Efficacy of Topical Application of a Skin Moisturizer Containing Pseudo-Ceramide and a Eucalyptus Leaf Extract on Atopic Dermatitis: A Review
Abstract
:1. Introduction
2. Atopic Dermatitis and Ceramides
3. The Efficacy of SLE66 and ELE on AD Skin Symptoms
4. The P-Cer Moisturizer Improves Ceramide Profiles in AD Skin
5. The P-Cer Moisturizer Improves AD Even in the Summer Season
6. The P-Cer Moisturizer Improves Sweating
7. Filaggrin Mutations and the P-Cer Moisturizer
8. The Ceramide Profile Affects the Efficacy of the P-Cer Moisturizer to Maintain the Remission Phase
9. The P-Cer Moisturizer and Skin Cleansing
10. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cabanillas, B.; Novak, N. Atopic dermatitis and filaggrin. Curr. Opin. Immunol. 2016, 42, 1–8. [Google Scholar] [CrossRef]
- Kono, M.; Nomura, T.; Ohguchi, Y.; Mizuno, O.; Suzuki, S.; Tsujiuchi, H.; Hamajima, N.; McLean, W.H.I.; Shimizu, H.; Akiyama, M. Comprehensive screening for a complete set of Japanese- population- specific filaggrin gene mutations. Allergy 2014, 69, 537–540. [Google Scholar] [CrossRef] [PubMed]
- De Benedetto, A.; Rafaels, N.M.; McGirt, L.Y.; Ivanov, A.I.; Georas, S.N.; Cheadle, C.; Berger, A.E.; Zhang, K.; Vidyasagar, S.; Yoshida, T.; et al. Tight junction defects in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2011, 127, 773–786. [Google Scholar] [CrossRef] [PubMed]
- Tokumasu, R.; Yamaga, K.; Yamazaki, Y.; Murota, H.; Suzuki, K.; Tamura, A.; Bando, K.; Furuta, Y.; Katayama, I.; Tsukita, S. Dose-dependent role of claudin-1 in vivo in orchestrating features of atopic dermatitis. Proc. Natl. Acad. Sci. USA 2016, 113, E4061–E4068. [Google Scholar] [CrossRef] [PubMed]
- Fujita, H.; Nograles, K.E.; Kikuchi, T.; Gonzalez, J.; Carucci, J.A.; Krueger, J.G. Human Langerhans cells induce distinct IL-22- producing CD4+ T cells lacking IL-17 production. Proc. Natl. Acad. Sci. USA 2009, 106, 21795–21800. [Google Scholar] [CrossRef]
- Hammad, H.; Lambrecht, B.N. Barrier epithelial cells and the control of type 2 immunity. Immunity 2015, 43, 29–40. [Google Scholar] [CrossRef]
- Papoiu, A.D.; Wang, H.; Coghill, R.C.; Chan, Y.H.; Yosipovitch, G. Contagious itch in humans: A study of visual ‘transmission’ of itch in atopic dermatitis and healthy subjects. Br. J. Dermatol. 2011, 164, 1299–1303. [Google Scholar] [CrossRef]
- Ikoma, A.; Fartasch, M.; Heyer, G.; Miyachi, Y.; Handwerker, H.; Schmelz, M. Painful stimuli evoke itch in patients with chronic pruritus: Central sensitization for itch. Neurology 2004, 27, 212–217. [Google Scholar] [CrossRef]
- Murota, H.; Katayama, I. Evolving understanding on the aetiology of thermally provoked itch. Eur. J. Pain 2016, 20, 47–50. [Google Scholar] [CrossRef]
- Hoare, C.; Li Wan Po, A.; Williams, H. Systematic review of treatments for atopic eczema. Health Technol. Assess. 2000, 4, 1–191. [Google Scholar] [CrossRef]
- Hepburn, D.J.; Aeling, J.L.; Weston, W.L. A reappraisal of topical steroid potency. Pediatr. Dermatol. 1996, 13, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Lodén, M.; Andersson, A.-C.; Andersson, C.; Bergbrant, I.-M.; Frödin, T.; Ohman, H.; Sandström, M.-H.; Särnhult, T.; Voog, E.; Stenberg, B.; et al. A double-blind study comparing the effect of glycerin and urea on dry, eczematous skin in atopic patients. Acta Derm. Venereol. 2002, 82, 45–47. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, M.; Numano, K.; Ishizaki, C. Usefulness of moisturizers for dermato-physiological dysfunction in patients with atopic dermatitis. Jpn. J. Dermatol. 2007, 117, 969–977. (In Japanese) [Google Scholar]
- van Zuuren, E.J.; Fedorowicz, Z.; Christensen, R.; Lavrijsen, A.; Arents, B.W.M. Emollients and moisturisers for eczema. Cochrane Database Sys. Rev. 2017, 2017, CD012119. [Google Scholar]
- Elias, P.M.; Hatano, Y.; Williams, M.L. Basis for the barrier abnormality in atopic dermatitis: Outside-inside-outside pathogenic mechanisms. J. Allergy Clin. Immunol. 2008, 121, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Vijayanand, P.; Seumois, G.; Simpson, L.J.; Abdul-Wajid, S.; Baumjohann, D.; Panduro, M.; Huang, X.; Interlandi, J.; Djuretic, I.M.; Brown, D.R.; et al. Interleukin-4 production by follicular helper T cells requires the conserved Il4 enhancer hypersensitivity site V. Immunity 2012, 36, 175–187. [Google Scholar] [CrossRef]
- Kabashima, K. New concept of the pathogenesis of atopic dermatitis: Interplay among the barrier, allergy, and pruritus as a trinity. J. Dermatol. Sci. 2013, 70, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.C.; Jackson, S.M.; Elias, P.M.; Grunfeld, C.; Feingold, K.R. Cutaneous barrier perturbation stimulates cytokine production in the epidermis of mice. J. Clin. Investig. 1992, 90, 482–487. [Google Scholar] [CrossRef]
- Hachem, J.P.; Houben, E.; Crumrine, D.; Man, M.Q.; Schurer, N.; Roelandt, T.; Choi, E.H.; Uchida, Y.; Brown, B.E.; Feingold, K.R.; et al. Serine protease signaling of epidermal permeability barrier homeostasis. J. Investig. Dermatol. 2006, 126, 2074–2086. [Google Scholar] [CrossRef]
- Kondo, H.; Ichikawa, Y.; Imokawa, G. Percutaneous sensitization with allergens through barrier-disrupted skin elicits a Th2-dominant cytokine response. Eur. J. Immunol. 1998, 28, 769–779. [Google Scholar] [CrossRef]
- De Benedetto, A.; Kubo, A.; Beck, L.A. Skin barrier disruption: A requirement for allergen sensitization? J. Investig. Dermatol. 2012, 132, 949–963. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, C.; Yoneyama, H.; Murai, M.; Nakamura, K.; Tamaki, K.; Terashima, Y.; Imai, T.; Yoshie, O.; Irimura, T.; Mizutani, H.; et al. Overproduction of Th2-specific chemokines in NC/Nga mice exhibiting atopic dermatitis-like lesions. J. Clin. Investig. 1999, 104, 1097–1105. [Google Scholar] [CrossRef]
