Risk of Diabetic Ketoacidosis Associated with Sodium Glucose Cotransporter-2 Inhibitors: A Network Meta-Analysis and Meta-Regression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Study Procedure
3. Results
3.1. Search Results
3.2. Pooled Estimates for the Risk of DKA
3.2.1. Sub-Group Analyses
3.2.2. Bootstrap Meta-Analysis
3.2.3. Meta-Regression Analyses
3.2.4. Publication Bias
3.2.5. Leave-One-Out Sensitivity Analysis
3.2.6. GRADE Analysis
4. Discussion
4.1. Key Findings
4.2. Comparison with the Existing Studies
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vassiliki’ Coutsoumbas, G.; Zagnoni, S.; Corona, G.; Di Pasquale, G. Sodium-glucose co-transporter-2 drugs: Are we sure they are useful only in the treatment of diabetes? Eur. Heart J. Suppl. 2020, 22 (Suppl. SL), L66–L71. [Google Scholar] [CrossRef]
- Scheen, A.J. The current role of SGLT2 inhibitors in type 2 diabetes and beyond: A narrative review. Expert Rev. Endocrinol. Metab. 2023, 18, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Lam-Chung, C.E. Comprehensive review of SGLT2 inhibitors’ efficacy through their diuretic mode of action in diabetic patients. Front. Endocrinol. 2023, 14, 1174692. [Google Scholar] [CrossRef] [PubMed]
- Dharia, A.; Khan, A.; Sridhar, V.S.; Cherney, D.Z. SGLT2 Inhibitors: The Sweet Success for Kidneys. Annu. Rev. Med. 2023, 74, 369–384. [Google Scholar] [CrossRef]
- Mascolo, A.; Di Napoli, R.; Balzano, N.; Cappetta, D.; Urbanek, K.; De Angelis, A.; Scisciola, L.; Di Meo, I.; Sullo, M.G.; Rafaniello, C.; et al. Safety profile of sodium glucose co-transporter 2 (SGLT2) inhibitors: A brief summary. Front. Cardiovasc. Med. 2022, 9, 1010693. [Google Scholar] [CrossRef]
- Ramani, J.; Shah, H.; Vyas, V.K.; Sharma, M. A review on the medicinal chemistry of sodium glucose co-transporter 2 inhibitors (SGLT2-I): Update from 2010 to present. Eur. J. Med. Chem. Rep. 2022, 6, 100074. [Google Scholar] [CrossRef]
- Raza, S.; Osasan, S.; Sethia, S.; Batool, T.; Bambhroliya, Z.; Sandrugu, J.; Lowe, M.; Okunlola, O.; Hamid, P. A Systematic Review of Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors and Sympathetic Nervous System Inhibition: An Underrated Mechanism of Cardiorenal Protection. Cureus 2022, 14, e26313. [Google Scholar] [CrossRef]
- Perry, R.J.; Rabin-Court, A.; Song, J.D.; Cardone, R.L.; Wang, Y.; Kibbey, R.G.; Shulman, G.I. Dehydration and insulinopenia are necessary and sufficient for euglycemic ketoacidosis in SGLT2 inhibitor-treated rats. Nat. Commun. 2019, 10, 548. [Google Scholar] [CrossRef]
- Food and Drug Administration. FDA Revises Labels of SGLT2 Inhibitors for Diabetes to Include Warnings about Too Much Acid in the Blood and Serious Urinary Tract Infections. Available online: https://www.fda.gov/media/94822/download (accessed on 18 January 2024).
