The Impact of Medical Face Masks and Rehabilitation Duration on the Performance Output and Outcomes of Cardiologic Rehabilitants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Patient Recruitment
2.2. Patient Groups and General Intervention Schedule
2.3. Rehabilitation at the Cardiowell Rehabilitation Center
2.4. Registration and Ethics
2.5. Performance Parameters
2.6. Data Analysis
3. Results
3.1. Comparison of Results with and without Face Masks
Outcomes with and without Face Masks
3.2. Comparison of 3-Week vs. 4-Week Rehabilitation
Outcomes of 3-Week vs. 4-Week Rehabilitation
4. Discussion
4.1. Impact of Face Masks
4.2. 3-Week vs. 4-Week Rehabilitation
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chu, D.K.; Akl, E.A.; Duda, S.; Solo, K.; Yaacoub, S.; Schunemann, H.J.; El-Harakeh, A.; Bognanni, A.; Lotfi, T.; Loeb, M.; et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. Lancet 2020, 395, 1973–1987. [Google Scholar] [CrossRef]
- Esposito, S.; Principi, N.; Leung, C.C.; Migliori, G.B. Universal use of face masks for success against COVID-19: Evidence and implications for prevention policies. Eur. Respir. J. 2020, 55, 2001260. [Google Scholar] [CrossRef]
- Asin-Izquierdo, I.; Ruiz-Ranz, E.; Arevalo-Baeza, M. The Physiological Effects of Face Masks During Exercise Worn Due to COVID-19: A Systematic Review. Sports Health 2022, 14, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Dalakoti, M.; Long, C.; Bains, A.; Djohan, A.; Ahmad, I.; Chan, S.P.; Kua, J.; Chan, P.F.; Yeo, T.J. Effect of Surgical Mask use on Peak Physical Performance During Exercise Treadmill Testing-A Real World, Crossover Study. Front. Physiol. 2022, 13, 913974. [Google Scholar] [CrossRef] [PubMed]
- Epstein, D.; Korytny, A.; Isenberg, Y.; Marcusohn, E.; Zukermann, R.; Bishop, B.; Minha, S.; Raz, A.; Miller, A. Return to training in the COVID-19 era: The physiological effects of face masks during exercise. Scand. J. Med. Sci. Sports 2021, 31, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Cai, Y.; Yu, C.; Gu, W.; Tan, Y.; Wang, L.; Chen, A.; Cheng, K.; Meng, T.; Li, X. Effects of Wearing Face Masks on Exercise Capacity and Ventilatory Anaerobic Threshold in Healthy Subjects During the COVID-19 Epidemic. Med. Sci. Monit. 2022, 28, e936069. [Google Scholar] [CrossRef]
- Rojo-Tirado, M.A.; Benitez-Munoz, J.A.; Alcocer-Ayuga, M.; Alfaro-Magallanes, V.M.; Romero-Parra, N.; Peinado, A.B.; Rael, B.; Castro, E.A.; Benito, P.J. Effect of Different Types of Face Masks on the Ventilatory and Cardiovascular Response to Maximal-Intensity Exercise. Biology 2021, 10, 969. [Google Scholar] [CrossRef]
- Rudi, W.S.; Maier, F.; Schuttler, D.; Kellnar, A.; Struven, A.K.; Hamm, W.; Brunner, S. Impact of Face Masks on Exercise Capacity and Lactate Thresholds in Healthy Young Adults. Int. J. Sports Physiol. Perform. 2022, 17, 655–658. [Google Scholar] [CrossRef]
