Factors Associated with Increased Intraocular Pressure in Type 2 Diabetes Patients
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; Available online: https://www.diabetesatlas.org (accessed on 30 November 2023).
- Meda, E.; Pavkov, Y.M. Diabetes and Kidney Disease. 2023. Available online: https://diabetesatlas.org/atlas/diabetes-and-kidney-disease/ (accessed on 30 November 2023).
- The Fred Hollows Foundation and International Diabetes Federation. Diabetes Eye Health: A Guide for Health Care Professionals; The Fred Hollows Foundation and International Diabetes Federation: Dubai, United Arab Emirates, 2015. [Google Scholar]
- Dielemans, I.; de Jong, P.T.; Stolk, R.; Vingerling, J.R.; Grobbee, D.E.; Hofman, A. Primary open-angle glaucoma, intraocular pressure, and diabetes mellitus in the general elderly population: The Rotterdam Study. Ophthalmology 1996, 103, 1271–1275. [Google Scholar] [CrossRef]
- Şahin, A.; Bayer, A.; Özge, G.; Mumcuoğlu, T. Corneal biomechanical changes in diabetes mellitus and their influence on intraocular pressure measurements. Investig. Ophthalmol. Vis. Sci. 2009, 50, 4597–4604. [Google Scholar] [CrossRef]
- Pimentel, L.G.M.; Gracitelli, C.P.B.; Da Silva, L.S.C.; Souza, A.K.S.; Prata, T.S. Association between Glucose Levels and Intraocular Pressure: Pre- and Postprandial Analysis in Diabetic and Nondiabetic Patients. J. Ophthalmol. 2015, 2015, 832058. [Google Scholar] [CrossRef]
- Luo, X.-Y.; Tan, N.Y.Q.; Chee, M.-L.; Shi, Y.; Tham, Y.-C.; Wong, T.Y.; Wang, J.J.; Cheng, C.-Y. Direct and Indirect Associations Between Diabetes and Intraocular Pressure: The Singapore Epidemiology of Eye Diseases Study. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2205–2211. [Google Scholar] [CrossRef]
- VanderZee, B.; Shafer, B.M.; Berdahl, J.P. Intracranial Pressure and Its Relationship to Glaucoma. Curr. Ophthalmol. Rep. 2021, 9, 83–87. [Google Scholar] [CrossRef]
- Cavet, M.E.; Vittitow, J.L.; Impagnatiello, F.; Ongini, E.; Bastia, E. Nitric oxide (NO): An emerging target for the treatment of glaucoma. Investig. Ophthalmol. Vis. Sci. 2014, 55, 5005–5015. [Google Scholar] [CrossRef]
- Nakazawa, T.; Fukuchi, T. What is glaucomatous optic neuropathy? Jpn. J. Ophthalmol. 2020, 64, 243–249. [Google Scholar] [CrossRef]
- Li, Y.; Mitchell, W.; Elze, T.; Zebardast, N. Association Between Diabetes, Diabetic Retinopathy, and Glaucoma. Curr. Diabetes Rep. 2021, 21, 38. [Google Scholar] [CrossRef]
- Birhanu, G.; Tegegne, A.S. Predictors for elevation of Intraocular Pressure (IOP) on glaucoma patients; a retrospective cohort study design. BMC Ophthalmol. 2022, 22, 254. [Google Scholar] [CrossRef]
- Faralli, J.A.; Filla, M.S.; Peters, D.M. Role of Fibronectin in Primary Open Angle Glaucoma. Cells 2019, 8, 1518. [Google Scholar] [CrossRef]
- Roberts, A.L.; Mavlyutov, T.A.; Perlmutter, T.E.; Curry, S.M.; Harris, S.L.; Chauhan, A.K.; McDowell, C.M. Fibronectin extra domain A (FN-EDA) elevates intraocular pressure through Toll-like receptor 4 signaling. Sci. Rep. 2020, 10, 9815. [Google Scholar] [CrossRef]
- Sato, T.; Roy, S. Effect of high glucose on fibronectin expression and cell proliferation in trabecular meshwork cells. Investig. Ophthalmol. Vis. Sci. 2002, 43, 170–175. [Google Scholar]
- Li, A.-F.; Tane, N.; Roy, S. Fibronectin overexpression inhibits trabecular meshwork cell monolayer permeability. Mol. Vis. 2004, 10, 750–757. [Google Scholar]
- Oshitari, T.; Fujimoto, N.; Hanawa, K.; Adachi-Usami, E. Effect of chronic hyperglycemia on intraocular pressure in patients with diabetes. Arch. Ophthalmol. 2007, 143, 363–365. [Google Scholar] [CrossRef]
