Comparative Analysis of Monoaxial and Polyaxial Pedicle Screws in the Surgical Correction of Adolescent Idiopathic Scoliosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Patient Groups, and Inclusion/Exclusion Criteria
2.2. Surgical Procedures
2.3. Outcome Measures
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics and Intraoperative Outcomes
3.2. Radiological Outcomes
3.3. Clinical Outcomes and Complications
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suk, S.I.; Kim, J.H.; Kim, S.S.; Lim, D.J. Pedicle screw instrumentation in adolescent idiopathic scoliosis (AIS). Eur. Spine J. 2012, 21, 13–22. [Google Scholar] [CrossRef]
- Kim, H.J.; Lenke, L.G.; Pizones, J.; Castelein, R.; Trobisch, P.D.; Yagi, M.; Kelly, M.P.; Chang, D.G. Adolescent Idiopathic Scoliosis: Is the Feasible Option of Minimally Invasive Surgery using Posterior Approach? Asian Spine J. 2023. [Google Scholar] [CrossRef]
- Yang, H.; Jia, X.; Hai, Y. Posterior minimally invasive scoliosis surgery versus the standard posterior approach for the management of adolescent idiopathic scoliosis: An updated meta-analysis. J. Orthop. Surg. Res. 2022, 17, 58. [Google Scholar] [CrossRef]
- Abdel Rasol, A.M.S.; El Badrawi, A.M.; Abdel Latif, A.I.; Fahmy, F.M.; Zahlawy, H.E.; Hussien, M.A. Direct vertebral rotation versus simple rod derotation techniques in correction of adolescent idiopathic scoliosis. Spine Deform. 2024. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Chang, D.G.; Lenke, L.G.; Pizones, J.; Castelein, R.; Trobisch, P.D.; Watanabe, K.; Yang, J.H.; Suh, S.W.; Suk, S.I. Rotational Changes Following Use of Direct Vertebral Rotation in Adolescent Idiopathic Scoliosis: A Long-term Radiographic and Computed Tomography Evaluation. Spine 2023. [Google Scholar] [CrossRef] [PubMed]
- Librianto, D.; Saleh, I.; Fachrisal; Utami, W.S.; Hutami, W.D. Rod derotation and translation techniques provide comparable functional outcomes for surgical correction of adolescent idiopathic scoliosis—A retrospective, cross-sectional study. Ann. Med. Surg. 2022, 73, 103188. [Google Scholar] [CrossRef]
- Lam, F.C.; Groff, M.W.; Alkalay, R.N. The effect of screw head design on rod derotation in the correction of thoracolumbar spinal deformity: Laboratory investigation. J. Neurosurg. Spine 2013, 19, 351–359. [Google Scholar] [CrossRef]
- Kuklo, T.R.; Potter, B.K.; Polly, D.W., Jr.; Lenke, L.G. Monaxial versus multiaxial thoracic pedicle screws in the correction of adolescent idiopathic scoliosis. Spine 2005, 30, 2113–2120. [Google Scholar] [CrossRef] [PubMed]
- Lonner, B.S.; Auerbach, J.D.; Boachie-Adjei, O.; Shah, S.A.; Hosogane, N.; Newton, P.O. Treatment of thoracic scoliosis: Are monoaxial thoracic pedicle screws the best form of fixation for correction? Spine 2009, 34, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Dalal, A.; Upasani, V.V.; Bastrom, T.P.; Yaszay, B.; Shah, S.A.; Shufflebarger, H.L.; Newton, P.O. Apical vertebral rotation in adolescent idiopathic scoliosis: Comparison of uniplanar and polyaxial pedicle screws. J. Spinal Disord. Tech. 2011, 24, 251–257. [Google Scholar] [CrossRef]
