Vascular Diseases in Women: Do Women Suffer from Them Differently?
Abstract
:1. Introduction
- Differences in physiopathology exist between the genders, asking for more integrated and different approaches [3].
- Epidemiological data show differences in distribution, deterioration, and outcomes to be detailed and considered [4].
- Similar diseases have different symptoms in women, which are often under-evaluated [2]. A delay in visiting the doctor that is linked to gender has been described.
- Behaviors associated with gender also involve exposure to risk factors and attitudes to disease prevention and response.
- Some diagnostic parameters should be validated to verify any possible differences related to gender.
- Women’s responses to therapy have been reported to be sometimes different. There is a need for proper studies and validation in women. Although women’s enrollment in clinical trials is low, the conclusions are considered valid without any gender distinctions [5].
- There is a need to guarantee equal access, development, and opportunities for women to get the best qualifications, gain work in the health area, and become doctors, researchers, and academics. Gender equality in science, medicine, and health contributes to gender equality in the community and gives social benefits. The UN Educational, Scientific and Cultural Organization’s Women in Science data show that, even with a recent improvement, less than 30% of the world’s researchers are women, with relevant geographical differences [8].
2. Cardiovascular Risk Factors in Women
2.1. Conventional Cardiovascular Risk Factors in Women
2.2. Menopause-Related Cardiovascular Risk Factors
2.3. Pregnancy and Reproductive Risk Factors
3. Gender Differences in Health, Gender, and Clinical Trials
4. Vascular Diseases in Women
4.1. Cerebrovascular Disease
4.2. Abdominal Aortic Aneurysms
4.3. Lower Extremity Arterial Disease
4.4. Vasculitis
4.5. Vasospastic Diseases
4.6. Chronic Venous Insufficiency
4.7. Venous Thromboembolism
4.8. Lymphedema
4.9. Pelvic Congestion Syndrome
4.10. Fibromuscular Dysplasia
4.10.1. Epidemiology, Pathogenesis, and Genetics
4.10.2. Renal FMD
4.10.3. Cerebrovascular FMD
4.10.4. Spontaneous Coronary Dissection (SCAD) and FMD
4.10.5. Pregnancy-Related Complications
4.11. Diabetic Angiopathy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations and Acronyms
AAA | Abdominal aortic aneurysm |
AHA | American Heart Association |
CAD | Coronary artery disease |
CUS | Compression ultrasound |
CVD | Cardiovascular disease |
CVI | Chronic venous insufficiency |
CVRF | Cardiovascular risk factor |
DM | Diabetes mellitus |
DMARD | Disease-modifying antirheumatic drugs |
DVT | Deep vein thrombosis |
EHIT | Endovenous heat-induced thrombosis |
EM | Early menopause |
EVLA | Endovenous Laser Ablation |
GDM | Gestational diabetes mellitus |
HDP | Hypertensive disorders of pregnancy |
HLD | Hyperlipidemia |
HTN | Hypertension |
IMS | International Menopause Society |
LEAD | Lower extremity arterial disease |
MHT | Menopausal hormone therapy |
MI | Myocardial infarction |
PAD | Peripheral arterial disease |
PCOS | Polycystic ovary syndrome |
PCS | Pelvic congestion syndrome |
PE | Pulmonary embolism |
PM | Premature menopause |
RFA | Radiofrequency ablation |
VAD | Venoactive drugs |
VSS | Vasospastic syndrome |
VTE | Venous thromboembolism |
WHI | Women’s Health Initiative |
References
- Bonita, R.; Beaglehole, R. Women and NCDs: Overcoming the neglect. Glob. Health Action 2014, 7, 23742. [Google Scholar] [CrossRef]
- Mauvais-Jarvis, F.; Bairey Merz, N.; Barnes, P.J.; Brinton, R.D.; Carrero, J.J.; DeMeo, D.L.; De Vries, G.J.; Epperson, C.N.; Govindan, R.; Klein, S.L.; et al. Sex and gender: Modifiers of health, disease, and medicine. Lancet 2020, 396, 565–582, Erratum in Lancet 2020, 396, 668. [Google Scholar] [CrossRef]
- Yerly, A.; van der Vorst, E.P.C.; Baumgartner, I.; Bernhard, S.M.; Schindewolf, M.; Döring, Y. Sex-specific and hormone-related differences in vascular remodelling in atherosclerosis. Eur. J. Clin. Investig. 2023, 53, e13885. [Google Scholar] [CrossRef]
- Shannon, G.; Jansen, M.; Williams, K.; Cáceres, C.; Motta, A.; Odhiambo, A.; Eleveld, A.; Mannell, J. Gender equality in science, medicine, and global health: Where are we at and why does it matter? Lancet 2019, 393, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Daitch, V.; Turjeman, A.; Poran, I.; Tau, N.; Ayalon-Dangur, I.; Nashashibi, J.; Yahav, D.; Paul, M.; Leibovici, L. Underrepresentation of women in randomized controlled trials: A systematic review and meta-analysis. Trials 2022, 23, 1038. [Google Scholar] [CrossRef] [PubMed]
- Can health equity become a reality? Lancet 2008, 372, 1607. [CrossRef]
- Kolossváry, E.; Farkas, K.; Karahan, O.; Golledge, J.; Schernthaner, G.H.; Karplus, T.; Bernardo, J.J.; Marschang, S.; Abola, M.T.; Heinzmann, M.; et al. The importance of socio-economic determinants of health in the care of patients with peripheral artery disease: A narrative review from VAS. Vasc. Med. 2023, 28, 241–253. [Google Scholar] [CrossRef] [PubMed]
- UNESCO. Institute for Statistics (UIPS), June 2019. Available online: https://uis.unesco.org/ (accessed on 8 December 2023).