- Donnan, J.R.; Grandy, C.A.; Chibrikov, E.; Marra, C.A.; Aubrey-Bassler, K.; Johnston, K.; Swab, M.; Hache, J.; Curnew, D.; Nguyen, H.; et al. Comparative safety of the sodium glucose co-transporter 2 (SGLT2) inhibitors: A systematic review and meta-analysis. BMJ Open 2019, 9, e022577. [Google Scholar] [CrossRef]
- Liu, J.; Li, L.; Li, S.; Wang, Y.; Qin, X.; Deng, K.; Liu, Y.; Zou, K.; Sun, X. Sodium-glucose co-transporter-2 inhibitors and the risk of diabetic ketoacidosis in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 2020, 22, 1619–1627. [Google Scholar] [CrossRef]
- Colacci, M.; Fralick, J.; Odutayo, A.; Fralick, M. Sodium-Glucose Cotransporter-2 Inhibitors and Risk of Diabetic Ketoacidosis Among Adults with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Can. J. Diabetes 2021, 46, 10–15.e2. [Google Scholar] [CrossRef]
- Al-Hindi, B.; Mohammed, M.A.; Mangantig, E.; Martini, N.D. Prevalence of sodium-glucose transporter 2 inhibitor-associated diabetic ketoacidosis in real-world data: A systematic review and meta-analysis. J. Am. Pharm. Assoc. 2024, 64, 9–26.e6. [Google Scholar] [CrossRef]
- Li, T.; Puhan, M.A.; Vedula, S.S.; Singh, S.; Dickersin, K. The Ad Hoc Network Meta-analysis Methods Meeting Working Group Network meta-analysis-highly attractive but more methodological research is needed. BMC Med. 2011, 9, 79. [Google Scholar] [CrossRef]
- Hutton, B.; Salanti, G.; Caldwell, D.M.; Chaimani, A.; Schmid, C.H.; Cameron, C.; Ioannidis, J.P.A.; Straus, S.; Thorlund, K.; Jansen, J.P.; et al. The PRISMA Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-analyses of Health Care Interventions: Checklist and Explanations. Ann. Intern. Med. 2015, 162, 777–784. [Google Scholar] [CrossRef]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef]
- Gjerdevik, M.; Heuch, I. Improving the error rates of the Begg and Mazumdar test for publication bias in fixed effects meta-analysis. BMC Med. Res. Methodol. 2014, 14, 100074. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- EpiGear International. Available online: https://www.epigear.com/index.htm (accessed on 6 January 2024).
- GRADE Handbook. Introduction to GRADE Handbook. Available online: https://gdt.gradepro.org/app/handbook/handbook.html (accessed on 12 January 2024).
- Wallace, B.C.; Lajeunesse, M.J.; Dietz, G.; Dahabreh, I.J.; Trikalinos, T.A.; Schmid, C.H.; Gurevitch, J. OpenMEE: Intuitive, open-source software for meta-analysis in ecology and evolutionary biology. Methods Ecol. Evol. 2017, 8, 941–947. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Y.; Zhang, S.; Wu, F.; Liu, D.; Wu, Q.; Zheng, H.; Fan, P.; Su, N. Risk of diabetic ketoacidosis of SGLT2 inhibitors in patients with type 2 diabetes: A systematic review and network meta-analysis of randomized controlled trials. Front. Pharmacol. 2023, 14, 1145587. [Google Scholar] [CrossRef] [PubMed]
- Ullah, W.; Hamid, M.; Mohammad Ammar Abdullah, H.; Ur Rashid, M.; Inayat, F. Another “D” in MUDPILES? A review of diet-associated nondiabetic ketoacidosis. J. Investig. Med. High Impact Case Rep. 2018, 6, 2324709618796261. [Google Scholar] [CrossRef] [PubMed]
- MHRA. GLP-1 Receptor Agonists: Reports of Diabetic Ketoacidosis When Concomitant Insulin Was Rapidly Reduced or Discontinued. 2019. Available online: https://www.gov.uk/drug-safety-update/glp-1-receptor-agonists-reports-of-diabetic-ketoacidosis-when-concomitant-insulin-was-rapidly-reduced-or-discontinued (accessed on 15 February 2024).
- Canagliflozin. Product Monograph. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/204042s011lbl.pdf (accessed on 18 February 2024).