- Leung, D.Y. Pathogenesis of atopic dermatitis. J. Allergy Clin. Immunol. 1999, 104, S99–S108. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Nomura, J.; Koyama, J.; Horii, I. The role of proteases in stratum corneum: Involvement in stratum corneum desquamation. Arch. Dermatol. Res. 1994, 286, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, A.V.; Harding, C.; Watkinson, A.; Banks, J.; Ackerman, C.; Sabin, R. The effect of glycerol and humidity on desmosome degradation in stratum corneum. Arch. Dermatol. Res. 1995, 287, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Ohman, H.; Vahlquist, A. The pH gradient over the stratum corneum differs in X-linked recessive and autosomal dominant ichthyosis: A clue to the molecular origin of the “acid skin mantle”? J. Investig. Dermatol. 1998, 111, 674–677. [Google Scholar] [CrossRef]
- Lundström, A.; Egelrud, T. Cell shedding from human plantar skin in vitro: Evidence of its dependence on endogenous proteolysis. J. Investig. Dermatol. 1988, 91, 340–343. [Google Scholar] [CrossRef]
- Enomoto, H.; Hirata, K.; Otsuka, K.; Kawai, T.; Takahashi, T.; Hirota, T.; Suzuki, Y.; Tamari, M.; Otsuka, F.; Fujieda, S.; et al. Filaggrin null mutations are associated with atopic dermatitis and elevated levels of IgE in the Japanese population: A family and case-control study. J. Hum. Genet. 2008, 53, 615–621. [Google Scholar] [CrossRef]
- Candi, E.; Schmidt, R.; Melino, G. The cornified envelope: A model of cell death in the skin. Nat. Rev. Mol. Cell. Biol. 2005, 6, 328–340. [Google Scholar] [CrossRef]
- Kim, Y.; Lim, K.-M. Skin barrier dysfunction and filaggrin. Arch. Pharm. Res. 2021, 44, 36–49. [Google Scholar] [CrossRef]
- Barrett, J.G.; Scott, I.R. Pyrrolidone carboxylic acid synthesis in guinea pig epidermis. J. Investig. Dermatol. 1983, 81, 122–124. [Google Scholar] [CrossRef] [PubMed]
- Marenholz, I.; Nickel, R.; Ruschendorf, F.; Schulz, F.; Esparza-Gordillo, J.; Kerscher, T.; Grüber, C.; Lau, S.; Worm, M.; Keil, T.; et al. Filaggrin loss-of-function mutations predispose to phenotypes involved in the atopic march. J. Allergy Clin. Immunol. 2006, 118, 866–871. [Google Scholar] [CrossRef]
- Palmer, C.N.; Irvine, A.D.; Terron-Kwiatkowski, A.; Zhao, Y.; Liao, H.; Lee, S.P.; Goudie, D.R.; Sandilands, A.; Campbell, L.E.; Smith, F.J.D.; et al. Affiliations expand common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 2006, 38, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Sandilands, A.; Terron-Kwiatkowski, A.; Hull, P.R.; O’Regan, G.M.; Clayton, T.H.; Watson, R.M.; Carrick, T.; Evans, A.T.; Liao, H.; Zhao, Y.; et al. Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nat. Genet. 2007, 39, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Sandilands, A.; Smith, F.J.; Irvine, A.D.; McLean, W.H. Filaggrin’s fuller figure: A glimpse into the genetic architecture of atopic dermatitis. J. Investig. Dermatol. 2007, 127, 1282–1284. [Google Scholar] [CrossRef] [PubMed]
- Ching, G.; Hon, K.L. Filaggrin null mutations in childhood atopic dermatitis among the Chinese. Int. J. Immunogenet. 2009, 36, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Krakowski, A.C.; Eichenfield, L.F.; Dohil, M.A. Management of atopic dermatitis in the pediatric population. Pediatrics 2008, 122, 812–824. [Google Scholar] [CrossRef]
- Thulin, C.D.; Taylor, J.A.; Walsh, K.A. Microheterogeneity of human filaggrin: Analysis of a complex peptide mixture using mass spectrometry. Protein Sci. 1996, 5, 1157–1164. [Google Scholar] [CrossRef]
- Bikle, D.D.; Chang, S.; Crumrine, D.; Elalieh, H.; Man, M.Q.; Choi, E.H.; Dardenne, O.; Xie, Z.; St Arnaud, R.; Feingold, K.; et al. 25 Hydroxyvitamin D 1 alpha-hydroxylase is required for optimal epidermal differentiation and permeability barrier homeostasis. J. Investig. Dermatol. 2004, 122, 984–992. [Google Scholar] [CrossRef]
- O’Regan, G.M.; Irvine, A.D. The role of filaggrin in the atopic diathesis. Clin. Exp. Allergy 2010, 40, 965–972. [Google Scholar] [CrossRef]
- Rousseau, M.; Bedouet, L.; Lati, E.; Gasser, P.; Le, N.K.; Lopez, E. Restoration of stratum corneum with nacre lipids. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2006, 145, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jungersted, J.M.; Scheer, H.; Mempel, M.; Baurecht, H.; Cifuentes, L.; Høgh, J.K.; Hellgren, L.I.; Jemec, G.B.E.; Agner, T.; Weidinger, S. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy 2010, 65, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Elias, P.M. Epidermal lipids, barrier function, and desquamation. J. Investig. Dermatol. 1983, 80, 44s–49s. [Google Scholar] [CrossRef] [PubMed]
- Imokawa, G.; Akasaki, S.; Hattori, M.; Yoshizuka, N. Selective recovery of deranged water-holding properties by stratum corneum lipids. J. Investig. Dermatol. 1986, 87, 758–761. [Google Scholar] [CrossRef] [PubMed]
- Bouwstra, J.A.; Gooris, G.S.; van der Spek, J.A.; Bras, W. Structural investigations of human stratum corneum by small-angle X-ray scattering. J. Investig. Dermatol. 1991, 97, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Feingold, K.R. Thematic review series: Skin lipids. The role of epidermal lipids in cutaneous permeability barrier homeostasis. J. Lipid Res. 2007, 48, 2531–2546. [Google Scholar] [CrossRef] [PubMed]
- Gray, G.M.; White, R.J.; Williams, R.H.; Yardley, H.J. Lipid composition of the superficial stratum corneum cells of pig epidermis. Br. J. Dermatol. 1982, 106, 59–63. [Google Scholar] [CrossRef]
- Kawana, M.; Miyamoto, M.; Ohno, Y.; Kihara, A. Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC/MS/MS. J. Lipid Res. 2020, 61, 884–895. [Google Scholar] [CrossRef]
- Masukawa, Y.; Narita, H.; Sato, H.; Naoe, A.; Kondo, N.; Sugai, Y.; Oba, T.; Homma, R.; Ishikawa, J.; Takagi, Y.; et al. Comprehensive quantification of ceramide species in human stratum corneum. J. Lipid Res. 2009, 50, 1708–1719. [Google Scholar] [CrossRef]