- George, J.; Rapsomaniki, E.; Pujades-Rodriguez, M.; Shah, A.D.; Denaxas, S.; Herrett, E.; Smeeth, L.; Timmis, A.; Hemingway, H. How Does Cardiovascular Disease First Present in Women and Men? Incidence of 12 Cardiovascular Diseases in a Contemporary Cohort of 1,937,360 People. Circulation 2015, 132, 1320–1328. [Google Scholar] [CrossRef]
- Anand, S.S.; Islam, S.; Rosengren, A.; Franzosi, M.G.; Steyn, K.; Yusufali, A.H.; Keltai, M.; Diaz, R.; Rangarajan, S.; Yusuf, S.; et al. Risk factors for myocardial infarction in women and men: Insights from the INTERHEART study. Eur. Heart J. 2008, 29, 932–940. [Google Scholar] [CrossRef]
- Wang, Y.; O’Neil, A.; Jiao, Y.; Wang, L.; Huang, J.; Lan, Y.; Zhu, Y.; Yu, C. Sex differences in the association between diabetes and risk of cardiovascular disease, cancer, and all-cause and cause-specific mortality: A systematic review and meta-analysis of 5,162,654 participants. BMC Med. 2019, 17, 136. [Google Scholar] [CrossRef]
- Ji, H.; Kim, A.; Ebinger, J.E.; Niiranen, T.J.; Claggett, B.L.; Bairey Merz, C.N.; Cheng, S. Sex Differences in Blood Pressure Trajectories Over the Life Course. JAMA Cardiol. 2020, 5, 19–26, Erratum in JAMA Cardiol. 2020, 5, 364. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.A.; Huxley, R.R.; Woodward, M. Comparison of the sex-specific associations between systolic blood pressure and the risk of cardiovascular disease: A systematic review and meta-analysis of 124 cohort studies, including 1.2 million individuals. Stroke 2013, 44, 2394–2401. [Google Scholar] [CrossRef] [PubMed]
- Huxley, R.R.; Woodward, M. Cigarette smoking as a risk factor for coronary heart disease in women compared with men: A systematic review and meta-analysis of prospective cohort studies. Lancet 2011, 378, 1297–1305. [Google Scholar] [CrossRef]
- Millett, E.R.C.; Peters, S.A.E.; Woodward, M. Sex differences in risk factors for myocardial infarction: Cohort study of UK Biobank participants. BMJ 2018, 363, k4247. [Google Scholar] [CrossRef]
- Carter, J.L.; Morris, D.R.; Sherliker, P.; Clack, R.; Lam, K.B.H.; Halliday, A.; Clarke, R.; Lewington, S.; Bulbulia, R. Sex-Specific Associations of Vascular Risk Factors With Abdominal Aortic Aneurysm: Findings From 1.5 Million Women and 0.8 Million Men in the United States and United Kingdom. J. Am. Heart Assoc. 2020, 9, e014748, Erratum in J. Am. Heart Assoc. 2020, 9, e014559. [Google Scholar] [CrossRef]
- Wanhainen, A.; Verzini, F.; Van Herzeele, I.; Allaire, E.; Bown, M.; Cohnert, T.; Dick, F.; van Herwaarden, J.; Karkos, C.; Koelemay, M.; et al. Editor’s Choice—European Society for Vascular Surgery (ESVS) 2019 Clinical Practice Guidelines on the Management of Abdominal Aorto-iliac Artery Aneurysms. Eur. J. Vasc. Endovasc. Surg. 2019, 57, 8–93, Erratum in Eur. J. Vasc. Endovasc. Surg. 2020, 59, 494. [Google Scholar] [CrossRef]
- El Khoudary, S.R.; Greendale, G.; Crawford, S.L.; Avis, N.E.; Brooks, M.M.; Thurston, R.C.; Karvonen-Gutierrez, C.; Waetjen, L.E.; Matthews, K. The menopause transition and women’s health at midlife: A progress report from the Study of Women’s Health Across the Nation (SWAN). Menopause 2019, 26, 1213–1227. [Google Scholar] [CrossRef]
- Dong, W.; Yang, Z. Trends in lipid profile and lipid control among survivors of stroke or myocardial infarction among US adults, 2001–2018. Front. Endocrinol. 2023, 14, 1128878. [Google Scholar] [CrossRef]
- Wilson, P.W.; D’Agostino, R.B.; Sullivan, L.; Parise, H.; Kannel, W.B. Overweight and obesity as determinants of cardiovascular risk: The Framingham experience. Arch. Intern. Med. 2002, 162, 1867–1872. [Google Scholar] [CrossRef]
- Diep, L.; Kwagyan, J.; Kurantsin-Mills, J.; Weir, R.; Jayam-Trouth, A. Association of physical activity level and stroke outcomes in men and women: A meta-analysis. J. Womens Health 2010, 19, 1815–1822. [Google Scholar] [CrossRef]
- Pizzi, C.; Costa, G.M.; Bugiardini, R. Regarding “Depressive symptoms are related to progression of coronary calcium in midlife women: The Study of Women’s Health Across the Nation (SWAN) Heart Study”. Am. Heart J. 2011, 162, e25. [Google Scholar] [CrossRef]
- Sumner, J.A.; Kubzansky, L.D.; Elkind, M.S.; Roberts, A.L.; Agnew-Blais, J.; Chen, Q.; Cerdá, M.; Rexrode, K.M.; Rich-Edwards, J.W.; Spiegelman, D.; et al. Trauma Exposure and Posttraumatic Stress Disorder Symptoms Predict Onset of Cardiovascular Events in Women. Circulation 2015, 132, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Djekic, D.; Angerås, O.; Lappas, G.; Fagman, E.; Fagerberg, B.; Bergström, G.; Rosengren, A. Impact of socioeconomic status on coronary artery calcification. Eur. J. Prev. Cardiol. 2018, 25, 1756–1764. [Google Scholar] [CrossRef] [PubMed]
- Pizzi, C.; Manzoli, L.; Mancini, S.; Bedetti, G.; Fontana, F.; Costa, G.M. Autonomic nervous system, inflammation and preclinical carotid atherosclerosis in depressed subjects with coronary risk factors. Atherosclerosis 2010, 212, 292–298. [Google Scholar] [CrossRef]
- Prestwood, K.M.; Unson, C.; Kulldorff, M.; Cushman, M. The effect of different doses of micronized 17beta-estradiol on C-reactive protein, interleukin-6, and lipids in older women. J. Gerontol. A Biol. Sci. Med. Sci. 2004, 59, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Allais, G.; Chiarle, G.; Sinigaglia, S.; Airola, G.; Schiapparelli, P.; Benedetto, C. Estrogen, migraine, and vascular risk. Neurol. Sci. 2018, 39 (Suppl. 1), 11–20. [Google Scholar] [CrossRef]
- Hodis, H.N.; Mack, W.J. Menopausal Hormone Replacement Therapy and Reduction of All-Cause Mortality and Cardiovascular Disease: It Is About Time and Timing. Cancer J. 2022, 28, 208–223. [Google Scholar] [CrossRef]
- Del Principe, D.; Ruggieri, A.; Pietraforte, D.; Villani, A.; Vitale, C.; Straface, E.; Malorni, W. The relevance of estrogen/estrogen receptor system on the gender difference in cardiovascular risk. Int. J. Cardiol. 2015, 187, 291–298. [Google Scholar] [CrossRef]
- Nappi, R.E.; Chedraui, P.; Lambrinoudaki, I.; Simoncini, T. Menopause: A cardiometabolic transition. Lancet Diabetes Endocrinol. 2022, 10, 442–456. [Google Scholar] [CrossRef]
- Zhu, D.; Chung, H.F.; Dobson, A.J.; Pandeya, N.; Brunner, E.J.; Kuh, D.; Greenwood, D.C.; Hardy, R.; Cade, J.E.; Giles, G.G.; et al. Type of menopause, age of menopause and variations in the risk of incident cardiovascular disease: Pooled analysis of individual data from 10 international studies. Hum. Reprod. 2020, 35, 1933–1943. [Google Scholar] [CrossRef]
- Liu, J.; Jin, X.; Liu, W.; Chen, W.; Wang, L.; Feng, Z.; Huang, J. The risk of long-term cardiometabolic disease in women with premature or early menopause: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2023, 10, 1131251. [Google Scholar] [CrossRef]
- LaCroix, A.Z.; Chlebowski, R.T.; Manson, J.E.; Aragaki, A.K.; Johnson, K.C.; Martin, L.; Margolis, K.L.; Stefanick, M.L.; Brzyski, R.; Curb, J.D.; et al. Health outcomes after stopping conjugated equine estrogens among postmenopausal women with prior hysterectomy: A randomized controlled trial. JAMA 2011, 305, 1305–1314. [Google Scholar] [CrossRef]
- Baber, R.J.; Panay, N.; Fenton, A.; IMS Writing Group. 2016 IMS Recommendations on women’s midlife health and menopause hormone therapy. Climacteric 2016, 19, 109–150. [Google Scholar] [CrossRef]