- Wang, S.Y.; Chiu, C.H.; Hsu, C.H.; Chou, C.C.; Hsu, S.M.; Shapu, L.B.; Chao, T.C.; Chen, C.H. Acute Effects of Wearing Different Surgical Face Masks during High-Intensity, Short-Rest Resistance Exercise on Cardiorespiratory and Pulmonary Function and Perceptual Responses in Weightlifters. Biology 2022, 11, 992. [Google Scholar] [CrossRef]
- Umutlu, G.; Acar, N.E.; Sinar, D.S.; Akarsu, G.; Guven, E.; Yildirim, I. COVID-19 and physical activity in sedentary individuals: Differences in metabolic, cardiovascular, and respiratory responses during aerobic exercise performed with and without a surgical face masks. J. Sports Med. Phys. Fit. 2022, 62, 851–858. [Google Scholar] [CrossRef]
- Just, I.A.; Schoenrath, F.; Passinger, P.; Stein, J.; Kemper, D.; Knosalla, C.; Falk, V.; Knierim, J. Validity of the 6-Minute Walk Test in Patients with End-Stage Lung Diseases Wearing an Oronasal Surgical Mask in Times of the COVID-19 Pandemic. Respiration 2021, 100, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Karoff, M.; Held, K.; Bjarnason-Wehrens, B. Cardiac rehabilitation in Germany. Eur. J. Cardiovasc. Prev. Rehabil. 2007, 14, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Piepoli, M.F.; Corra, U.; Adamopoulos, S.; Benzer, W.; Bjarnason-Wehrens, B.; Cupples, M.; Dendale, P.; Doherty, P.; Gaita, D.; Hofer, S.; et al. Secondary prevention in the clinical management of patients with cardiovascular diseases. Core components, standards and outcome measures for referral and delivery: A policy statement from the cardiac rehabilitation section of the European Association for Cardiovascular Prevention & Rehabilitation. Endorsed by the Committee for Practice Guidelines of the European Society of Cardiology. Eur. J. Prev. Cardiol. 2014, 21, 664–681. [Google Scholar] [CrossRef] [PubMed]
- Wehmeier, U.F.; Schweitzer, A.; Jansen, A.; Probst, H.; Gruter, S.; Hahnchen, S.; Hilberg, T. Effects of high-intensity interval training in a three-week cardiovascular rehabilitation: A randomized controlled trial. Clin. Rehabil. 2020, 34, 646–655. [Google Scholar] [CrossRef]
- Andersen, K.L.; World Health Organization. Fundamentals of Exercise Testing; World Health Organization: Geneva, Switzerland, 1971; p. 138. [Google Scholar]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Shaw, K.A.; Zello, G.A.; Butcher, S.J.; Ko, J.B.; Bertrand, L.; Chilibeck, P.D. The impact of face masks on performance and physiological outcomes during exercise: A systematic review and meta-analysis. Appl. Physiol. Nutr. Metab. 2021, 46, 693–703. [Google Scholar] [CrossRef]
- Barbeito-Caamano, C.; Bouzas-Mosquera, A.; Peteiro, J.; Lopez-Vazquez, D.; Quintas-Guzman, M.; Varela-Cancelo, A.; Martinez-Ruiz, D.; Yanez-Wonenburger, J.C.; Pineiro-Portela, M.; Vazquez-Rodriguez, J.M. Exercise testing in COVID-19 era: Clinical profile, results and feasibility wearing a facemask. Eur. J. Clin. Investig. 2021, 51, e13509. [Google Scholar] [CrossRef]