- Ohnari, H.; Naru, E.; Sakata, O.; Obata, Y. Distribution of domains formed by lateral packing of intercellular lipid in the stratum corneum. Chem. Pharm. Bull. 2023, 71, 31–40. [Google Scholar] [CrossRef]
- Wertz, P.W.; Miethke, M.C.; Long, S.A.; Strauss, J.S.; Downing, D.T. The composition of the ceramides from human stratum corneum and from comedones. J. Investig. Dermatol. 1985, 84, 410–412. [Google Scholar] [CrossRef] [PubMed]
- Kono, T.; Miyachi, Y.; Kawashima, M. Clinical significance of the water retention and barrier function-improving capabilities of ceramide-containing formulations: A qualitative review. J. Dermatol. 2021, 48, 1807–1816. [Google Scholar] [CrossRef] [PubMed]
- Imokawa, G.; Abe, A.; Jin, K.; Higaki, Y.; Kawashima, M.; Hidano, A. Decreased level of ceramides in stratum corneum of atopic dermatitis: An etiologic factor in atopic dry skin? J. Investig. Dermatol. 1991, 96, 523–526. [Google Scholar] [CrossRef]
- Yamamoto, A.; Serizawa, S.; Ito, M.; Sato, Y. Stratum corneum lipid abnormalities in atopic dermatitis. Arch. Dermatol. Res. 1991, 283, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, A.; Wertz, P.; Giannetti, A.; Seidenari, S. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Dermatol. Venereol. 1998, 78, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Bleck, O.; Abeck, D.; Ring, J.; Hoppe, U.; Vietzke, J.P.; Wolber, R.; Brandt, O.; Schreiner, V. Two ceramide subfractions detectable in Cer(AS) position by HPTLC in skin surface lipids of non-lesional skin of atopic eczema. J. Investig. Dermatol. 1999, 113, 894–900. [Google Scholar] [CrossRef] [PubMed]
- Macheleidt, O.; Kaiser, H.W.; Sandhoff, K. Deficiency of epidermal protein-bound omega-hydroxyceramides in atopic dermatitis. J. Investig. Dermatol. 2002, 119, 166–173. [Google Scholar] [CrossRef]
- Ishikawa, J.; Narita, H.; Kondo, N.; Hotta, M.; Takagi, Y.; Masukawa, Y.; Kitahara, T.; Takema, Y.; Koyano, S.; Yamazaki, S.; et al. Changes in the ceramide profile of atopic dermatitis patients. J. Investig. Dermatol. 2010, 130, 2511–2514. [Google Scholar] [CrossRef]
- Danby, S.G.; Brown, K.; Higgs-Bayliss, T.; Chittock, J.; Albenali, L.; Cork, M.J. The effect of an emollient containing urea, ceramide NP, and lactate on skin barrier structure and function in older people with dry skin. Skin Pharmacol. Physiol. 2016, 29, 135–147. [Google Scholar] [CrossRef]
- Berardesca, E.; Barbareschi, M.; Veraldi, S.; Pimpinelli, N. Evaluation of efficacy of a skin lipid mixture in patients with irritant contact dermatitis, allergic contact dermatitis or atopic dermatitis: A multicenter study. Contact Dermat. 2001, 45, 280–285. [Google Scholar] [CrossRef]
- Chamlin, S.L.; Frieden, I.J.; Fowler, A.; Williams, M.; Kao, J.; Sheu, M.; Elias, P.M. Ceramide-dominant, barrier-repair lipids improve childhood atopic dermatitis. Arch. Dermatol. 2001, 137, 1110–1112. [Google Scholar] [PubMed]
- Yamanaka, M.; Ishikawa, O.; Takahashi, A.; Sato, H.; Imokawa, G. Clinical evaluation of Curel medicated cream in patients with atopic dermatitis. Skin Res. 2001, 43, 278–285. (In Japanese) [Google Scholar]
- Mizutani, H.; Takahashi, M.; Shimizu, M.; Kariya, K.; Sato, H.; Imokowa, G. Usage of pseudoceramide cream in atopic dry skin in comparison with 10% urea cream. Nishinihon J. Dermatol. 2001, 63, 457–461. (In Japanese) [Google Scholar] [CrossRef]
- Hata, M.; Tokura, Y.; Takigawa, M.; Tamura, Y.; Imokawa, G. Efficacy of using pseudoceramide-containing cream for the treatment of atopic dry skin in comparison with urea cream. Nishinihon J. Dermatol. 2002, 64, 606–611. (In Japanese) [Google Scholar] [CrossRef]
- Matsuki, H.; Kiyokane, K.; Matsuki, T.; Sato, S.; Imokawa, G. Reevaluation of the importance of barrier dysfunction in the nonlesional dry skin of atopic dermatitis patients through the use of two barrier creams. Exog. Dermatol. 2004, 3, 293–302. [Google Scholar] [CrossRef]
- Uchida, Y.; Holleran, W.M.; Elias, P.M. On the effects of topical synthetic pseudoceramides: Comparison of possible keratinocyte toxicities provoked by the pseudoceramides, PC104 and BIO391, and natural ceramides. J. Dermatol. Sci. 2008, 5, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Simpson, E.; Bohling, A.; Bielfeldt, S.; Bosc, C.; Kerrouche, N. Improvement of skin barrier function in atopic dermatitis patients with a new moisturizer containing a ceramide precursor. J. Dermatol. Treat. 2013, 24, 122–125. [Google Scholar] [CrossRef]
- Imokawa, G.; Akasaki, S.; Kawamata, A.; Yano, S.; Takaishi, N. Water retaining function in the stratum corneum and its recovery properties by synthetic pseudoceramides. J. Soc. Cosmet. Chem. 1989, 40, 273–286. [Google Scholar]
- Ishikawa, J.; Shimotoyodome, Y.; Chen, S.; Ohkubo, K.; Takagi, Y.; Fujimura, T.; Kitahara, T.; Takema, Y. Eucalyptus increases ceramide levels in keratinocytes and improves stratum corneum function. Int. J. Cosmet. Sci. 2012, 34, 17–22. [Google Scholar] [CrossRef]
- Spada, F.; Harrison, I.P.; Barnes, T.M.; Greive, K.A.; Daniels, D.; Townley, J.P.; Mostafa, N.; Fong, A.T.; Tong, P.L.; Shumack, S. A daily regimen of a ceramide-dominant moisturizing cream and cleanser restores the skin permeability barrier in adults with moderate eczema: A randomized trial. Dermatol. Ther. 2021, 34, e14970. [Google Scholar] [CrossRef]
- Zirwas, M.J.; Barkovic, S. Anti-pruritic efficacy of itch relief lotion and cream in patients with atopic history: Comparison with hydrocortisone cream. J. Drugs Dermatol. 2017, 16, 243–247. [Google Scholar] [PubMed]