- El Khoudary, S.R.; Aggarwal, B.; Beckie, T.M.; Hodis, H.N.; Johnson, A.E.; Langer, R.D.; Limacher, M.C.; Manson, J.E.; Stefanick, M.L.; Allison, M.A.; et al. Menopause Transition and Cardiovascular Disease Risk: Implications for Timing of Early Prevention: A Scientific Statement From the American Heart Association. Circulation 2020, 142, e506–e532. [Google Scholar] [CrossRef]
- Hulley, S.; Grady, D.; Bush, T.; Furberg, C.; Herrington, D.; Riggs, B.; Vittinghoff, E.; Heart and Estrogen/progestin Replacement Study (HERS) Research Group. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. JAMA 1998, 280, 605–613. [Google Scholar] [CrossRef]
- Marjoribanks, J.; Farquhar, C.; Roberts, H.; Lethaby, A. Long term hormone therapy for perimenopausal and postmenopausal women. Cochrane Database Syst. Rev. 2012, 1, CD004143, Update in: Cochrane Database Syst. Rev. 2017, CD004143. [Google Scholar] [CrossRef]
- Lakshman, R.; Forouhi, N.G.; Sharp, S.J.; Luben, R.; Bingham, S.A.; Khaw, K.T.; Wareham, N.J.; Ong, K.K. Early age at menarche associated with cardiovascular disease and mortality. J. Clin. Endocrinol. Metab. 2009, 94, 4953–4960. [Google Scholar] [CrossRef] [PubMed]
- Canoy, D.; Beral, V.; Balkwill, A.; Wright, F.L.; Kroll, M.E.; Reeves, G.K.; Green, J.; Cairns, B.J.; Million Women Study Collaborators*. Age at menarche and risks of coronary heart and other vascular diseases in a large UK cohort. Circulation 2015, 131, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Maas, A.H.E.M.; Rosano, G.; Cifkova, R.; Chieffo, A.; van Dijken, D.; Hamoda, H.; Kunadian, V.; Laan, E.; Lambrinoudaki, I.; Maclaran, K.; et al. Cardiovascular health after menopause transition, pregnancy disorders, and other gynaecologic conditions: A consensus document from European cardiologists, gynaecologists, and endocrinologists. Eur. Heart J. 2021, 42, 967–984, Erratum in Eur. Heart J. 2022, 43, 2372. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhu, Z.; Lou, H.; Zhu, G.; Huang, W.; Zhang, S.; Liu, F. Polycystic ovary syndrome (PCOS) and the risk of coronary heart disease (CHD): A meta-analysis. Oncotarget 2016, 7, 33715–33721. [Google Scholar] [CrossRef] [PubMed]
- de Groot, P.C.; Dekkers, O.M.; Romijn, J.A.; Dieben, S.W.; Helmerhorst, F.M. PCOS, coronary heart disease, stroke and the influence of obesity: A systematic review and meta-analysis. Hum. Reprod. Update 2011, 17, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Haug, E.B.; Horn, J.; Markovitz, A.R.; Fraser, A.; Klykken, B.; Dalen, H.; Vatten, L.J.; Romundstad, P.R.; Rich-Edwards, J.W.; Åsvold, B.O. Association of Conventional Cardiovascular Risk Factors With Cardiovascular Disease After Hypertensive Disorders of Pregnancy: Analysis of the Nord-Trøndelag Health Study. JAMA Cardiol. 2019, 4, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Haththotuwa, R.; Kwok, C.S.; Babu, A.; Kotronias, R.A.; Rushton, C.; Zaman, A.; Fryer, A.A.; Kadam, U.; Chew-Graham, C.A.; et al. Preeclampsia and Future Cardiovascular Health: A Systematic Review and Meta-Analysis. Circ. Cardiovasc. Qual. Outcomes 2017, 10, e003497. [Google Scholar] [CrossRef] [PubMed]
- Bellamy, L.; Casas, J.P.; Hingorani, A.D.; Williams, D. Type 2 diabetes mellitus after gestational diabetes: A systematic review and meta-analysis. Lancet 2009, 373, 1773–1779. [Google Scholar] [CrossRef] [PubMed]
- Kramer, C.K.; Campbell, S.; Retnakaran, R. Gestational diabetes and the risk of cardiovascular disease in women: A systematic review and meta-analysis. Diabetologia 2019, 62, 905–914. [Google Scholar] [CrossRef]
- Dayan, N.; Filion, K.B.; Okano, M.; Kilmartin, C.; Reinblatt, S.; Landry, T.; Basso, O.; Udell, J.A. Cardiovascular Risk Following Fertility Therapy: Systematic Review and Meta-Analysis. J. Am. Coll. Cardiol. 2017, 70, 1203–1213. [Google Scholar] [CrossRef] [PubMed]
- Palomba, S.; Costanzi, F.; Nelson, S.M.; Besharat, A.; Caserta, D.; Humaidan, P. Beyond the Umbrella: A Systematic Review of the Interventions for the Prevention of and Reduction in the Incidence and Severity of Ovarian Hyperstimulation Syndrome in Patients Who Undergo In Vitro Fertilization Treatments. Int. J. Mol. Sci. 2023, 24, 14185. [Google Scholar] [CrossRef]
- Di Guardo, F.; Lello, C.; Incognito, G.G.; Bruno, M.T.; Palumbo, M. Letrozole and Ovarian Hyperstimulation Syndrome (OHSS): A Promising Prevention Strategy. J. Clin. Med. 2023, 12, 614. [Google Scholar] [CrossRef]
- Roelands, J.; Jamison, M.G.; Lyerly, A.D.; James, A.H. Consequences of smoking during pregnancy on maternal health. J. Womens Health 2009, 18, 867–872. [Google Scholar] [CrossRef]
- Schwarz, E.B.; Ray, R.M.; Stuebe, A.M.; Allison, M.A.; Ness, R.B.; Freiberg, M.S.; Cauley, J.A. Duration of lactation and risk factors for maternal cardiovascular disease. Obstet. Gynecol. 2009, 113, 974–982. [Google Scholar] [CrossRef]
- Sosinsky, A.Z.; Rich-Edwards, J.W.; Wiley, A.; Wright, K.; Spagnolo, P.A.; Joffe, H. Enrollment of female participants in United States drug and device phase 1-3 clinical trials between 2016 and 2019. Contemp. Clin. Trials 2022, 115, 106718. [Google Scholar] [CrossRef]
- Vargesson, N. Thalidomide-induced teratogenesis: History and mechanisms. Birth Defects Res. C Embryo Today 2015, 105, 140–156. [Google Scholar] [CrossRef]
- Ujházy, E.; Mach, M.; Navarová, J.; Brucknerová, I.; Dubovický, M. Teratology—Past, present and future. Interdiscip. Toxicol. 2012, 5, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, T.S.; Teerawattananon, Y.; Tannenbaum, C.; Vijayasingham, L. Making pharmaceutical research and regulation work for women. BMJ 2020, 371, m3808. [Google Scholar] [CrossRef]
- van den Hurk, L.; Hiltner, S.; Oertelt-Prigione, S. Operationalization and Reporting Practices in Manuscripts Addressing Gender Differences in Biomedical Research: A Cross-Sectional Bibliographical Study. Int. J. Environ. Res. Public Health 2022, 19, 14299. [Google Scholar] [CrossRef]
- World Health Organisation. Gender and Health. 2023. Available online: https://www.who.int/health-topics/gender#tab=tab_1 (accessed on 22 July 2023).
- Oertelt-Prigione, S. Putting gender into sex- and gender-sensitive medicine. EClinicalMedicine 2020, 20, 100305. [Google Scholar] [CrossRef] [PubMed]
- Davis, K. Intersectionality as buzzword: A sociology of science perspective on what makes a feminist theory successful. Fem. Theory 2008, 9, 67–85. [Google Scholar] [CrossRef]
- Mensah, G.A.; Fuster, V. Sex and Gender Differences in Cardiovascular Health. J. Am. Coll. Cardiol. 2022, 79, 1385–1387. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, J.; Edens, M.; Vogel, B.; Mehran, R. Best Practices for Designing Informative Trials Including Women. Curr. Atheroscler. Rep. 2022, 24, 885–888. [Google Scholar] [CrossRef]
- Pilote, L.; Raparelli, V. Participation of Women in Clinical Trials: Not Yet Time to Rest on Our Laurels. J. Am. Coll. Cardiol. 2018, 71, 1970–1972, Erratum in J. Am. Coll. Cardiol. 2018, 71, 2716. [Google Scholar] [CrossRef]
- European Commission. Clinical Trials—Regulation EU No 536/2014. 2023. Available online: https://health.ec.europa.eu/medicinal-products/clinical-trials/clinical-trials-regulation-eu-no-5362014_en (accessed on 22 July 2023).