- Rognmo, O.; Hetland, E.; Helgerud, J.; Hoff, J.; Slordahl, S.A. High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur. J. Cardiovasc. Prev. Rehabil. 2004, 11, 216–222. [Google Scholar] [CrossRef]
- Tjonna, A.E.; Lee, S.J.; Rognmo, O.; Stolen, T.O.; Bye, A.; Haram, P.M.; Loennechen, J.P.; Al-Share, Q.Y.; Skogvoll, E.; Slordahl, S.A.; et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: A pilot study. Circulation 2008, 118, 346–354. [Google Scholar] [CrossRef]
- Schjerve, I.E.; Tyldum, G.A.; Tjonna, A.E.; Stolen, T.; Loennechen, J.P.; Hansen, H.E.; Haram, P.M.; Heinrich, G.; Bye, A.; Najjar, S.M.; et al. Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clin. Sci. 2008, 115, 283–293. [Google Scholar] [CrossRef]
- Currie, K.D.; Dubberley, J.B.; McKelvie, R.S.; MacDonald, M.J. Low-volume, high-intensity interval training in patients with CAD. Med. Sci. Sports Exerc. 2013, 45, 1436–1442. [Google Scholar] [CrossRef]
- Currie, K.D.; Rosen, L.M.; Millar, P.J.; McKelvie, R.S.; MacDonald, M.J. Heart rate recovery and heart rate variability are unchanged in patients with coronary artery disease following 12 weeks of high-intensity interval and moderate-intensity endurance exercise training. Appl. Physiol. Nutr. Metab. 2013, 38, 644–650. [Google Scholar] [CrossRef]
- Molmen-Hansen, H.E.; Stolen, T.; Tjonna, A.E.; Aamot, I.L.; Ekeberg, I.S.; Tyldum, G.A.; Wisloff, U.; Ingul, C.B.; Stoylen, A. Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. Eur. J. Prev. Cardiol. 2012, 19, 151–160. [Google Scholar] [CrossRef]
- Shaw, K.; Butcher, S.; Ko, J.; Zello, G.A.; Chilibeck, P.D. Wearing of Cloth or Disposable Surgical Face Masks has no Effect on Vigorous Exercise Performance in Healthy Individuals. Int. J. Environ. Res. Public. Health 2020, 17, 8110. [Google Scholar] [CrossRef]
- Behrens, K.; Hottenrott, K.; Weippert, M.; Montanus, H.; Kreuzfeld, S.; Rieger, A.; Lubke, J.; Werdan, K.; Stoll, R. Individualization of exercise load control for inpatient cardiac rehabilitation. Development and evaluation of a HRV-based intervention program for patients with ischemic heart failure. Herz 2015, 40 (Suppl. S1), 61–69. [Google Scholar] [CrossRef]
Parameter | NFM (n = 57) 3 Weeks (n = 29) 4 Weeks (n = 28) | WFM (n = 49) 3 Weeks (n = 27) 4 Weeks (n = 22) | P (NFM vs. WFM) |
---|---|---|---|
Sex | |||
Male n (%) | |||
3 weeks | 25 (86.2%) | 21 (77.8%) | |
4 weeks | 25 (89.3%) | 19 (86.4%) | |
Female n (%) | |||
3 weeks | 4 (13.8%) | 6 (22.2%) | |
4 weeks | 3 (10.7%) | 3 (13.6%) | |
Age (Years) | |||
3 weeks | 57.5 ± 6.6 | 57.6 ± 8.2 | 0.971 |
4 weeks | 55.6 ± 7.5 | 56.4 ± 6.8 | 0.697 |
Height (cm) | |||
3 weeks | 177.5 ± 8.1 | 176.2 ± 10.7 | 0.629 |
4 weeks | 178.6 ± 10.3 | 176.7 ± 9.0 | 0.498 |
Weight (kg) | |||
3 weeks | 87.1 ± 13.4 | 85.7 ± 16.2 | 0.735 |
