN activity in alexithymia, focusing on alpha power and functional connectivity, controlling for general psychopathology. | 36 adults: 18 alexithymic (TAS-20 ≥ 58) and 18 controls (TAS-20 ≤ 45), matched for age, sex, and socio-demographic variables. | 19-channel EEG (10–20 system) eLORETA source localization Lagged phase synchronization | Five-minute resting-state recording (eyes closed) | EEG: Reduced alpha power in right PCC in the alexithymic group; decreased alpha connectivity in right ACC–PCC, frontal–PCC, and parietal–temporal. Psychopathology: These connectivity disruptions remained significant after controlling for GSI (SCL-90-R). |
[38] | Examine gamma band oscillations and phase synchrony during emotional processing in individuals with alexithymia and in those without alexithymia. | 24 right-handed participants (12 alexithymic with TAS-20 > 61; 12 controls with TAS-20 < 51), no psychiatric or neurological disorders. | EEG with emphasis on gamma band (40–50 Hz) Time-frequency analysis | 160 images from IAPS (80 negative, 80 neutral), culturally adapted for Japanese participants | EEG: Non-alexithymic group showed ↑ gamma power & phase synchrony for negative vs. neutral images; alexithymics did not show increased gamma activity. Behavior: Both groups judged negative images as more negative, with no RT differences. |
[39] | Investigate differences in EEG coherence and asymmetry in individuals with alexithymia and those without alexithymia, focusing on inter- and intrahemispheric connectivity. | 130 right-handed female nurses; top 10% TAS-20K (n = 13) vs. bottom 10% (n = 13). | 16-channel EEG (10–20 system) Coherence analysis in delta, theta, alpha, beta | Resting EEG assessment | EEG: Alexithymics showed lower interhemispheric coherence (F3-F4, C3-C4) in theta1, and lower intrahemispheric coherence (fronto-occipital, parieto-central) primarily in the left hemisphere. |
[40] | Assess whether individuals with alexithymia show reduced right-frontal and left-hemisphere interaction in emotional and cognitive processing. | 20 psychology students (10 high-alexithymic, 10 low-alexithymic), screened via Bermond-Vorst-Alexithymia-Questionnaire (BVAQ). All right-handed. | EEG power (alpha, beta) and coherence. Partial multiple coherence analysis | Viewing three video types: neutral (control), symbolic emotional, and blatant emotional | EEG: Reduced interhemispheric coherence between the right frontal lobe and left hemisphere in alexithymics, independent of emotional film type. Behavior: Emotional clips reduced alpha power at parietal leads in both groups. |
[41] | Explore whether frontal alpha asymmetry (FAS) is associated with alexithymia and could serve as a biomarker for emotional dysregulation in BPD. | 76 females: 37 with BPD (DSM-5 criteria), 39 healthy controls, matched for age and IQ. | 32-channel resting-state EEG FAS calculated from alpha power (8–13 Hz) in left vs. right frontal | Resting-state EEG (eyes closed) | EEG: No significant group-level FAS differences between BPD and controls. However, in BPD patients, FAS at F8-F7 correlated positively with total TAS-20 scores. The relationship was moderated by group and not explained by depression or general psychopathology. |
[42] | Investigate theta-band synchronization deficits in individuals with alexithymia during emotional picture viewing and differences in early event-related theta responses. | 41 right-handed adults (20 alexithymic, 21 non-alexithymic), screened by TAS. | EEG analysis of theta-1 (4–6 Hz) and theta-2 (6–8 Hz) event-related synchronization | Viewing neutral, pleasant, and unpleasant images (IAPS) | EEG: Alexithymics had reduced/delayed theta synchronization in left anterior regions for emotional stimuli (0–200 ms → 400–600 ms peak), and enhanced right anterior theta for unpleasant stimuli. Behavior: Altered early emotional appraisal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmiel, J.; Wiażewicz-Wójtowicz, P.; Stępień-Słodkowska, M. Neural Correlates of Alexithymia Based on Electroencephalogram (EEG)—A Mechanistic Review. J. Clin. Med. 2025, 14, 1895. https://doi.org/10.3390/jcm14061895
Chmiel J, Wiażewicz-Wójtowicz P, Stępień-Słodkowska M. Neural Correlates of Alexithymia Based on Electroencephalogram (EEG)—A Mechanistic Review. Journal of Clinical Medicine. 2025; 14(6):1895. https://doi.org/10.3390/jcm14061895
Chicago/Turabian StyleChmiel, James, Paula Wiażewicz-Wójtowicz, and Marta Stępień-Słodkowska. 2025. "Neural Correlates of Alexithymia Based on Electroencephalogram (EEG)—A Mechanistic Review" Journal of Clinical Medicine 14, no. 6: 1895. https://doi.org/10.3390/jcm14061895
APA StyleChmiel, J., Wiażewicz-Wójtowicz, P., & Stępień-Słodkowska, M. (2025). Neural Correlates of Alexithymia Based on Electroencephalogram (EEG)—A Mechanistic Review. Journal of Clinical Medicine, 14(6), 1895. https://doi.org/10.3390/jcm14061895