- Global Burden of Disease Stroke Statistics Worldwide for the Year 2019. Available online: http://ghdx.healthdata.org/gbd-results-tool (accessed on 7 December 2023).
- Seshadri, S.; Wolf, P.A. Lifetime risk of stroke and dementia: Current concepts, and estimates from the Framingham Study. Lancet Neurol. 2007, 6, 1106–1114. [Google Scholar] [CrossRef]
- Cordonnier, C.; Sprigg, N.; Sandset, E.C.; Pavlovic, A.; Sunnerhagen, K.S.; Caso, V.; Christensen, H.; Women Initiative for Stroke in Europe (WISE) Group. Stroke in women—From evidence to inequalities. Nat. Rev. Neurol. 2017, 13, 521–532. [Google Scholar] [CrossRef]
- Kumar, A.; McCullough, L. Cerebrovascular disease in women. Ther. Adv. Neurol. Disord. 2021, 14, 1756286420985237. [Google Scholar] [CrossRef] [PubMed]
- Joakimsen, O.; Bonaa, K.H.; Stensland-Bugge, E.; Jacobsen, B.K. Age and sex differences in the distribution and ultrasound morphology of carotid atherosclerosis: The Tromsø Study. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 3007–3013. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Fang, Z.; Wang, H.; Cai, Y.; Rahimi, K.; Zhu, Y.; Fowkes, F.G.R.; Fowkes, F.J.I.; Rudan, I. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: A systematic review, meta-analysis, and modelling study. Lancet Glob. Health 2020, 8, e721–e729. [Google Scholar] [CrossRef] [PubMed]
- Gasbarrino, K.; Di Iorio, D.; Daskalopoulou, S.S. Importance of sex and gender in ischaemic stroke and carotid atherosclerotic disease. Eur. Heart J. 2022, 43, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A.P.; Cassis, L.A.; Eghbali, M.; Reue, K.; Sandberg, K. Sex Hormones and Sex Chromosomes Cause Sex Differences in the Development of Cardiovascular Diseases. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Persky, R.W.; Turtzo, L.C.; McCullough, L.D. Stroke in women: Disparities and outcomes. Curr. Cardiol. Rep. 2010, 12, 6–13. [Google Scholar] [CrossRef]
- Isselbacher, E.M.; Preventza, O.; Hamilton Black, J., 3rd; Augoustides, J.G.; Beck, A.W.; Bolen, M.A.; Braverman, A.C.; Bray, B.E.; Brown-Zimmerman, M.M.; Chen, E.P.; et al. 2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 2022, 146, e334–e482. [Google Scholar] [CrossRef]
- Talvitie, M.; Stenman, M.; Roy, J.; Leander, K.; Hultgren, R. Sex Differences in Rupture Risk and Mortality in Untreated Patients With Intact Abdominal Aortic Aneurysms. J. Am. Heart Assoc. 2021, 10, e019592. [Google Scholar] [CrossRef]
- Ramkumar, N.; Suckow, B.D.; Arya, S.; Sedrakyan, A.; Mackenzie, T.A.; Goodney, P.P.; Brown, J.R. Association of Sex With Repair Type and Long-term Mortality in Adults With Abdominal Aortic Aneurysm. JAMA Netw. Open 2020, 3, e1921240. [Google Scholar] [CrossRef] [PubMed]
- Olinic, D.M.; Spinu, M.; Olinic, M.; Homorodean, C.; Tataru, D.A.; Liew, A.; Schernthaner, G.H.; Stanek, A.; Fowkes, G.; Catalano, M. Epidemiology of peripheral artery disease in Europe: VAS Educational Paper. Int. Angiol. 2018, 37, 327–334. [Google Scholar] [CrossRef]
- Jakubiak, G.K.; Pawlas, N.; Cieślar, G.; Stanek, A. Chronic Lower Extremity Ischemia and Its Association with the Frailty Syndrome in Patients with Diabetes. Int. J. Environ. Res. Public Health 2020, 17, 9339. [Google Scholar] [CrossRef]
- Achim, A.; Stanek, A.; Homorodean, C.; Spinu, M.; Onea, H.L.; Lazăr, L.; Marc, M.; Ruzsa, Z.; Olinic, D.M. Approaches to Peripheral Artery Disease in Diabetes: Are There Any Differences? Int. J. Environ. Res. Public Health 2022, 19, 9801. [Google Scholar] [CrossRef]
- Sigvant, B.; Wiberg-Hedman, K.; Bergqvist, D.; Rolandsson, O.; Wahlberg, E. Risk factor profiles and use of cardiovascular drug prevention in women and men with peripheral arterial disease. Eur. J. Cardiovasc. Prev. Rehabil. 2009, 16, 39–46. [Google Scholar] [CrossRef] [PubMed]
- .Jelani, Q.U.; Petrov, M.; Martinez, S.C.; Holmvang, L.; Al-Shaibi, K.; Alasnag, M. Peripheral Arterial Disease in Women: An Overview of Risk Factor Profile, Clinical Features, and Outcomes. Curr. Atheroscler. Rep. 2018, 20, 40. [Google Scholar] [CrossRef] [PubMed]
- Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can. J. Cardiol. 2018, 34, 575–584. [Google Scholar] [CrossRef]
- Song, P.; Rudan, D.; Zhu, Y.; Fowkes, F.J.I.; Rahimi, K.; Fowkes, F.G.R.; Rudan, I. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: An updated systematic review and analysis. Lancet Glob. Health 2019, 7, e1020–e1030. [Google Scholar] [CrossRef]
- Kavurma, M.M.; Boccanfuso, L.; Cutmore, C.; Passam, F.; Patel, S.; Hennessy, A.; Loa, J.; Figtree, G.A.; Golledge, J.; Robinson, D.A.; et al. A hidden problem: Peripheral artery disease in women. Eur. Heart J. Qual. Care Clin. Outcomes 2023, 9, 342–350. [Google Scholar] [CrossRef]
- Patel, T.; Baydoun, H.; Patel, N.K.; Tripathi, B.; Nanavaty, S.; Savani, S.; Mojadidi, M.K.; Agarwal, N.; Patel, G.; Patel, S.; et al. Peripheral Arterial Disease in Women: The Gender Effect. Cardiovasc. Revasc. Med. 2020, 21, 404–408. [Google Scholar] [CrossRef]
- Sigvant, B.; Wiberg-Hedman, K.; Bergqvist, D.; Rolandsson, O.; Andersson, B.; Persson, E.; Wahlberg, E. A population-based study of peripheral arterial disease prevalence with special focus on critical limb ischemia and sex differences. J. Vasc. Surg. 2007, 45, 1185–1191. [Google Scholar] [CrossRef]
- McCoach, C.E.; Armstrong, E.J.; Singh, S.; Javed, U.; Anderson, D.; Yeo, K.K.; Westin, G.G.; Hedayati, N.; Amsterdam, E.A.; Laird, J.R. Gender-related variation in the clinical presentation and outcomes of critical limb ischemia. Vasc. Med. 2013, 18, 19–26. [Google Scholar] [CrossRef]
- Porras, C.P.; Bots, M.L.; Teraa, M.; van Doorn, S.; Vernooij, R.W.M. Differences in Symptom Presentation in Women and Men with Confirmed Lower Limb Peripheral Artery Disease: A Systematic Review and Meta-Analysis. Eur. J. Vasc. Endovasc. Surg. 2022, 63, 602–612. [Google Scholar] [CrossRef]