- Koppes, S.A.; Charles, F.; Lammers, L.; Frings-Dresen, M.; Kezic, S.; Rustemeyer, T. Efficacy of a cream containing ceramides and magnesium in the treatment of mild to moderate atopic dermatitis: A randomized, double-blind, emollient- and hydrocortisone-controlled trial. Acta Derm. Venereol. 2016, 96, 948–953. [Google Scholar] [CrossRef] [PubMed]
- Somjorn, P.; Kamanamool, N.; Kanokrungsee, S.; Rojhirunsakool, S.; Udompataikul, M. A cream containing linoleic acid, 5% dexpanthenol and ceramide in the treatment of atopic dermatitis. Asian Pac. J. Allergy Immunol. 2021. in print. [Google Scholar] [CrossRef]
- Kircik, L.H.; Del Rosso, J.Q. Nonsteroidal treatment of atopic dermatitis in pediatric patients with a ceramide-dominant topical emulsion formulated with an optimized ratio of physiological lipids. J. Clin. Aesthet. Dermatol. 2011, 4, 25–31. [Google Scholar]
- Kircik, L.H.; Del Rosso, J.Q.; Aversa, D. Evaluating clinical use of a ceramide-dominant, physiologic lipid-based topical emulsion for atopic dermatitis. J. Clin. Aesthet. Dermatol. 2011, 4, 34–40. [Google Scholar] [PubMed]
- Draelos, Z.D. A clinical evaluation of the comparable efficacy of hyaluronic acid-based foam and ceramide-containing emulsion cream in the treatment of mild-to-moderate atopic dermatitis. J. Cosmet. Dermatol. 2011, 10, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.W.; Koch, S.B.; Yentzer, B.A.; Clark, A.R.; O’Neill, J.R.; Fountain, J.; Weber, T.M.; Fleischer, A.B. An over-the-counter moisturizer is as clinically effective as, and more cost-effective than, prescription barrier creams in the treatment of children with mild-to-moderate atopic dermatitis: A randomized, controlled trial. J. Drugs Dermatol. 2011, 10, 531–537. [Google Scholar]
- Sugarman, J.L.; Parish, L.C. Efficacy of a lipid-based barrier repair formulation in moderate-to-severe pediatric atopic dermatitis. J. Drugs Dermatol. 2009, 8, 1106–1111. [Google Scholar]
- Puviani, M.; Agostinis, F.; Milani, M. Barrier repair therapy for facial atopic eczema with a non-steroidal emollient cream containing rhamnosoft, ceramides and iso-leucine. A six-case report series. Minerva Pediatr. 2014, 66, 307–311. [Google Scholar]
- Park, K.Y.; Kim, D.H.; Jeong, M.S.; Li, K.; Seo, S.J. Changes of antimicrobial peptides and transepidermal water loss after topical application of tacrolimus and ceramide-dominant emollient in patients with atopic dermatitis. J. Korean Med. Sci. 2010, 25, 766–771. [Google Scholar] [CrossRef]
- Chamlin, S.L.; Kao, J.; Frieden, I.J.; Sheu, M.Y.; Fowler, A.J.; Fluhr, J.W.; Williams, M.L.; Elias, P.M. Ceramide-dominant barrier repair lipids alleviate childhood atopic dermatitis: Changes in barrier function provide a sensitive indicator of disease activity. J. Am. Acad. Dermatol. 2002, 47, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Ramam, M.; Sharma, V.K.; Sethuraman, G.; Pandey, R.M.; Bhari, N. Evaluation of a paraffin-based moisturizer compared to a ceramide-based moisturizer in children with atopic dermatitis: A double-blind, randomized controlled trial. Pediatr. Dermatol. 2023, 40, 627–632. [Google Scholar] [CrossRef]
- Tey, H.L.; Tay, E.Y.; Tan, W.D. Safety and antipruritic efficacy of a menthol-containing moisturizing cream. Skinmed 2017, 15, 437–439. [Google Scholar] [PubMed]
- Yang, Q.; Liu, M.; Li, X.; Zheng, J. The benefit of a ceramide-linoleic acid-containing moisturizer as an adjunctive therapy for a set of xerotic dermatoses. Dermatol. Ther. 2019, 32, e13017. [Google Scholar] [CrossRef] [PubMed]
- Lynde, C.W.; Andriessen, A. A cohort study on a ceramide-containing cleanser and moisturizer used for atopic dermatitis. Cutis 2014, 93, 207–213. [Google Scholar] [PubMed]
- Takada, M.; Ishikawa, Y.; Numano, K.; Hirano, S.; Imokawa, G. A nano-emulsion containing ceramide-like lipo-amino acid cholesteryl derivatives improves skin symptoms in patients with atopic dermatitis by ameliorating the water-holding function. Int. J. Mol. Sci. 2022, 23, 13362. [Google Scholar] [CrossRef] [PubMed]
- Sho, Y.; Sakai, T.; Sato, T.; Sonezaki, M.; Taima, H.; Taguchi, H.; Kaizu, K.; Nishizaka, T.; Takagi, Y.; Hatano, Y. Stratum corneum ceramide profiles provide reliable indicators of remission and potential flares in atopic dermatitis. J. Investig. Dermatol. 2022, 142, 3184–3191. [Google Scholar] [CrossRef]
- Okoshi, K.; Kinugasa, Y.; Ito, S.; Kume, T.; Seki, T.; Nishizaka, T.; Okada, J.; Kawada, H.; Nagasawa, A.; Iijima, M.; et al. Efficacy of pseudo-ceramide-containing steroid lamellar cream in patients with mild to moderate atopic dermatitis: A randomized, double-blind study. Dermatol. Ther. 2022, 12, 1823–1834. [Google Scholar] [CrossRef]
- Nojiri, H.; Palungwachira, P.; Poommarapan, K.; Pawasuttikul, N.; Lerttibat, K.; Kunathathorn, W.; Kaizu, K.; Takagi, Y.; Nararatwanchai, T. Washing with a body cleanser and topical application of a moisturizer containing a pseudo-ceramide and a eucalyptus extract are effective to improve mild atopic dermatitis in Thailand. J. Cosmet. Dermatol. 2022, 21, 6443–6445. [Google Scholar] [CrossRef]
- Shindo, S.; Murota, H.; Seki, T.; Mori, K.; Kaizu, K.; Nishizaka, T.; Takagi, Y.; Katayama, I. Effects of a moisturizer containing pseudo-ceramide and a eucalyptus extract on sweating function in adult atopic dermatitis: A double-blind, randomized, controlled left-right comparison clinical trial. J. Cosmet. Dermatol. 2022, 21, 4503–4509. [Google Scholar] [CrossRef]
- Matsuoka, M.; Okoshi, K.; Ito, S.; Kume, T.; Seki, T.; Nishizaka, T.; Okada, J.; Nagasawa, A.; Iijima, M.; Abe, M.; et al. efficacy of heparinoid cream containing pseudo-ceramide for remission of atopic dermatitis. Clin. Cosmet. Investig. Dermatol. 2021, 14, 1839–1847. [Google Scholar] [CrossRef] [PubMed]
- Ishida, K.; Takahashi, A.; Bito, K.; Draelos, Z.; Imokawa, G. Treatment with synthetic pseudoceramide improves atopic skin, switching the ceramide profile to a healthy skin phenotype. J. Investig. Dermatol. 2020, 140, 1762–1770. [Google Scholar] [CrossRef]