- Liu, P.Y.; Lai, P.L.; Lin, C.L. A biomechanical investigation of different screw head designs for vertebral derotation in scoliosis surgery. Spine J. 2017, 17, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Badve, S.A.; Goodwin, R.C.; Gurd, D.; Kuivila, T.; Kurra, S.; Lavelle, W.F. Uniplanar Versus Fixed Pedicle Screws in the Correction of Thoracic Kyphosis in the Treatment of Adolescent Idiopathic Scoliosis (AIS). J. Pediatr. Orthop. 2017, 37, e558–e562. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yuan, S.; Tian, Y.; Wang, L.; Liu, X. Uniplanar Cannulated Pedicle Screws in the Correction of Lenke Type 1 Adolescent Idiopathic Scoliosis. World Neurosurg. 2021, 149, e785–e793. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Li, T.; Jiang, H.; Ma, J.; Zhou, X. Comparing Uniplanar and Multiaxial Pedicle Screws in the Derotation of Apical Vertebrae for Lenke V Adolescent Idiopathic Scoliosis: A Case-Controlled Study. World Neurosurg. 2018, 111, e608–e615. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Ho, E.K.; Upadhyay, S.S.; Chan, F.L.; Hsu, L.C.; Leong, J.C. New methods of measuring vertebral rotation from computed tomographic scans. An intraobserver and interobserver study on girls with scoliosis. Spine 1993, 18, 1173–1177. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.S.; Lebow, R.L.; Schmidt, M.H.; Spooner, J. Rod derotation techniques for thoracolumbar spinal deformity. Neurosurgery 2008, 63, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Harrington, P.R. Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J. Bone Jt. Surg. Am. 1962, 44, 591–610. [Google Scholar] [CrossRef]
- Weissmann, K.A.; Barrios, C.; Lafage, V.; Lafage, R.; Costa, M.A.; Álvarez, D.; Huaiquilaf, C.M.; Ang, B.; Schulz, R.G. Vertebral Coplanar Alignment Technique Versus Bilateral Apical Vertebral Derotation Technique in Neuromuscular Scoliosis. Glob. Spine J. 2023, 13, 104–112. [Google Scholar] [CrossRef]
- Han, Y.; Ma, J.; Zhang, G.; Huang, L.; Kang, H. Percutaneous monoplanar screws versus hybrid fixed axial and polyaxial screws in intermediate screw fixation for traumatic thoracolumbar burst fractures: A case-control study. J. Orthop. Surg. Res. 2024, 19, 85. [Google Scholar] [CrossRef]
- Schlösser, T.P.; Abelin-Genevois, K.; Homans, J.; Pasha, S.; Kruyt, M.; Roussouly, P.; Shah, S.A.; Castelein, R.M. Comparison of different strategies on three-dimensional correction of AIS: Which plane will suffer? Eur. Spine J. 2021, 30, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Lander, S.T.; Thirukumaran, C.; Saleh, A.; Noble, K.L.; Menga, E.N.; Mesfin, A.; Rubery, P.T.; Sanders, J.O. Long-Term Health-Related Quality of Life After Harrington Instrumentation and Fusion for Adolescent Idiopathic Scoliosis: A Minimum 40-Year Follow-up. J. Bone Jt. Surg. Am. 2022, 104, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Bjarke Christensen, F.; Stender Hansen, E.; Laursen, M.; Thomsen, K.; Bünger, C.E. Long-term functional outcome of pedicle screw instrumentation as a support for posterolateral spinal fusion: Randomized clinical study with a 5-year follow-up. Spine 2002, 27, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Yang, J.H.; Chang, D.G.; Suk, S.I.; Suh, S.W.; Kim, S.I.; Song, K.S.; Park, J.B.; Cho, W. Proximal Junctional Kyphosis in Adult Spinal Deformity: Definition, Classification, Risk Factors, and Prevention Strategies. Asian Spine J. 2022, 16, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Velluto, C.; Inverso, M.; Borruto, M.I.; Perna, A.; Bocchino, G.; Messina, D.; Proietti, L. The Incidence of Screw Failure in Fenestrated Polyaxial Pedicle Screws vs. Conventional Pedicle Screws in the Treatment of Adolescent Idiopathic Scoliosis (AIS). J. Clin. Med. 2024, 13, 1760. [Google Scholar] [CrossRef]