- Gardner, A.W. Sex differences in claudication pain in subjects with peripheral arterial disease. Med. Sci. Sports Exerc. 2002, 34, 1695–1698. [Google Scholar] [CrossRef] [PubMed]
- Pabon, M.; Cheng, S.; Altin, S.E.; Sethi, S.S.; Nelson, M.D.; Moreau, K.L.; Hamburg, N.; Hess, C.N. Sex Differences in Peripheral Artery Disease. Circ. Res. 2022, 130, 496–511. [Google Scholar] [CrossRef] [PubMed]
- Barochiner, J.; Aparicio, L.S.; Waisman, G.D. Challenges associated with peripheral arterial disease in women. Vasc. Health Risk Manag. 2014, 10, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Bush, R.L.; Kallen, M.A.; Liles, D.R.; Bates, J.T.; Petersen, L.A. Knowledge and awareness of peripheral vascular disease are poor among women at risk for cardiovascular disease. J. Surg. Res. 2008, 145, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Lanéelle, D.; Sauvet, G.; Guillaumat, J.; Trihan, J.E.; Mahé, G. Gender Differences in the Medical Treatment of Peripheral Artery Disease. J. Clin. Med. 2021, 10, 2855. [Google Scholar] [CrossRef] [PubMed]
- Pâquet, M.; Pilon, D.; Tétrault, J.P.; Carrier, N. Protective vascular treatment of patients with peripheral arterial disease: Guideline adherence according to year, age and gender. Can. J. Public Health 2010, 101, 96–100. [Google Scholar] [CrossRef]
- Canonico, M.E.; Hsia, J.; Hess, C.N.; Bonaca, M.P. Sex differences in guideline-directed medical therapy in 2021-22 among patients with peripheral artery disease. Vasc. Med. 2023, 28, 233–235. [Google Scholar] [CrossRef]
- McGinigle, K.L.; Browder, S.E.; Strassle, P.D.; Shalhub, S.; Harris, L.M.; Minc, S.D. Sex-related disparities in intervention rates and type of intervention in patients with aortic and peripheral arterial diseases in the National Inpatient Sample Database. J. Vasc. Surg. 2021, 73, 2081–2089.e7. [Google Scholar] [CrossRef]
- Altin, S.E.; Gitto, M.; Secemsky, E.A.; Rao, S.V.; Hess, C.N. Sex-Based Differences in Periprocedural Complications Following Lower Extremity Peripheral Vascular Intervention. Circ. Cardiovasc. Interv. 2022, 15, e011768. [Google Scholar] [CrossRef]
- Hassan, A.; Abugroun, A.; Daoud, H.; Mahmoud, S.; Awadalla, S.; Volgman, A.; Alonso, A. Impact of Gender Differences on Outcomes of Peripheral Artery Disease Intervention (from a Nationwide Sample). Am. J. Cardiol. 2021, 141, 127–132. [Google Scholar] [CrossRef]
- Parvar, S.L.; Thiyagarajah, A.; Nerlekar, N.; King, P.; Nicholls, S.J. A systematic review and meta-analysis of gender differences in long-term mortality and cardiovascular events in peripheral artery disease. J. Vasc. Surg. 2021, 73, 1456–1465.e7. [Google Scholar] [CrossRef]
- Behrendt, C.A.; Sigvant, B.; Kuchenbecker, J.; Grima, M.J.; Schermerhorn, M.; Thomson, I.A.; Altreuther, M.; Setacci, C.; Svetlikov, A.; Laxdal, E.H.; et al. Editor’s Choice—International Variations and Sex Disparities in the Treatment of Peripheral Arterial Occlusive Disease: A Report from VASCUNET and the International Consortium of Vascular Registries. Eur. J. Vasc. Endovasc. Surg. 2020, 60, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, N.; Suckow, B.D.; Behrendt, C.A.; Mackenzie, T.A.; Sedrakyan, A.; Brown, J.R.; Goodney, P.P. Association between sex and long-term outcomes of endovascular treatment for peripheral artery disease. Catheter. Cardiovasc. Interv. 2023, 101, 877–887. [Google Scholar] [CrossRef]
- UNIREUMA. Reumatologia, 3rd ed.; Per studenti e medici di medicina generale; Idelson-Gnocchi: Napoli, Italy, 2018. [Google Scholar]
- Joseph, G.; Goel, R.; Thomson, V.S.; Joseph, E.; Danda, D. Takayasu Arteritis: JACC Focus Seminar 3/4. J. Am. Coll. Cardiol. 2022, Epub ahead of print. [Google Scholar] [CrossRef]
- Hellmich, B.; Agueda, A.; Monti, S.; Buttgereit, F.; de Boysson, H.; Brouwer, E.; Cassie, R.; Cid, M.C.; Dasgupta, B.; Dejaco, C.; et al. 2018 Update of the EULAR recommendations for the management of large vessel vasculitis. Ann Rheum Dis 2020, 79, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Maz, M.; Chung, S.A.; Abril, A.; Langford, C.A.; Gorelik, M.; Guyatt, G.; Archer, A.M.; Conn, D.L.; Full, K.A.; Grayson, P.C.; et al. 2021 American College of Rheumatology/Vasculitis Foundation Guideline for the Management of Giant Cell Arteritis and Takayasu Arteritis. Arthritis Rheumatol. 2021, 73, 1349–1365. [Google Scholar] [CrossRef]
- Flammer, J.; Pache, M.; Resink, T. Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Prog. Retin. Eye Res. 2001, 20, 319–349. [Google Scholar] [CrossRef] [PubMed]
- Heidrich, H. Functional vascular diseases: Raynaud’s syndrome, acrocyanosis and erythromelalgia. Vasa 2010, 39, 33–41. [Google Scholar] [CrossRef]
- Callam, M.J. Epidemiology of varicose veins. Br. J. Surg. 1994, 81, 167–173. [Google Scholar] [CrossRef]
- Eberhardt, R.T.; Raffetto, J.D. Chronic venous insufficiency. Circulation 2014, 130, 333–346. [Google Scholar] [CrossRef]
- Raju, S.; Neglén, P. Clinical practice. Chronic venous insufficiency and varicose veins. N. Engl. J. Med. 2009, 360, 2319–2327. [Google Scholar] [CrossRef]
- Youn, Y.J.; Lee, J. Chronic venous insufficiency and varicose veins of the lower extremities. Korean J. Intern. Med. 2019, 34, 269–283. [Google Scholar] [CrossRef]
- Fowkes, F.G.; Evans, C.J.; Lee, A.J. Prevalence and risk factors of chronic venous insufficiency. Angiology 2001, 52 (Suppl. 1), S5–S15. [Google Scholar] [CrossRef]
- De Maeseneer, M.G.; Kakkos, S.K.; Aherne, T.; Baekgaard, N.; Black, S.; Blomgren, L.; Giannoukas, A.; Gohel, M.; de Graaf, R.; Hamel-Desnos, C.; et al. Editor’s Choice—European Society for Vascular Surgery (ESVS) 2022 Clinical Practice Guidelines on the Management of Chronic Venous Disease of the Lower Limbs. Eur. J. Vasc. Endovasc. Surg. 2022, 63, 184–267, Erratum in Eur. J. Vasc. Endovasc. Surg. 2022, 64, 284–285. [Google Scholar] [CrossRef] [PubMed]