- Mori, K.; Seki, T.; Kaizu, K.; Takagi, Y.; Miyaki, M.; Ishizaki, C.; Katayama, I. Efficacy of a moisturizer containing a pseudo-ceramide and a eucalyptus extract for Japanese patients with mild atopic dermatitis in the summer. J. Cosmet. Dermatol. 2019, 18, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Hon, K.L.; Wang, S.S.; Lau, Z.; Lee, H.C.; Lee, K.K.C.; Leung, T.F.; Luk, N.M. Pseudoceramide for childhood eczema: Does it work? Hong Kong Med. J. 2011, 17, 132–136. [Google Scholar] [PubMed]
- Hon, K.L.; Kung, J.S.C.; Tsang, K.Y.C.; Yu, J.W.S.; Lee, V.W.; Leung, T.F. Testing the actions of a multi-action emollient: Patient’s acceptability determines product efficacy. Curr. Pediatr. Rev. 2018, 14, 110–116. [Google Scholar] [CrossRef]
- Seghers, A.C.; Cai, S.C.; Ho, M.S.; Giam, Y.C.; Tan, L.; Grönhagen, C.M.; Tang, M.B. Evaluation of a pseudoceramide moisturizer in patients with mild-to-moderate atopic dermatitis. Dermatol. Ther. 2014, 4, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Li, P.; Tang, J.; Guo, Y.; Shen, C.; Chang, J.; Kerrouche, N. Prolonging time to flare in pediatric atopic dermatitis: A randomized, investigator-blinded, controlled, multicenter clinical study of a ceramide-containing moisturizer. Adv. Ther. 2017, 34, 2601–2611. [Google Scholar] [CrossRef]
- Ho, V.P.Y.; Ma, E.; Liew, H.M.; Ng, M.S.Y.; Koh, M.J.A. Comparing the potential for irritation of a ceramide-based moisturizer with a urea-based moisturizer for pediatric atopic dermatitis. Dermatol. Ther. 2020, 10, 807–813. [Google Scholar] [CrossRef]
- Koh, M.J.-A.; Giam, Y.C.; Liew, H.M.; Foong, A.Y.-W.; Chong, J.H.; Wong, S.M.Y.; Tang, M.B.Y.; Ho, M.S.L.; Tan, S.; Mason, J.M.; et al. Comparison of the simple patient-centric atopic dermatitis scoring system PEST with SCORAD in young children using a ceramide dominant therapeutic moisturizer. Dermatol. Ther. 2017, 7, 383–393. [Google Scholar] [CrossRef]
- Chang, A.L.S.; Chen, S.C.; Osterberg, L.; Brandt, S.; von Grote, E.C.; Meckfessel, M.H. A daily skincare regimen with a unique ceramide and filaggrin formulation rapidly improves chronic xerosis, pruritus, and quality of life in older adults. Geriatr. Nurs. 2018, 39, 24–28. [Google Scholar] [CrossRef]
- Draelos, Z.D.; Raymond, I. The efficacy of a ceramide-based cream in mild-to-moderate atopic dermatitis. J. Clin. Aesthet. Dermatol. 2018, 11, 30–32. [Google Scholar] [PubMed]
- Na, J.-I.; Hwang, J.-S.; Park, H.-J.; Kim, D.-H.; Park, W.-S.; Youn, S.-W.; Huh, C.-H.; Park, K.-C. A new moisturizer containing physiologic lipid granules alleviates atopic dermatitis. J. Dermatolog. Treat. 2010, 21, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Hon, K.L.; Pong, N.H.; Wang, S.S.; Lee, V.W.; Luk, N.M.; Leung, T.F. Acceptability and efficacy of an emollient containing ceramide-precursor lipids and moisturizing factors for atopic dermatitis in pediatric patients. Drugs R D 2013, 13, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Masukawa, Y.; Narita, H.; Shimizu, E.; Kondo, N.; Sugai, Y.; Oba, T.; Homma, R.; Ishikawa, J.; Takagi, Y.; Kitahara, T.; et al. Characterization of overall ceramide species in human stratum corneum. J. Lipid Res. 2008, 49, 1466–1476. [Google Scholar] [CrossRef] [PubMed]
- Melnik, B.; Hollmann, J.; Hofmann, U.; Yuh, M.S.; Plewig, G. Lipid composition of outer stratum corneum and nails in atopic and control subjects. Arch. Dermatol. Res. 1990, 282, 549–551. [Google Scholar] [CrossRef] [PubMed]
- Holleran, W.M.; Takagi, Y.; Uchida, Y. Epidermal sphingolipids: Metabolism, function, and roles in skin disorders. FEBS Lett. 2006, 580, 5456–5466. [Google Scholar] [CrossRef] [PubMed]
- Holleran, W.M.; Feingold, K.R.; Man, M.Q.; Gao, W.N.; Lee, J.M.; Elias, P.M. Regulation of epidermal sphingolipid synthesis by permeability barrier function. J. Lipid Res. 1991, 32, 1151–1158. [Google Scholar] [CrossRef]
- Holleran, W.M.; Takagi, Y.; Menon, G.K.; Legler, G.; Feingold, K.R.; Elias, P.M. Processing of epidermal glucosylceramides is required for optimal mammalian cutaneous permeability barrier function. J. Clin. Investig. 1993, 91, 1656–1664. [Google Scholar] [CrossRef]
- Wertz, P.W.; Downing, D.T.; Freinkel, R.K.; Traczyk, T.N. Sphingolipids of the stratum corneum and lamellar granules of fetal rat epidermis. J. Investig. Dermatol. 1984, 83, 193–195. [Google Scholar] [CrossRef]
- Madison, K.C.; Swartzendruber, D.C.; Wertz, P.W.; Downing, D.T. Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum. J. Investig. Dermatol. 1987, 88, 714–718. [Google Scholar] [CrossRef]
- Yada, Y.; Higuchi, K.; Imokawa, G. Purification and biochemical characterization of mem-brane-bound epidermal ceramidases from guinea pig skin. J. Biol. Chem. 1995, 270, 12677–12684. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.; Higaki, Y.; Takagi, Y.; Higuchi, K.; Yada, Y.; Kawashima, M.; Imokawa, G. Analysis of beta-glucocerebrosidase and ceramidase activities in atopic and aged dry skin. Acta Derm. Venereol. 1994, 74, 337–340. [Google Scholar] [CrossRef]
- Murata, Y.; Ogata, J.; Higaki, Y.; Kawashima, M.; Yada, Y.; Higuchi, K.; Tsuchiya, T.; Kawainami, S.; Imokawa, G. Abnormal expression of sphingomyelin acylase in atopic dermatitis: An etiologic factor for ceramide deficiency? J. Investig. Dermatol. 1996, 106, 1242–1249. [Google Scholar] [CrossRef]
- Higuchi, K.; Hara, J.; Okamoto, R.; Kawashima, M.; Imokawa, G. The skin of atopic dermatitis patients contains a novel enzyme, glucosylceramide sphingomyelin deacylase, which cleaves the N-acyl linkage of sphingomyelin and glucosylceramide. Biochem. J. 2000, 350, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Imokawa, G. Cutting Edge of the Pathogenesis of Atopic Dermatitis: Sphingomyelin deacylase, the enzyme involved in its ceramide deficiency, plays a pivotal role. Int. J. Mol. Sci. 2021, 22, 1613. [Google Scholar] [CrossRef] [PubMed]