4 weeks | 93.3 ± 13.8 | 84.9 ± 13.5 | 0.035 * |
BMI (kg/m2) | |||
3 weeks | 27.7 ± 4.1 | 27.5 ± 4.8 | 0.909 |
4 weeks | 29.3 ± 4.0 | 27.1 ± 3.6 | 0.054 |
Ejection fraction (%) | |||
3 weeks | 61.2 ± 6.3 | 57.6 ± 9.1 | 0.093 |
4 weeks | 58.2 ± 8.3 | 58.3 ± 8.8 | 0.973 |
AMI (I210–213) # | |||
3 weeks | 20 (68.9%) | 20 (74.1%) | 0.550 |
4 weeks | 18 (64.3%) | 17 (77,2%) | 0.548 |
PITC (Z951) # | |||
3 weeks | 19 (65.5%) | 22 (81.5%) | 0.133 |
4 weeks | 20 (71.4%) | 19 (86.4%) | 0.457 |
VAS (I351) | |||
3 weeks | 4 (13.8%) | 3 (11.1%) | 0.810 |
4 weeks | 3 (10.7%) | 2 (9.1%) | 0.131 |
Ergometer training | |||
sessions (n) | |||
3 weeks | 9.8 ± 0.7 | 9.8 ± 0.6 | 0.941 |
4 weeks | 14.7 ± 0.5 | 14.6 ± 0.7 | 0.566 |
Calisthenics sessions (n) | |||
3 weeks | 6.9 ± 0.9 | 7.4 ± 2.0 | 0.190 |
4 weeks | 10.0 ± 1.0 | 10.8 ± 1.7 | 0.048 * |
Walking sessions (n) | |||
3 weeks | 3.7 ± 1.5 | 5.2 ± 2.2 | 0.003 ** |
4 weeks | 5.4 ± 2.4 | 8.6 ± 2.9 | <0.001 *** |
Parameter | NFM (n = 57) | WFM (n = 49) | MANOVA (NFM vs. WFM) | ||
---|---|---|---|---|---|
3 Weeks (n = 29) | 3 Weeks (n = 27) | ||||
4 Weeks (n = 28) | 4 Weeks (n = 22) | ||||
Pre | Post | Pre | Post | ||
Wattmax (W) | |||||
3 weeks | 109.5 ± 29.0 | 125.8 ± 27.3 *** | 103.7 ± 40.1 | 120.8 ± 47.0 *** | 0.874 |
4 weeks | 114.4 ± 34.3 | 133.6 ± 43.2 *** | 119.3 ± 46.1 | 145.3 ± 51.8 *** | 0.190 |
Wattrel (W/kg) | |||||
3 weeks | 1.26 ± 0.26 | 1.46 ± 0.29 *** | 1.21 ± 0.43 | 1.41 ± 0.49 *** | 0.995 |
4 weeks | 1.23 ± 0.35 | 1.44 ± 0.44 *** | 1.40 ± 0.47 | 1.70 ± 0.55 *** | 0.088 |
HRrest (bpm) | |||||
3 weeks | 74.7 ± 13.7 | 76.1 ± 8.5 | 79.0 ± 11.8 | 79.2 ± 11.2 | 0.723 |
4 weeks | 75.5 ± 14.1 | 73.4 ± 10.0 | 72.2 ± 13.5 | 68.7 ± 6.6 | 0.701 |
HRmax (bpm) | |||||
3 weeks | 116.7 ± 21.0 | 120.8 ± 19.5 | 117.7 ± 22.1 | 119.0 ± 23.4 | 0.396 |
4 weeks | 115.0 ± 18.2 | 119.5 ± 21.6 | 120.1 ± 23.4 | 127.0 ± 23.3 * | 0.469 |
HR recovery (bpm) | |||||
3 weeks | 30.8 ± 10.3 | 33.9 ± 11.7 | 28.5 ± 13.3 | 33.3 ± 15.0 ** | 0.405 |
4 weeks | 29.7 ± 10.9 | 38.0 ± 24.1 | 31.1 ± 12.6 | 37.8 ± 14.0 ** | 0.731 |
BPsys rest (mmHG) | |||||
3 weeks | 122.0 ± 15.3 | 112.8 ± 20.7 ** | 116.9 ± 23.2 | 109.3 ± 14.7 * | 0.704 |
4 weeks | 119.8 ± 21.8 | 114.0 ± 14.6 | 120.5 ± 23.4 | 113.3 ± 17.1 | 0.833 |
BPdia rest (mmHG) | |||||
3 weeks | 72.6 ± 10.0 | 68.7 ± 9.9 | 73.8 ± 11.9 | 67.8 ± 10.1 * | 0.505 |
4 weeks | 72.8 ± 11.1 | 70.7 ± 10.8 | 70.8 ± 15.1 | 69.1 ± 11.5 | 0.907 |
BPsys max (mmHg) | |||||
3 weeks | 178.4 ± 33.7 | 177.6 ± 21.4 | 172.0 ± 39.5 | 165.0 ± 34.2 | 0.500 |
4 weeks | 165.3 ± 29.5 | 166.6 ± 23.9 | 176.4 ± 39.1 | 186.1 ± 37.1 | 0.309 |
BPdia max (mmHg) | |||||
3 weeks | 90.5 ± 16.0 | 89.4 ± 16.9 | 84.8 ± 13.9 | 83.4 ± 15.2 | 0.948 |
4 weeks | 89.4 ± 13.3 | 88.0 ± 14.0 | 89.1 ± 19.7 | 89.9 ± 18.4 | 0.667 |
Parameter | 3 Weeks (n = 56) | 4 Weeks (n = 50) | p |
---|---|---|---|
Sex | |||