- Gloviczki, P.; Comerota, A.J.; Dalsing, M.C.; Eklof, B.G.; Gillespie, D.L.; Gloviczki, M.L.; Lohr, J.M.; McLafferty, R.B.; Meissner, M.H.; Murad, M.H.; et al. The care of patients with varicose veins and associated chronic venous diseases: Clinical practice guidelines of the Society for Vascular Surgery and the American Venous Forum. J. Vasc. Surg. 2011, 53 (Suppl. 5), 2S–48S. [Google Scholar] [CrossRef] [PubMed]
- Pomp, E.R.; Lenselink, A.M.; Rosendaal, F.R.; Doggen, C.J. Pregnancy, the postpartum period and prothrombotic defects: Risk of venous thrombosis in the MEGA study. J. Thromb. Haemost. 2008, 6, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Maughan, B.C.; Marin, M.; Han, J.; Gibbins, K.J.; Brixey, A.G.; Caughey, A.B.; Kline, J.A.; Jarman, A.F. Venous Thromboembolism During Pregnancy and the Postpartum Period: Risk Factors, Diagnostic Testing, and Treatment. Obstet. Gynecol. Surv. 2022, 77, 433–444. [Google Scholar] [CrossRef]
- Westerlund, E.; Henriksson, P.; Wallén, H.; Hovatta, O.; Wallberg, K.R.; Antovic, A. Detection of a procoagulable state during controlled ovarian hyperstimulation for in vitro fertilization with global assays of haemostasis. Thromb. Res. 2012, 130, 649–653. [Google Scholar] [CrossRef] [PubMed]
- Rosendaal, F.R.; Van Hylckama Vlieg, A.; Tanis, B.C.; Helmerhorst, F.M. Estrogens, progestogens and thrombosis. J. Thromb. Haemost. 2003, 1, 1371–1380. [Google Scholar] [CrossRef] [PubMed]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.J.; Harjola, V.P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur. Heart J. 2020, 41, 543–603. [Google Scholar] [CrossRef] [PubMed]
- Abdulrehman, J.; Elbaz, C.; Aziz, D.; Parpia, S.; Fazelzad, R.; Eischer, L.; Rodger, M.A.; Cannegieter, S.C.; Ten Cate-Hoek, A.; Nagler, M.; et al. Recurrence after stopping anticoagulants in women with combined oral contraceptive-associated venous thromboembolism: A systematic review and meta-analysis. Br. J. Haematol. 2022, 199, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Tosetto, A.; Iorio, A.; Marcucci, M.; Baglin, T.; Cushman, M.; Eichinger, S.; Palareti, G.; Poli, D.; Tait, R.C.; Douketis, J. Predicting disease recurrence in patients with previous unprovoked venous thromboembolism: A proposed prediction score (DASH). J. Thromb. Haemost. 2012, 10, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Bates, S.M.; Rajasekhar, A.; Middeldorp, S.; McLintock, C.; Rodger, M.A.; James, A.H.; Vazquez, S.R.; Greer, I.A.; Riva, J.J.; Bhatt, M.; et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: Venous thromboembolism in the context of pregnancy. Blood Adv. 2018, 2, 3317–3359. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G.; Bagnall, A. Prevalence of lymphoedema in the UK: Focus on the southwest and West Midlands. Br. J. Community Nurs. 2016, 21 (Suppl. 4), S6–S14. [Google Scholar] [CrossRef] [PubMed]
- Colmant, C.; Turpin, S.; Lambert, R.; Wong, N.; Ondrejchak, S.; Lapointe, C.; Powell, J.; Dubois, J.; McCuaig, C. Pediatric Lymphedema: Study of 180 Patients Referred to a Tertiary Lymphedema Clinic. J. Cutan. Med. Surg. 2022, 26, 502–511. [Google Scholar] [CrossRef]
- Keeley, V.; Franks, P.; Quere, I.; Mercier, G.; Michelini, S.; Cestari, M.; Borman, P.; Hughes, A.; Clark, K.; Lisle, J.; et al. LIMPRINT in Specialist Lymphedema Services in United Kingdom, France, Italy, and Turkey. Lymphat. Res. Biol. 2019, 17, 141–146. [Google Scholar] [CrossRef]
- Fontaine, C.; Morfoisse, F.; Tatin, F.; Zamora, A.; Zahreddine, R.; Henrion, D.; Arnal, J.F.; Lenfant, F.; Garmy-Susini, B. The Impact of Estrogen Receptor in Arterial and Lymphatic Vascular Diseases. Int. J. Mol. Sci. 2020, 21, 3244. [Google Scholar] [CrossRef]
- Morfoisse, F.; Zamora, A.; Marchaud, E.; Nougue, M.; Diallo, L.H.; David, F.; Roussel, E.; Lacazette, E.; Prats, A.C.; Tatin, F.; et al. Sex Hormones in Lymphedema. Cancers 2021, 13, 530. [Google Scholar] [CrossRef] [PubMed]
- Brouillard, P.; Witte, M.H.; Erickson, R.P.; Damstra, R.J.; Becker, C.; Quéré, I.; Vikkula, M. Primary lymphoedema. Nat. Rev. Dis. Primers 2021, 7, 77. [Google Scholar] [CrossRef]
- Cormier, J.N.; Askew, R.L.; Mungovan, K.S.; Xing, Y.; Ross, M.I.; Armer, J.M. Lymphedema beyond breast cancer: A systematic review and meta-analysis of cancer-related secondary lymphedema. Cancer 2010, 116, 5138–5149. [Google Scholar] [CrossRef] [PubMed]
- Rockson, S.G.; Keeley, V.; Kilbreath, S.; Szuba, A.; Towers, A. Cancer-associated secondary lymphoedema. Nat. Rev. Dis. Primers 2019, 5, 22. [Google Scholar] [CrossRef]
- Hoyle, E.; Kilbreath, S.; Dylke, E. Body image and sexuality concerns in women with breast cancer-related lymphedema: A cross-sectional study. Support. Care Cancer 2022, 30, 3917–3924. [Google Scholar] [CrossRef]
- Falck, J.; Rolander, B.; Nygårdh, A.; Jonasson, L.L.; Mårtensson, J. Women with lipoedema: A national survey on their health, health-related quality of life, and sense of coherence. BMC Womens Health 2022, 22, 457. [Google Scholar] [CrossRef]
- Boyages, J.; Kastanias, K.; Koelmeyer, L.A.; Winch, C.J.; Lam, T.C.; Sherman, K.A.; Munnoch, D.A.; Brorson, H.; Ngo, Q.D.; Heydon-White, A.; et al. Liposuction for Advanced Lymphedema: A Multidisciplinary Approach for Complete Reduction of Arm and Leg Swelling. Ann. Surg. Oncol. 2015, 22 (Suppl. 3), S1263–S1270. [Google Scholar] [CrossRef]
- Shih, Y.C.; Xu, Y.; Cormier, J.N.; Giordano, S.; Ridner, S.H.; Buchholz, T.A.; Perkins, G.H.; Elting, L.S. Incidence, treatment costs, and complications of lymphedema after breast cancer among women of working age: A 2-year follow-up study. J. Clin. Oncol. 2009, 27, 2007–2014. [Google Scholar] [CrossRef]
- Ridner, S.H. The psycho-social impact of lymphedema. Lymphat. Res. Biol. 2009, 7, 109–112. [Google Scholar] [CrossRef]
- Zhang, X.; McLaughlin, E.M.; Krok-Schoen, J.L.; Naughton, M.; Bernardo, B.M.; Cheville, A.; Allison, M.; Stefanick, M.; Bea, J.W.; Paskett, E.D. Association of Lower Extremity Lymphedema With Physical Functioning and Activities of Daily Living Among Older Survivors of Colorectal, Endometrial, and Ovarian Cancer. JAMA Netw. Open 2022, 5, e221671. [Google Scholar] [CrossRef] [PubMed]