- Triantafylidis, L.K.; Hawley, C.E.; Fagbote, C.; Li, J.; Genovese, N.; Paik, J.M. A Pilot Study Embedding Clinical Pharmacists Within an Interprofessional Nephrology Clinic for the Initiation and Monitoring of Empagliflozin in Diabetic Kidney Disease. J. Pharm. Pract. 2019, 34, 428–437. [Google Scholar] [CrossRef] [PubMed]
Interventions | Comparators | Number of Studies | Number of Participants |
---|---|---|---|
SGLTi | |||
Bexagliflozin | Placebo/Standard of care | 1 | 317 |
Canagliflozin | 7 | 5720 | |
Dapagliflozin | 26 | 37,505 | |
Empagliflozin | 22 | 17,824 | |
Ertugliflozin | 2 | 8859 | |
Henagliflozin | 1 | 490 | |
Ipragliflozin | 1 | 66 | |
Licogliflozin | 1 | 95 | |
Sotagliflozin | 10 | 14,727 | |
Tofogliflozin | 1 | 394 | |
Dose categories | |||
Low | Placebo/Standard of care | 35 | 31,924 |
Medium | 3 | 332 | |
High | 46 | 45,370 | |
Low | High | 18 | 9262 |
Reference Intervention | Control Intervention | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
B | C | D | E | Er | H | I | L | S | T | P | |
B | 0.8 [0.1, 25.3] | 1.6 [0.1, 41] | 2.9 [0.1, 78.6] | 0.8 [0.1, 8.8] | 6.1 [0.1, 968] | 2.9 [0.01, 464] | 5.7 [0.1, 913.8] | 1.6 [0.1, 40.7] | 15 [0.1, 2394] | 3 [0.1, 75.1] | |
C | 2 [0.5, 7.2] | 3.6 [0.9, 14.8] | 0.9 [0.2, 5.7] | 7.4 [0.1, 452] | 3.5 [0.1, 217] | 6.9 [0.1, 428] | 1.9 [0.5, 7.2] | 18.3 [0.3, 1118] | 3.7 [1.1, 12.4] * | ||
D | 1.8 [0.7, 4.4] | 0.5 [0.1, 2] | 3.8 [0.1, 198.4] | 1.8 [0.03, 95.6] | 3.5 [0.1, 188] | 1 [0.5, 2] | 9.4 [0.2, 491] | 1.9 [1.2, 3.1] * | |||
E | 0.3 [0.1, 1.2] | 2.1 [0.1, 113.4] | 1 [0.1, 54.6] | 1.9 [0.1, 107.5] | 0.5 [0.2, 1.3] | 5.1 [0.1, 280] | 1 [0.5, 2.2] | ||||
Er | 7.8 [0.1, 494] | 3.7 [0.1, 237.9] | 7.3 [0.1, 468] | 2 [0.5, 8.5] | 19.4 [0.3, 1223] | 3.9 [1.1, 14.7] * | |||||
H | 0.5 [0.01, 123.1] | 0.9 [0.001, 243] | 0.3 [0.001, 13.6] | 2.5 [0.01, 636] | 0.5 [0.01, 25.2] | ||||||
I | 2 [0.001, 525] | 0.6 [0.01, 29.6] | 5.2 [0.02, 1376] | 1.1 [0.02, 55] | |||||||
L | 0.3 [0.01, 14.8] | 2.6 [0.01, 691] | 0.5 [0.01, 27.6] | ||||||||
S | 9.5 [0.2, 500] | 1.9 [1.1, 3.2] * | |||||||||
T | 0.2 [0.004, 10.2] | ||||||||||
P |
Reference Intervention | Control Intervention | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
B | C | D | E | Er | H | I | L | S | T | P | |
B | NA | NA | NA | NA | NA | NA | NA | NA | NA | 3 [0.1, 75.1] | |
C | NA | NA | NA | NA | NA | NA | NA | NA | 3.7 [1.1, 12.4] * | ||
D | NA | NA | NA | NA | NA | NA | NA | 1.9 [1.2, 3.1] * | |||
E | NA | NA | NA | NA | NA | NA | 1 [0.5, 2.2] | ||||
Er | NA | NA | NA | NA | NA | 3.9 [1.1, 14.7] * | |||||
H | NA | NA | NA | NA | 0.5 [0.01, 25.2] | ||||||
I | NA | NA | NA | 1.1 [0.02, 55] | |||||||
L | NA | NA | 0.5 [0.01, 27.6] | ||||||||
S | NA | 1.9 [1.1, 3.2] * | |||||||||
T | 0.2 [0.004, 10.2] | ||||||||||