Male, n (%) | 46 (82.1) | 44 (88.0) | |
Female, n (%) | 10 (17.9) | 6 (12.0) | |
Age (Years) | 57.5 ± 7.3 | 56.0 ± 7.1 | 0.271 |
Height (cm) | 176.9 ± 9.4 | 177.7 ± 9.7 | 0.634 |
Weight (kg) | 86.4 ± 14.7 | 89.6 ± 14.1 | 0.258 |
BMI (kg/m2) | 27.6 ± 4.4 | 28.3 ± 3.9 | 0.361 |
Ejection fraction (%) | 59.5 ± 7.9 | 58.3 ± 8.4 | 0.445 |
AMI (I210–213) # | 40 (68.9%) | 35 (70.0%) | 0.233 |
PTCI (Z951) # | 41 (71.4%) | 39 (78.0%) | 0.453 |
VAS (I351) # | 7 (12.5%) | 5 (10.0%) | 0.279 |
Ergometer training sessions (n) | 9.8 ± 0.6 | 14.7 ± 0.6 | <0.001 *** |
Calisthenics sessions (n) | 7.1 ± 1.5 | 10.4 ± 1.4 | <0.001 *** |
Walking sessions (n) | 4.4 ± 2.0 | 6.8 ± 3.1 | <0.001 *** |
Parameter | 3 Weeks (n = 56) | 4 Weeks (n = 50) | MANOVA | ||
---|---|---|---|---|---|
Pre | Post | Pre | Post | ||
Wattmax (W) | 106.7 ± 34.6 | 123.4 ± 37.8 *** | 116.5 ± 39.6 | 138.8 ± 47.0 *** | 0.109 |
Wattrel (W/kg) | 1.24 ± 0.35 | 1.43 ± 0.40 *** | 1.30 ± 0.41 | 1.56 ± 0.50 *** | 0.177 |
HRrest (bpm) | 76.7 ± 12.9 | 77.6 ± 9.9 | 74.1 ± 13.8 | 71.3 ± 8.9 | 0.153 |
HRmax (bpm) | 117.2 ± 21.3 | 120.0 ± 21.3 | 117.3 ± 20.6 | 122.8 ± 22.4 * | 0.307 |
HR recovery (bpm) | 29.7 ± 11.8 | 33.6 ± 13.3 *** | 30.3 ± 11.6 | 37.9 ± 20.1 ** | 0.161 |
BPsys rest (mmHG) | 119.5 ± 19.5 | 111.1 ± 18.0 *** | 120.1 ± 22.3 | 113.7 ± 15.6 * | 0.591 |
BPdia rest (mmHG) | 73.2 ± 10.9 | 68.3 ± 9.9 ** | 71.9 ± 12.9 | 70.0 ± 11.0 | 0.208 |
BPsys max (mmHg) | 175.3 ± 36.4 | 171.6 ± 33.1 | 170.2 ± 34.1 | 175.2 ± 31.6 | 0.158 |
BPdia max (mmHg) | 87.8 ± 15.2 | 86.5 ± 16.2 | 89.3 ± 16.3 | 88.8 ± 16.0 | 0.801 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klophaus, N.; Wehmeier, U.F.; Forstner, J.; Jansen, A.; Probst, H.; Grüter, S.; Hilberg, T. The Impact of Medical Face Masks and Rehabilitation Duration on the Performance Output and Outcomes of Cardiologic Rehabilitants. J. Clin. Med. 2024, 13, 1086. https://doi.org/10.3390/jcm13041086
Klophaus N, Wehmeier UF, Forstner J, Jansen A, Probst H, Grüter S, Hilberg T. The Impact of Medical Face Masks and Rehabilitation Duration on the Performance Output and Outcomes of Cardiologic Rehabilitants. Journal of Clinical Medicine. 2024; 13(4):1086. https://doi.org/10.3390/jcm13041086
Chicago/Turabian StyleKlophaus, Nils, Udo F. Wehmeier, Julia Forstner, Armin Jansen, Herbert Probst, Stephan Grüter, and Thomas Hilberg. 2024. "The Impact of Medical Face Masks and Rehabilitation Duration on the Performance Output and Outcomes of Cardiologic Rehabilitants" Journal of Clinical Medicine 13, no. 4: 1086. https://doi.org/10.3390/jcm13041086
APA StyleKlophaus, N., Wehmeier, U. F., Forstner, J., Jansen, A., Probst, H., Grüter, S., & Hilberg, T. (2024). The Impact of Medical Face Masks and Rehabilitation Duration on the Performance Output and Outcomes of Cardiologic Rehabilitants. Journal of Clinical Medicine, 13(4), 1086. https://doi.org/10.3390/jcm13041086