- Paskett, E.D.; Stark, N. Lymphedema: Knowledge, Treatment, and Impact Among Breast Cancer Survivors. Breast J. 2000, 6, 373–378. [Google Scholar] [CrossRef]
- Carter, B.J. Women’s experiences of lymphedema. Oncol. Nurs. Forum 1997, 24, 875–882. [Google Scholar]
- Vignes, S.; Poizeau, F.; Dupuy, A. Cellulitis risk factors for patients with primary or secondary lymphedema. J. Vasc. Surg. Venous Lymphat. Disord. 2022, 10, 179–185.e1. [Google Scholar] [CrossRef]
- Dupuy, A.; Benchikhi, H.; Roujeau, J.C.; Bernard, P.; Vaillant, L.; Chosidow, O.; Sassolas, B.; Guillaume, J.C.; Grob, J.J.; Bastuji-Garin, S. Risk factors for erysipelas of the leg (cellulitis): Case-control study. BMJ 1999, 318, 1591–1594. [Google Scholar] [CrossRef]
- Webb, E.; Neeman, T.; Bowden, F.J.; Gaida, J.; Mumford, V.; Bissett, B. Compression Therapy to Prevent Recurrent Cellulitis of the Leg. N. Engl. J. Med. 2020, 383, 630–639. [Google Scholar] [CrossRef]
- Kim, P.J.; Mufti, A.; Sachdeva, M.; Lytvyn, Y.; Zabihi-Pour, D.; Zaaroura, H.; Yeung, J. Stewart-Treves syndrome and other cutaneous malignancies in the context of chronic lymphedema: A systematic review. Int. J. Dermatol. 2022, 61, 62–70. [Google Scholar] [CrossRef]
- Galea, M.; Brincat, M.R.; Calleja-agius, J. A review of the pathophysiology and evidence- based management of varicoceles and pelvic congestion syndrome. Hum. Fertil. 2023, 26, 1597–1608. [Google Scholar] [CrossRef]
- Phillips, D.; Deipolyi, A.R.; Hesketh, R.L.; Midia, M. Pelvic Congestion Syndrome: Etiology of Pain, Diagnosis, and Clinical Management. J. Vasc. Interv. Radiol. 2014, 25, 725–733. [Google Scholar] [CrossRef]
- Meissner, M.H.; Khilnani, N.M.; Labropoulos, N.; Gasparis, A.P.; Gibson, K.; Greiner, M.; Learman, L.A.; Atashroo, D.; Lurie, F.; Passman, M.A.; et al. The Symptoms-Varices-Pathophysiology classification of pelvic venous disorders: A report of the American Vein & Lymphatic Society International Working Group on Pelvic Venous Disorders. Phlebology 2021, 36, 342–360. [Google Scholar] [CrossRef]
- Kaufman, C.; Little, N.A. Pelvic Congestion Syndrome: A Missed Opportunity. Indian. J. Radiol. Imaging 2021, 31, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Rezaei-Kalantari, K.; Fahrni, G.; Rotzinger, D.C.; Qanadli, S.D. Insights into pelvic venous disorders. Front. Cardiovasc. Med. 2023, 10, 1102063. [Google Scholar] [CrossRef] [PubMed]
- Gavrilov, S.G.; Vassilieva, G.Y.; Vasilev, I.M.; Grishenkova, A.S. The role of vasoactive neuropeptides in the genesis of venous pelvic pain: A review. Phlebology 2020, 35, 4–9. [Google Scholar] [CrossRef]
- Taylor, H.C. Vascular congestion and hyperemia; their effect on structure and function in the female reproductive system. Am. J. Obstet. Gynecol. 1949, 57, 211–230. [Google Scholar] [CrossRef]
- Bendek, B.; Afuape, N.; Banks, E.; Desai, N.A. Comprehensive review of pelvic congestion syndrome: Causes, symptoms, treatment options. Curr. Opin. Obstet. Gynecol. 2020, 32, 237–242. [Google Scholar] [CrossRef]
- Brown, C.L.; Rizer, M.; Alexander, R.; Sharpe, E.E., 3rd; Rochon, P.J. Pelvic Congestion Syndrome: Systematic Review of Treatment Success. Semin. Intervent Radiol. 2018, 35, 35–40. [Google Scholar] [CrossRef]
- Lazarashvili, Z.; Antignani, P.L.; Leal Monedero, J. Pelvic congestion syndrome: Prevalence and quality of life. Phlebolymphology 2016, 23, 123–126. [Google Scholar]
- Thorne, C.; Stuckey, B. Pelvic congestion syndrome presenting as persistent genital arousal: A case report. J. Sex. Med. 2008, 5, 504–508. [Google Scholar] [CrossRef]
- Inal, M.; Karadeniz Bilgili, M.Y.; Sahin, S. Nutcracker Syndrome Accompanying Pelvic Congestion Syndrome; Color Doppler Sonography and Multislice CT Findings: A Case Report. Iran. J. Radiol. 2014, 11, e11075. [Google Scholar] [CrossRef]
- Sharma, A.; Eapen, C.E. Pelvic congestion needs attention in infertile women with Budd-Chiari syndrome. Indian. J. Gastroenterol. 2023, 42, 14–16. [Google Scholar] [CrossRef]
- Liu, J.; Han, L.; Han, X. The Effect of a Subsequent Pregnancy After Ovarian Vein Embolization in Patients with Infertility Caused by Pelvic Congestion Syndrome. Acad. Radiol. 2019, 26, 1373–1377. [Google Scholar] [CrossRef] [PubMed]
- Liddle, A.D.; Davies, A.H. Pelvic congestion syndrome: Chronic pelvic pain caused by ovarian and internal iliac varices. Phlebology 2007, 22, 100–104. [Google Scholar] [CrossRef]
- Potla, N.; Veluri, S.C.; Stead, T.S.; Dubey, J.; Ganti, L. Pelvic Congestion Syndrome in a Postmenopausal Female. Cureus 2021, 13, e17444. [Google Scholar] [CrossRef]
- Bartl, T.; Wolf, F.; Dadak, C. Pelvic congestion syndrome (PCS) as a pathology of postmenopausal women: A case report with literature review. BMC Womens Health 2021, 21, 181. [Google Scholar] [CrossRef]
- Persu, A.; Giavarini, A.; Touzé, E.; Januszewicz, A.; Sapoval, M.; Azizi, M.; Barral, X.; Jeunemaitre, X.; Morganti, A.; Plouin, P.F.; et al. European consensus on the diagnosis and management of fibromuscular dysplasia. J. Hypertens. 2014, 32, 1367–1378. [Google Scholar] [CrossRef]
- Gornik, H.L.; Persu, A.; Adlam, D.; Aparicio, L.S.; Azizi, M.; Boulanger, M.; Bruno, R.M.; de Leeuw, P.; Fendrikova-Mahlay, N.; Froehlich, J.; et al. First International Consensus on the diagnosis and management of fibromuscular dysplasia. Vasc. Med. 2019, 24, 164–189, Erratum in Vasc. Med. 2019, 24, 475; Erratum in Vasc. Med. 2021, 26, NP1. [Google Scholar] [CrossRef]
- Persu, A.; Dobrowolski, P.; Gornik, H.L.; Olin, J.W.; Adlam, D.; Azizi, M.; Boutouyrie, P.; Bruno, R.M.; Boulanger, M.; Demoulin, J.B.; et al. Current progress in clinical, molecular, and genetic aspects of adult fibromuscular dysplasia. Cardiovasc. Res. 2022, 118, 65–83. [Google Scholar] [CrossRef]
- Sethi, S.S.; Lau, J.F.; Godbold, J.; Gustavson, S.; Olin, J.W. The S curve: A novel morphological finding in the internal carotid artery in patients with fibromuscular dysplasia. Vasc. Med. 2014, 19, 356–362. [Google Scholar] [CrossRef]