P |
Covariates | Odds Ratio (95% CI) | |
---|---|---|
Age (compared <19) in years | 20 to <40 | 0.7 [0.03, 16.5] |
≥40 to <65 | 3 [0.3, 30.7] | |
≥65 | 2.3 [0.2, 23.5] | |
Indications (compared to non-diabetic) | T1D | 2.4 [0.8, 7.5] |
T2D | 1.1 [0.5, 2.6] | |
BMI (compared to <25) in kg/m2 | ≥25 to <30 | 4.8 [0.5, 50.8] |
≥30 | 4.1 [0.4, 41.6] | |
eGFR (compared to ≥90) mL/min/1.73 m2 | ≥60 to <90 | 2.1 [0.8, 5.6] |
<60 | 1.8 [0.7, 4.8] | |
Duration of diabetes (compared to 5 to 10) in years | ≥10 | 3.4 [1.1, 10.8] * |
HbA1c (compared to <5.7) in % | 5.7 to 6.4 | 1 [0.03, 30] |
≥6.5 to <7 | 1.2 [0.05, 25.9] | |
≥7 | 1.9 [0.1, 30.9] | |
Duration of treatment (compared to <6 months) | ≥6 months | 1.7 [0.8, 3.4] |
Blinding design in clinical trials (compared to open label) | Double-blinded | 1.9 [0.6, 6.2] |
Single-blinded | 1 [0.02, 63.8] |
Comparisons with Placebo/Standard of Care (Except Gender-Wise Comparison) | Illustrative Comparative Risks (per 10,000) (95% Confidence Intervals) | Effect Estimates and the Quality of Evidence for Mixed Treatment Comparisons | |
---|---|---|---|
Assumed Risk 1 | Corresponding Risk | ||
Any SGLT2i | 10 | 18 (13 to 25) | 1.83 [1.35, 2.46]; ⊕⊕⊕⊝; Moderate 2 |
Dapagliflozin | 4 | 8 (5 to 12) | 1.9 [1.17, 3.08]; ⊕⊕⊕⊝; Moderate 2 |
Sotagliflozin | 37 | 71 (42 to 119) | 1.93 [1.14, 3.25]; ⊕⊕⊕⊝; Moderate 2 |
Canagliflozin | 1 | 1 (1 to 12) | 1.11 [1.11, 12.45]; ⊕⊕⊝⊝; Low 2,3 |
Ertugliflozin | 4 | 16 (4 to 58) | 3.92 [1.04, 14.77]; ⊕⊝⊝; Very low 2,3,4 |
Low doses of SGLT2i | 10 | 20 (13 to 29) | 1.98 [1.3, 2.95]; ⊕⊕⊕⊝; Moderate 2 |
High doses of SGLT2i | 8 | 19 (14 to 26) | 2.4 [1.7, 3.3]; ⊕⊕⊕⊝; Moderate 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sridharan, K.; Sivaramakrishnan, G. Risk of Diabetic Ketoacidosis Associated with Sodium Glucose Cotransporter-2 Inhibitors: A Network Meta-Analysis and Meta-Regression. J. Clin. Med. 2024, 13, 1748. https://doi.org/10.3390/jcm13061748
Sridharan K, Sivaramakrishnan G. Risk of Diabetic Ketoacidosis Associated with Sodium Glucose Cotransporter-2 Inhibitors: A Network Meta-Analysis and Meta-Regression. Journal of Clinical Medicine. 2024; 13(6):1748. https://doi.org/10.3390/jcm13061748
Chicago/Turabian StyleSridharan, Kannan, and Gowri Sivaramakrishnan. 2024. "Risk of Diabetic Ketoacidosis Associated with Sodium Glucose Cotransporter-2 Inhibitors: A Network Meta-Analysis and Meta-Regression" Journal of Clinical Medicine 13, no. 6: 1748. https://doi.org/10.3390/jcm13061748
APA StyleSridharan, K., & Sivaramakrishnan, G. (2024). Risk of Diabetic Ketoacidosis Associated with Sodium Glucose Cotransporter-2 Inhibitors: A Network Meta-Analysis and Meta-Regression. Journal of Clinical Medicine, 13(6), 1748. https://doi.org/10.3390/jcm13061748