- Baghdadi, Y.M.; Larson, A.N.; McIntosh, A.L.; Shaughnessy, W.J.; Dekutoski, M.B.; Stans, A.A. Complications of pedicle screws in children 10 years or younger: A case control study. Spine 2013, 38, E386–E393. [Google Scholar] [CrossRef] [PubMed]
- Fujimori, T.; Yaszay, B.; Bartley, C.E.; Bastrom, T.P.; Newton, P.O. Safety of pedicle screws and spinal instrumentation for pediatric patients: Comparative analysis between 0- and 5-year-old, 5- and 10-year-old, and 10- and 15-year-old patients. Spine 2014, 39, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Ledonio, C.G.; Polly, D.W., Jr.; Vitale, M.G.; Wang, Q.; Richards, B.S. Pediatric pedicle screws: Comparative effectiveness and safety: A systematic literature review from the Scoliosis Research Society and the Pediatric Orthopaedic Society of North America task force. J. Bone Jt. Surg. Am. 2011, 93, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- De Vega, B.; Navarro, A.R.; Gibson, A.; Kalaskar, D.M. Accuracy of Pedicle Screw Placement Methods in Pediatrics and Adolescents Spinal Surgery: A Systematic Review and Meta-Analysis. Glob. Spine J. 2022, 12, 677–688. [Google Scholar] [CrossRef]
- Chotigavanichaya, C.; Adulkasem, N.; Pisutbenya, J.; Ruangchainikom, M.; Luksanapruksa, P.; Wilartratsami, S.; Ariyawatkul, T.; Korwutthikulrangsri, E. Comparative effectiveness of different pedicle screw density patterns in spinal deformity correction of small and flexible operative adolescent idiopathic scoliosis: Inverse probability of treatment weighting analysis. Eur. Spine J. 2023, 32, 2203–2212. [Google Scholar] [CrossRef]
Variables | Monoaxial Group (n = 23) | Polyaxial Group (n = 23) | p |
---|---|---|---|
Baseline characteristics | |||
Gender (Male/Female) | 1:22 | 0:23 | 1.000 |
Age (years) | 14.0 ± 1.6 | 14.8 ± 1.8 | 0.115 |
BMI (kg/m2) | 18.6 ± 3.8 | 19.6 ± 2.9 | 0.191 |
Risser stage | 3.7 ± 0.5 | 4.0 ± 0.5 | 0.129 |
Lenke type (I:II:III:IV:V:VI) | 12:1:7:1:1:1 | 16:0:4:0:2:1 | 0.590 |
Preoperative Cobb’s angle (°) | 61.2 ± 13.0 | 60.9 ± 9.6 | 0.886 |
Flexibility (%) | 28.9 ± 17.1 | 31.0 ± 17.8 | 0.442 |
Operative outcomes | |||
Fusion segments (n) | 12.1 ± 1.5 | 11.3 ± 1.4 | 0.074 |
Thoracoplasty (Yes/No) | 20:3 | 23:0 | 0.233 |
Rib resection level (n) | 3.7 ± 1.4 | 4.2 ± 1.5 | 0.199 |
Variables | Monoaxial Group (n = 23) | Polyaxial Group (n = 23) | p |
---|---|---|---|
Coronal parameters | |||
Cobb’s angle, main curve (°) | |||
Preoperative (°) | 61.2 ± 13.0 | 60.9 ± 9.6 | 0.886 |
Postoperative (°) | 17.4 ± 5.4 | 21.0 ± 5.9 | 0.043 |
Correction rate (%) | 70.2 ± 5.9 | 65.3 ± 8.9 | 0.04 |
3-month follow-up (°) | 17.5 ± 5.1 | 21.5 ± 4.8 | 0.046 |
Correction loss (°) | 0.2 ± 0.4 | 0.5 ± 0.7 | 0.571 |
Cobb’s angle, compensatory curve (°) | |||