- Teranishi, Y.; Kuwahara, H.; Ueda, M.; Takemura, T.; Kusumoto, M.; Nakamura, K.; Sakai, J.; Kimura, T.; Furutani, Y.; Kawashima, M.; et al. Sphingomyelin deacylase, the enzyme involved in the pathogenesis of atopic dermatitis, is identical to the β-subunit of acid ceramidase. Int. J. Mol. Sci. 2020, 21, 8789. [Google Scholar] [CrossRef]
- Proksch, E.; Feingold, K.R.; Elias, P.M. Epidermal HMG CoA reductase activity in essential fatty acid deficiency: Barrier requirements rather than eicosanoid generation regulate cholesterol synthesis. J. Investig. Dermatol. 1992, 99, 216–220. [Google Scholar] [CrossRef]
- Jackson, S.M.; Wood, L.C.; Lauer, S.; Taylor, J.M.; Cooper, A.D.; Elias, P.M.; Feingold, K.R. Effect of cutaneous permeability barrier disruption on HMG-CoA reductase, LDL receptor, and apolipoprotein E mRNA levels in the epidermis of hairless mice. J. Lipid Res. 1992, 33, 1307–1314. [Google Scholar] [CrossRef]
- Park, B.D.; Youm, J.K.; Jeong, S.K.; Choi, E.H.; Ahn, S.K.; Lee, S.H. The characterization of molecular organization of multilamellar emulsions containing pseudoceramide and type III synthetic ceramide. J. Investig. Dermatol. 2003, 121, 794–801. [Google Scholar] [CrossRef]
- Kim, D.-H.; Park, W.R.; Kim, J.H.; Cho, E.C.; An, E.J.; Kim, J.-W.; Oh, S.-G. Fabrication of pseudo-ceramide-based lipid microparticles for recovery of skin barrier function. Colloids Surf. B Biointerfaces 2012, 94, 236–241. [Google Scholar] [CrossRef]
- Mizushima, H.; Fukasawa, J.; Suzuki, T. Thermotropic behavior of stratum corneum lipids containing a pseudo-ceramide. Lipids 1995, 30, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, Y.; Kusuoku, H.; Murphy, G.K. Isolation and structure determination of new macrocarpals from a herbal medicine Eucalyptus globulus leaf. Nat. Med. 2001, 55, 28–31. [Google Scholar]
- Nojiri, H.; Ishida, K.; Yao, X.; Liu, W.; Imokawa, G. Amelioration of lactic acid sensations in sensitive skin by stimulating the barrier function and improving the ceramide profile. Arch. Dermatol. Res. 2018, 310, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Taima, H.; Kikuchi, M.; Takagi, Y.; Kaizu, K.; Numano, N.; Kikuchi, K. Clinical efficacy of a lamellar-in-oil cream containing pseudo-ceramide to treat atopic dermatitis. Aesthet. Dermatol. 2020, 30, 261–270. (In Japanese) [Google Scholar]
- Yokose, U.; Ishikawa, J.; Morokuma, Y.; Naoe, A.; Inoue, Y.; Yasuda, Y.; Tsujimura, H.; Fujimura, T.; Murase, T.; Hatamochi, A. The ceramide [NP]/[NS] ratio in the stratum corneum is a potential marker for skin properties and epidermal differentiation. BMC Dermatol. 2020, 20, 6. [Google Scholar] [CrossRef] [PubMed]
- Luk, D.; Hon, K.L.E.; Dizon, M.V.C.; Leong, K.-F.; Tay, Y.-K.; Koh, M.J.-A.; Chandran, N.S.; Wananukul, S.; Chatproedprai, S.; Luger, T. Practical recommendations for the topical treatment of atopic dermatitis in South and East Asia. Dermatol. Ther. 2021, 11, 275–291. [Google Scholar] [CrossRef]
- Fujita, M.; Aoki, T. Sweat suppression in patients with atopic dermatitis and infantile xerotic eczema. Nihon Hifuka Gakkai Zasshi 1975, 85, 291–294. (In Japanese) [Google Scholar]
- Kihara, M.; Takahashi, M.; Yamada, H.; Morigami, C.; Tezuka, T. Quantitative sudomotor axon reflex test - with special reference to atopic dermatitis. Ski. Res. 1998, 40, 231–235. (In Japanese) [Google Scholar]
- Eishi, K.; Lee, J.-B.; Bae, S.-J.; Takenaka, M.; Katayama, I. Impaired sweating function in adult atopic dermatitis: Results of the quantitative sudomotor axon reflex test. Br. J. Dermatol. 2002, 147, 683–688. [Google Scholar] [CrossRef]
- Kijima, A.; Murota, H.; Matsui, S.; Takahashi, A.; Kimura, A.; Kitaba, S.; Lee, S.-B.; Katayama, I. Abnormal axon reflex-mediated sweating correlates with high state of anxiety in atopic dermatitis. Allergol. Int. 2012, 61, 469–473. [Google Scholar] [CrossRef]
- Takahashi, A.; Murota, H.; Matsui, S.; Kijima, A.; Kitaba, S.; Lee, J.-B.; Katayama, I. Decreased sudomotor function is involved in the formation of atopic eczema in the cubital fossa. Allergol. Int. 2013, 62, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Shiohara, T.; Sato, Y.; Komatsu, T.; Ushigome, Y.; Mizukawa, Y. Sweat as an efficient natural moisturizer. Curr. Probl. Dermatol. 2016, 51, 30–41. [Google Scholar] [PubMed]
- Schmid-Wendtner, M.H.; Korting, H.C. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol. Physiol. 2006, 19, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Rieg, S.; Steffen, H.; Seeber, S.; Humeny, A.; Kalbacher, H.; Dietz, K.; Garbe, C.; Schittek, B. Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. J. Immunol. 2005, 174, 8003–8010. [Google Scholar] [CrossRef] [PubMed]
- Schittek, B.; Paulmann, M.; Senyürek, I.; Steffen, S. The role of antimicrobial peptides in human skin and in skin infectious diseases. Infect Disord. Drug. Targets 2008, 8, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Matsui, S.; Murota, H.; Takahashi, A.; Yang, L.; Lee, J.B.; Omiya, K.; Ohmi, M.; Kikuta, J.; Ishii, M.; Katayama, I. Dynamic analysis of histamine-mediated attenuation of acetylcholine- induced sweating via GSK3β activation. J. Investig. Dermatol. 2014, 134, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Matsui, S.; Murota, H.; Ono, E.; Kikuta, J.; Ishii, M.; Katayama, I. Olopatadine hydrochloride restores histamine- induced impaired sweating. J. Dermatol. Sci. 2014, 74, 260–261. [Google Scholar] [CrossRef]
- Wessler, I.; Reinheimer, T.; Kilbinger, H.; Bittinger, F.; Kirkpatrick, C.J.; Saloga, J.; Knop, J. Increased acetylcholine levels in skin biopsies of patients with atopic dermatitis. Life Sci. 2003, 72, 2169–2172. [Google Scholar] [CrossRef]