- Kim, E.S.H.; Olin, J.W.; Froehlich, J.B.; Gu, X.; Bacharach, J.M.; Gray, B.H.; Jaff, M.R.; Katzen, B.T.; Kline-Rogers, E.; Mace, P.D.; et al. Clinical manifestations of fibromuscular dysplasia vary by patient sex: A report of the United States registry for fibromuscular dysplasia. J. Am. Coll. Cardiol. 2013, 62, 2026–2028. [Google Scholar] [CrossRef]
- Wells, B.J.; Modi, R.D.; Gu, X.; Bumpus, S.M.; Swan, K.; Froehlich, J.B.; Gray, B.H.; Southerland, A.M.; Kim, E.S.; Fendrikova Mahlay, N.; et al. Clinical associations of headaches among patients with fibromuscular dysplasia: A Report from the US Registry for Fibromuscular Dysplasia. Vasc. Med. 2020, 25, 348–350. [Google Scholar] [CrossRef] [PubMed]
- Saw, J.; Starovoytov, A.; Aymong, E.; Inohara, T.; Alfadhel, M.; McAlister, C.; Samuel, R.; Grewal, T.; Parolis, J.A.; Sheth, T.; et al. Canadian Spontaneous Coronary Artery Dissection Cohort Study: 3-Year Outcomes. J. Am. Coll. Cardiol. 2022, 80, 1585–1597. [Google Scholar] [CrossRef]
- Pappaccogli, M.; Prejbisz, A.; Ciurică, S.; Bruno, R.M.; Aniszczuk-Hybiak, A.; Bracalente, I.; De Backer, T.; Debiève, F.; Delmotte, P.; Di Monaco, S.; et al. Pregnancy-Related Complications in Patients With Fibromuscular Dysplasia: A Report From the European/International Fibromuscular Dysplasia Registry. Hypertension 2020, 76, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Kautzky-Willer, A.; Leutner, M.; Harreiter, J. Sex differences in type 2 diabetes. Diabetologia 2023, 66, 986–1002, Erratum in Diabetologia 2023, 66, 1165. [Google Scholar] [CrossRef] [PubMed]
- Maric-Bilkan, C. Sex differences in micro- and macro-vascular complications of diabetes mellitus. Clin. Sci. 2017, 131, 833–846. [Google Scholar] [CrossRef] [PubMed]
- Janghorbani, M.; Hu, F.B.; Willett, W.C.; Li, T.Y.; Manson, J.E.; Logroscino, G.; Rexrode, K.M. Prospective study of type 1 and type 2 diabetes and risk of stroke subtypes: The Nurses’ Health Study. Diabetes Care 2007, 30, 1730–1735. [Google Scholar] [CrossRef] [PubMed]
- Scherer, P.E.; Hill, J.A. Obesity, Diabetes, and Cardiovascular Diseases: A Compendium. Circ. Res. 2016, 118, 1703–1705. [Google Scholar] [CrossRef]
- Chase-Vilchez, A.Z.; Chan, I.H.Y.; Peters, S.A.E.; Woodward, M. Diabetes as a risk factor for incident peripheral arterial disease in women compared to men: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2020, 19, 151. [Google Scholar] [CrossRef]
- Kautzky-Willer, A.; Harreiter, J.; Pacini, G. Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocr. Rev. 2016, 37, 278–316. [Google Scholar] [CrossRef]
- Wykluczenie Kobiet z Badań Klinicznych Negatywnie Wpływa na ich Zdrowie. Available online: https://cordis.europa.eu/article/id/27270-exclusion-from-clinical-trials-harming-womens-health/pl (accessed on 5 August 2023).
- Kendel, F.; Sieverding, M. The Impact of Gender and Age on Cardiovascular Health in Germany. In Gender, Health and Ageing; Backes, G.M., Lasch, V., Reimann, K., Eds.; VS Verlag für Sozialwissenschaften: Wiesbaden, Germany, 2006. [Google Scholar] [CrossRef]
Vessel | Symptoms |
---|---|
Carotid arteries | Dizziness, amaurosis fugax, vision loss, transient ischemic attacks, stroke |
Subclavian arteries | Arm claudication, inter-arm blood pressure difference >10 mm Hg. Proximal subclavian obstruction can cause subclavian steal |
Vertebral arteries | Stenosis/occlusion: vertigo or cerebral ischemic symptoms when multiple arch branches are obstructed |
Ascending and arch of aorta | Aortic regurgitation due to aortic dilatation, aneurysm, rarely aorta stenosis |
Descending aorta | Systemic hypertension, dyspnea, and heart failure due to aorta stenosis, aneurysm |
Abdominal aorta | Systemic hypertension, lower limb claudication, aneurysm |
Renal arteries | Systemic hypertension, renal failure |
Mesenteric arteries | Postprandial abdominal pain, weight loss, sitophobia, gastrointestinal hemorrhage |
Iliac and femoral arteries | Lower limb claudication or fatigue |
Coronary arteries | Angina, heart failure, myocardial infarction |
Pulmonary arteries | Dyspnea, cough, chest pain, pulmonary hypertension |
Triggering Factors (Acute Conditions) | Predisposing Risk Factors |
---|---|
Surgery | History of VTE |
Trauma | Chronic heart failure |
Acute internal medicine disease | Older age |
Acute heart failure | Varicose veins |
Acute respiratory failure | Obesity |
Central vein catheter | Immobility/paresis |
Malignancy/myeloproliferative disease | |
Pregnancy/peripartum period | |
Inheritance vs. acquired thrombophilias | |
Hormone treatment | |
Renal failure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farkas, K.; Stanek, A.; Zbinden, S.; Borea, B.; Ciurica, S.; Moore, V.; Maguire, P.; Abola, M.T.B.; Alajar, E.B.; Marcoccia, A.; et al. Vascular Diseases in Women: Do Women Suffer from Them Differently? J. Clin. Med. 2024, 13, 1108. https://doi.org/10.3390/jcm13041108
Farkas K, Stanek A, Zbinden S, Borea B, Ciurica S, Moore V, Maguire P, Abola MTB, Alajar EB, Marcoccia A, et al. Vascular Diseases in Women: Do Women Suffer from Them Differently? Journal of Clinical Medicine. 2024; 13(4):1108. https://doi.org/10.3390/jcm13041108
Chicago/Turabian StyleFarkas, Katalin, Agata Stanek, Stephanie Zbinden, Barbara Borea, Simina Ciurica, Vanessa Moore, Peggy Maguire, Maria Teresa B. Abola, Elaine B. Alajar, Antonella Marcoccia, and et al. 2024. "Vascular Diseases in Women: Do Women Suffer from Them Differently?" Journal of Clinical Medicine 13, no. 4: 1108. https://doi.org/10.3390/jcm13041108
APA StyleFarkas, K., Stanek, A., Zbinden, S., Borea, B., Ciurica, S., Moore, V., Maguire, P., Abola, M. T. B., Alajar, E. B., Marcoccia, A., Erer, D., Casanegra, A. I., Sharebiani, H., Sprynger, M., Kavousi, M., & Catalano, M. (2024). Vascular Diseases in Women: Do Women Suffer from Them Differently? Journal of Clinical Medicine, 13(4), 1108. https://doi.org/10.3390/jcm13041108