Preoperative (°) | 36.7 ± 15.4 | 33.0 ± 10.4 | 0.349 |
Postoperative (°) | 12.3 ± 9.5 | 13.5 ± 8.5 | 0.672 |
Correction rate (%) | 67.0 ± 21.6 | 60.0 ± 22.4 | 0.287 |
Coronal balance (mm) | |||
Preoperative | 15.3 ± 12.3 | 10.6 ± 7.3 | 0.344 |
Postoperative | 14.9 ± 12.5 | 10.3 ± 7.7 | 0.191 |
Δ | 0.4 ± 14.1 | 0.3 ± 11.0 | 0.801 |
Sagittal parameters | |||
Sagittal vertical axis (mm) | |||
Preoperative | 32.2 ± 20.4 | 22.0 ± 20.2 | 0.072 |
Postoperative | 25.5 ± 15.6 | 23.7 ± 18.2 | 0.652 |
Δ | −6.2 ± 21.0 | 3.6 ± 28.2 | 0.144 |
Thoracic kyphosis (°) | |||
Preoperative | 27.7 ± 11.8 | 35.2 ± 9.4 | 0.044 |
Postoperative | 26.2 ± 7.0 | 33.7 ± 8.3 | 0.006 |
Δ | −1.5 ± 11.5 | −1.4 ± 8.0 | 0.939 |
Lumbar lordosis (°) | |||
Preoperative | 50.0 ± 11.7 | 44.8 ± 11.2 | 0.150 |
Postoperative | 48.5 ± 8.8 | 37.5 ± 9.1 | <0.001 |
Δ | −1.5 ± 11.9 | −7.3 ± 9.3 | 0.116 |
Rotational parameters using CT | |||
AV in the thoracic curve (°) | |||
Preoperative | −7.4 ± 7.5 | −8.5 ± 4.9 | 0.546 |
Postoperative | −8.2 ± 8.1 | −9.7 ± 5.1 | 0.546 |
Δ | −0.8 ± 7.4 | −1.1 ± 7.6 | 0.865 |
AV in the lumbar curve (°) | |||
Preoperative | 14.7 ± 11.3 | 11.9 ± 12.4 | 0.344 |
Postoperative | 13.7 ± 9.7 | 8.4 ± 9.2 | 0.071 |
Δ | 0.8 ± 7.0 | 4.0 ± 5.1 | 0.328 |
Variables | Monoaxial Group (n = 23) | Polyaxial Group (n = 23) | p |
---|---|---|---|
SRS-22, total | 4.2 ± 0.4 | 4.3 ± 0.3 | 0.531 |
SRS-22, function | 4.6 ± 0.5 | 4.7 ± 0.4 | 0.806 |
SRS-22, pain | 4.3 ± 0.6 | 4.4 ± 0.6 | 0.554 |
SRS-22, self-image | 4.0 ± 0.5 | 4.1 ± 0.5 | 0.756 |
SRS-22, mental health | 3.9 ± 0.6 | 4.1 ± 0.6 | 0.374 |
SRS-22, satisfaction | 3.8 ± 0.8 | 4.1 ± 0.6 | 0.173 |
Variables | Monoaxial Group (n = 23) | Polyaxial Group (n = 23) | p |
---|---|---|---|
Chest tube insertion (yes/no) | 13:10 | 9:14 | 0.376 |
Hemothorax (yes/no) | 0:23 | 3:20 | 0.233 |
Pneumonia (yes/no) | 0:23 | 0:23 | 1.000 |
Infection (yes/no) | 1:22 | 2:21 | 1.000 |
Wound destruction (yes/no) | 0:23 | 1:22 | 1.000 |
Abdominal pain (yes/no) | 0:23 | 0:23 | 1.000 |
Neurological deficit (yes/no) | 0:23 | 0:23 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.H.; Kim, H.J.; Chang, T.Y.; Suh, S.W.; Chang, D.-G. Comparative Analysis of Monoaxial and Polyaxial Pedicle Screws in the Surgical Correction of Adolescent Idiopathic Scoliosis. J. Clin. Med. 2024, 13, 2689. https://doi.org/10.3390/jcm13092689
Yang JH, Kim HJ, Chang TY, Suh SW, Chang D-G. Comparative Analysis of Monoaxial and Polyaxial Pedicle Screws in the Surgical Correction of Adolescent Idiopathic Scoliosis. Journal of Clinical Medicine. 2024; 13(9):2689. https://doi.org/10.3390/jcm13092689
Chicago/Turabian StyleYang, Jae Hyuk, Hong Jin Kim, Tae Yeong Chang, Seung Woo Suh, and Dong-Gune Chang. 2024. "Comparative Analysis of Monoaxial and Polyaxial Pedicle Screws in the Surgical Correction of Adolescent Idiopathic Scoliosis" Journal of Clinical Medicine 13, no. 9: 2689. https://doi.org/10.3390/jcm13092689
APA StyleYang, J. H., Kim, H. J., Chang, T. Y., Suh, S. W., & Chang, D. -G. (2024). Comparative Analysis of Monoaxial and Polyaxial Pedicle Screws in the Surgical Correction of Adolescent Idiopathic Scoliosis. Journal of Clinical Medicine, 13(9), 2689. https://doi.org/10.3390/jcm13092689