- Kindt, F.; Wiegand, S.; Niemeier, V.; Kupfer, J.; Löser, C.; Nilles, M.; Kurzen, H.; Kummer, W.; Gieler, U.; Haberberger, R.V. Reduced expression of nicotinic alpha subunits 3, 7, 9 and 10 in lesional and nonlesional atopic dermatitis skin but enhanced expression of alpha subunits 3 and 5 in mast cells. Br. J. Dermatol. 2008, 159, 847–857. [Google Scholar] [CrossRef]
- Murota, H.; Yamaga, K.; Ono, E.; Katayama, I. Sweat in the pathogenesis of atopic dermatitis. Allergol. Int. 2018, 67, 455–459. [Google Scholar] [CrossRef]
- Yamaga, K.; Murota, H.; Tamura, A.; Miyata, M.; Ohmi, M.; Kikuta, J.; Ishii, M.; Tsukita, S.; Katayama, I. Claudin-3 loss causes leakage of sweat from the sweat gland to contribute to the pathogenesis of atopic dermatitis. J. Investig. Dermatol. 2018, 138, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.J.; Lawler, J.C. Observations on the delayed blanch phenomenon in atopic subjects. J. Investig. Dermatol. 1958, 30, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Papa, C.M.; Kligman, A.M. Mechanisms of eccrine anidrosis. I. High level blockade. J. Investig. Dermatol. 1966, 47, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gallegos, C.E.; Pediconi, M.F.; Barrantes, F.J. Ceramides modulate cell-surface acetylcholine receptor levels. Biochim. Biophys. Acta 2008, 1778, 917–930. [Google Scholar] [CrossRef] [PubMed]
- Zuo, S.; Ge, H.; Li, Q.; Zhang, X.; Hu, R.; Hu, S.; Liu, X.; Zhang, J.H.; Chen, Y.; Feng, H. Artesunate protected blood-brain barrier via sphingosine 1 phosphate receptor 1/phosphatidylinositol 3 kinase pathway after subarachnoid hemorrhage in rats. Mol. Neurobiol. 2017, 54, 1213–1228. [Google Scholar] [CrossRef] [PubMed]
- Rolland, W.B.; Krafft, P.R.; Lekic, T.; Klebe, D.; LeGrand, J.; Weldon, A.J.; Xu, L.; Zhang, J.H. Fingolimod confers neuro-protection through activation of Rac1 after experimental germinal matrix hemorrhage in rat pups. J. Neurochem. 2017, 140, 776–786. [Google Scholar] [CrossRef] [PubMed]
- Mizukawa, Y.; Sato, Y.; Ohyama, M.; Shiohara, T. Restoration of sweating disturbance in atopic dermatitis treated with dupilumab. J. Dermatol. Sci. 2020, 100, 79–81. [Google Scholar] [CrossRef]
- Rawlings, A.V.; Harding, C.R. Moisturization and skin barrier function. Dermatol. Ther. 2004, 17, 43s–48s. [Google Scholar] [CrossRef]
- Sandilands, A.; Sutherland, C.; Irvine, A.D.; McLean, W.H.I. Filaggrin in the frontline: Role in skin barrier function and disease. J. Cell Sci. 2009, 122, 1285–1294. [Google Scholar] [CrossRef]
- Irvine, A.D.; McLean, W.H.I.; Leung, D.Y.M. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med. 2011, 365, 1315–1327. [Google Scholar] [CrossRef]
- O’Regan, G.M.; Kemperman, P.M.J.H.; Sandilands, A.; Chen, H.; Campbell, L.E.; Kroboth, K.; Watson, R.; Rowland, M.; Puppels, G.J.; McLean, W.H.I.; et al. Raman profiles of the stratum corneum define 3 filaggrin genotype-determined atopic dermatitis endophenotypes. J. Allergy Clin. Immunol. 2010, 126, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Riethmuller, C.; McAleer, M.A.; Koppes, C.S.A.; Abdayem, R.; Franz, J.; Haftek, M.; Campbell, L.E.; MacCallum, S.F.; McLean, W.H.I.; Irvine, A.D.; et al. Filaggrin breakdown products determine corneocyte conformation in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2015, 136, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Cole, C.; Kroboth, K.; Schurch, N.J.; Sandilands, A.; Sherstnev, A.; O’Regan, G.M.; Watson, R.M.; McLean, W.H.I.; Barton, G.J.; Irvine, A.D.; et al. Filaggrin-stratified transcriptomic analysis of pediatric skin identifies mechanistic pathways in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2014, 134, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Furusyo, N.; Shiohama, A.; Takeuchi, S.; Nakahara, T.; Uchi, H.; Hirota, T.; Tamari, M.; Shimizu, N.; Ebihara, T.; et al. Filaggrin loss-of-function mutations are not a predisposing factor for atopic dermatitis in an Ishigaki Island under subtropical climate. J. Dermatol. Sci. 2014, 76, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Shiohara, T.; Mizukawa, Y.; Shimoda-Komatsu, Y.; Aoyama, Y. Sweat is a most efficient natural moisturizer providing protective immunity at points of allergen entry. Allergol. Int. 2018, 67, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, N.; Sakai, S.; Matsumoto, M.; Yamada, K.; Nagano, M.; Yuki, T.; Sumida, Y.; Uchiwa, H. Relationship between NMF (lactate and potassium) content and the physical properties of the stratum corneum in healthy subjects. J. Investig. Dermatol. 2004, 122, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Nemoto-Hasebe, I.; Akiyama, M.; Nomura, T.; Sandilands, A.; McLean, W.H.I.; Shimizu, H. FLG mutation p.Lys4021X in the C-terminal imperfect filaggrin repeat in Japanese patients with atopic eczema. Br. J. Dermatol. 2009, 161, 1387–1390. [Google Scholar] [CrossRef]
- Nomura, T.; Sandilands, A.; Akiyama, M.; Liao, H.; Evans, A.T.; Sakai, K.; Ota, M.; Sugiura, H.; Yamamoto, K.; Sato, H.; et al. Unique mutations in the filaggrin gene in Japanese patients with ichthyosis vulgaris and atopic dermatitis. J. Allergy Clin. Immunol. 2007, 119, 434–440. [Google Scholar] [CrossRef]
- Teye, K.; Numata, S.; Krol, R.P.; Ishii, N.; Matsuda, M.; Lee, J.B.; Hamada, T.; Hashimoto, T. Prevalence of filaggrin gene mutations in patients with atopic dermatitis and ichthyosis vulgaris in Kyushu area of Japan and South Korea. J. Dermatol. Sci. 2017, 86, 174–177. [Google Scholar] [CrossRef]
- Cheong, W.K. Gentle cleansing and moisturizing for patients with atopic dermatitis and sensitive skin. Am. J. Clin. Dermatol. 2009, 10, 13s–17s. [Google Scholar] [CrossRef]
- Hosokawa, K.; Taima, H.; Kikuchi, M.; Tsuda, H.; Numano, K.; Takagi, Y. Rubbing the skin when removing makeup cosmetics is a major factor that worsens skin conditions in atopic dermatitis patients. J. Cosmet. Dermatol. 2021, 20, 1915–1922. [Google Scholar] [CrossRef]
- Takagi, Y.; Shimizu, M.; Morokuma, Y.; Miyaki, M.; Kiba, A.; Matsuo, K.; Isoda, K.; Mizutani, H. A new formula for a mild body cleanser: Sodium laureth sulphate supplemented with sodium laureth carboxylate and lauryl glucoside. Int. J. Cosmet. Sci. 2014, 36, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D. Vitamin D metabolism and function in the skin. Mol. Cell. Endocrinol. 2011, 347, 80–89. [Google Scholar] [CrossRef]
- Sugarman, J.L. The epidermal barrier in atopic dermatitis. Semin. Cutan. Med. Surg. 2008, 27, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Paolino, G.; Moliterni, E.; Didona, D.; Garelli, V.; Corsetti, P.; Lopez, T.; Richetta, A.G.; Cantisani, C.; Bottoni, U.; Calvieri, S. Clinicopathological features, vitamin D serological levels and prognosis in cutaneous melanoma of shield-sites: An update. Med. Oncol. 2015, 32, 451. [Google Scholar] [CrossRef] [PubMed]
Authors | Journal | Ceramides or Pseudo-Ceramides | Emollients /Pseudo-Ceramides | Ref. |
---|---|---|---|---|
Spada, F.; et al. | Dermatol Ther. (2021) | ceramide | Ceradan Cream | [70] |
Zirwas, M.J; et al. | J Drugs Dermatol. (2017) | ceramide | CeraVe® | [71] |
Koppes, S.A.; et al. | Acta Derm Venereol. (2016) | ceramide | Cer[EOS], [NP], [AP] | [72] |
Somjorn, P.; et al. | Asian Pac J Allergy Immunol. (2021) | ceramide | EpiCeram | [73] |
Kircik, L.H.; et al. | J Clin Aesthet Dermatol. (2011) | ceramide | EpiCeram | [74] |
Kircik, L.H.; et al. | J Clin Aesthet Dermatol. (2011) | ceramide | EpiCeram | [75] |
Draelos, Z.D. | J Cosmet Dermatol. (2011) | ceramide | EpiCeram | [76] |
Miller, D.W. | J Drugs Dermatol. (2011) | ceramide | EpiCeram | [77] |
Sugarman, J.L.; et al | J Drugs Dermatol. (2009) | ceramide | EpiCeram | [78] |
Puviani, M.; et al. | Minerva Pediatr. (2014) | ceramide | Cer[NP] | [79] |
Park, K.Y.; et al., | J Korean Med Sci. (2010) | ceramide | TriCeram | [80] |
Chamlin, S.L.; et al. | Arch Dermatol. (2001) | ceramide | TriCeram | [61] |
Chamlin, S.L.; et al. | J Am Acad Dermatol. (2002) | ceramide | TriCeram | [81] |
Berardesca, E.; et al. | Contact Dermatitis. (2001) | ceramide | Cer[NP] | [60] |
Gupta, S.; et al. | Pediatr Dermatol. (2023) | ceramide | no detail data | [82] |
Tey, H.-L.; et al. | Skinmed. (2017) | ceramide | no detail data | [83] |
Yang, Q.; et al. | Dermatol Ther. (2019) | ceramide | no detail data | [84] |
Lynde, C.W.; et al. | Cutis. (2014) | ceramide | no detail data | [85] |
Takada, M.; et al. | Int J Mol Sci. (2022) | pseudo-ceramide | SLE66 + ELE | [86] |
Sho, Y.; et al. | J Invest Dermatol. (2022) | pseudo-ceramide | SLE66 + ELE | [87] |
Okoshi, K.; et al. | Dermatol Ther (Heidelb). (2022) | pseudo-ceramide | SLE66 + ELE | [88] |
Nojiri, H.; et al. | J Cosmet Dermatol. (2022) | pseudo-ceramide | SLE66 + ELE | [89] |
Shindo, S.; et al. | J Cosmet Dermatol. (2022) | pseudo-ceramide | SLE66 + ELE | [90] |
Matsuoka, M.; et al. | Clin Cosmet Investig Dermatol. (2021) | pseudo-ceramide | SLE66 + ELE | [91] |
Ishida, K.; et al. | J Invest Dermatol. (2020) | pseudo-ceramide | SLE66 + ELE | [92] |
Mori, K.; et al. | J Cosmet Dermatol. (2019) | pseudo-ceramide | SLE66 + ELE | [93] |
Hon, K.L.; et al. | Hong Kong Med J. (2011) | pseudo-ceramide | SLE66 + ELE | [94] |
Hon, K.L.; et al. | Curr Pediatr Rev. (2018) | pseudo-ceramide | SLE66 + ELE | [95] |
Seghers, A.C.; et al. | Dermatol Ther (Heidelb). (2014) | pseudo-ceramide | SLE66 + ELE | [96] |
Matsuki, H.; et al. | Exog. Dermatol. (2004) | pseudo-ceramide | SLE66 + ELE | [65] |
Ma, L.; et al. | Adv Ther. (2017) | pseudo-ceramide | Hydroxypropyl Bispalmitamide MEA | [97] |
Ho, Y.V.P.; et al. | Dermatol Ther (Heidelb). (2020) | pseudo-ceramide | Hydroxypropyl Bispalmitamide MEA | [98] |
Koh, M.J.-A.; et al. | Dermatol Ther (Heidelb). (2017) | pseudo-ceramide | Hydroxypropyl Bispalmitamide MEA | [99] |
Chang, A.S.L.; et al. | Geriatr Nurs. (2018) | pseudo-ceramide | Hydroxypropyl Bispalmitamide MEA | [100] |
Draelos, Z.D.; et al. | J Clin Aesthet Dermatol. (2018) | pseudo-ceramide | PC104 | [101] |
Na, J.-I.; et al. | J Dermatolog Treat. (2010) | pseudo-ceramide | PC104 | [102] |
Hon, K.L.; et al. | Drugs R D. (2013) | ceramide-precursor | [103] | |
Simpson, E.; et al. | J Dermatolog Treat. (2013) | ceramide-precursor | [67] |
1. Improvement of skin symptoms |
2. Changes in ceramide profiles |
3. Effective in the summer season |
4. Improvement of sweating function |
5. Correlation with filaggrin mutations |
6. The potential biomarker to maintain the remission phase |
7. Correlation with skin cleansing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takagi, Y. Efficacy of Topical Application of a Skin Moisturizer Containing Pseudo-Ceramide and a Eucalyptus Leaf Extract on Atopic Dermatitis: A Review. J. Clin. Med. 2024, 13, 1749. https://doi.org/10.3390/jcm13061749
Takagi Y. Efficacy of Topical Application of a Skin Moisturizer Containing Pseudo-Ceramide and a Eucalyptus Leaf Extract on Atopic Dermatitis: A Review. Journal of Clinical Medicine. 2024; 13(6):1749. https://doi.org/10.3390/jcm13061749
Chicago/Turabian StyleTakagi, Yutaka. 2024. "Efficacy of Topical Application of a Skin Moisturizer Containing Pseudo-Ceramide and a Eucalyptus Leaf Extract on Atopic Dermatitis: A Review" Journal of Clinical Medicine 13, no. 6: 1749. https://doi.org/10.3390/jcm13061749
APA StyleTakagi, Y. (2024). Efficacy of Topical Application of a Skin Moisturizer Containing Pseudo-Ceramide and a Eucalyptus Leaf Extract on Atopic Dermatitis: A Review. Journal of Clinical Medicine, 13(6), 1749. https://doi.org/10.3390/jcm13061749