- Yun, H.; Lathrop, K.L.; Yang, E.; Sun, M.; Kagemann, L.; Fu, V.; Stolz, D.B.; Schuman, J.S.; Du, Y. A laser-induced mouse model with long-term intraocular pressure elevation. PLoS ONE 2014, 9, e107446. [Google Scholar] [CrossRef]
- American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment. Diabetes Care 2021, 44 (Suppl. S1), S111–S124. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. Summary of Revisions: Standards of Care in Diabetes—2024. Diabetes Care 2023, 47 (Suppl. S1), S5–S10. [Google Scholar]
- Sinha, B.; Ghosal, S. A Target HbA1c Between 7 and 7.7% Reduces Microvascular and Macrovascular Events in T2D Regardless of Duration of Diabetes: A Meta-Analysis of Randomized Controlled Trials. Diabetes Ther. 2021, 12, 1661–1676. [Google Scholar] [CrossRef]
- Song, B.J.; Aiello, L.P.; Pasquale, L.R. Presence and Risk Factors for Glaucoma in Patients with Diabetes. Curr. Diabetes Rep. 2016, 16, 124. [Google Scholar] [CrossRef]
- Hanyuda, A.; Sawada, N.; Yuki, K.; Uchino, M.; Ozawa, Y.; Sasaki, M.; Tsugane, S. Relationships of diabetes and hyperglycaemia with in-traocular pressure in a Japanese population: The JPHC-NEXT Eye Study. Sci. Rep. 2020, 10, 5355. [Google Scholar] [CrossRef]
- Zhao, D.; Cho, J.; Kim, M.H.; Friedman, D.S.; Guallar, E. Diabetes, fasting glucose, and the risk of glaucoma: A meta-analysis. Ophthalmology 2015, 122, 72–78. [Google Scholar] [CrossRef]
- Bonovas, S.; Peponis, V.; Filioussi, K. Diabetes mellitus as a risk factor for primary open-angle glaucoma: A meta-analysis. Diabetes Med. 2004, 21, 609–614. [Google Scholar] [CrossRef]
- Tan, G.S.; Wong, T.Y.; Fong, C.W.; Aung, T. Diabetes, metabolic abnormalities, and glaucoma. The Singapore Malay Eye Study. Arch. Ophthalmol. 2009, 127, 1354–1361. [Google Scholar] [CrossRef]
- Kawase, K.; Tomidokoro, A.; Araie, M.; Iwase, A.; Yamamoto, T.; Tajimi Study Group; Society, J.G. Ocular and systemic factors related to intraocular pressure in Japanese adults: The Tajimi study. Br. J. Ophthalmol. 2008, 92, 1175–1179. [Google Scholar] [CrossRef]
- Oh, S.W.; Lee, S.; Park, C.; Kim, D.J. Elevated intraocular pressure is associated with insulin resistance and metabolic syndrome. Diabetes/Metab. Res. Rev. 2005, 21, 434–440. [Google Scholar] [CrossRef]
- McLeod, S.D.; West, S.K.; A Quigley, H.; Fozard, J.L. A longitudinal study of the relationship between intraocular and blood pressures. Investig. Ophthalmol. Vis. Sci. 1990, 31, 2361–2366. [Google Scholar]
- Lin, H.C.; Stein, J.D.; Nan, B.; Childers, D.; Newman-Casey, P.A.; Thompson, D.A.; Richards, J.E. Association of Geroprotective Effects of Met-formin and Risk of Open-Angle Glaucoma in Persons with Diabetes Mellitus. JAMA Ophthalmol. 2015, 133, 915–923. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, M.; Choi, M.Y.; Lee, D.H.; Roh, G.S.; Kim, H.J.; Kang, S.S.; Cho, G.J.; Kim, S.-J.; Yoo, J.-M.; et al. Metformin protects against retinal cell death in diabetic mice. Biochem. Biophys. Res. Commun. 2017, 492, 397–403. [Google Scholar] [CrossRef]
- Shao, S.-C.; Su, Y.-C.; Lai, E.C.-C.; Chang, K.-C.; Lee, C.-N.; Hung, M.-J.; Lai, C.-C.; Huang, F.-C.; Hung, J.-H. Association between sodium glucose co-transporter 2 inhibitors and incident glaucoma in patients with type 2 diabetes: A multi-institutional cohort study in Taiwan. Diabetes Metab. 2022, 48, 101318. [Google Scholar] [CrossRef]
- Sterling, J.; Hua, P.; Dunaief, J.L.; Cui, Q.N.; VanderBeek, B.L. Glucagon-like peptide 1 receptor agonist use is associated with reduced risk for glaucoma. Br. J. Ophthalmol. 2023, 107, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, H.; Aghamirsalim, M.; Yekta, A.; Hashemi, A.; Sajadi, M.; Khabazkhoob, M.; Heydarian, S. Distribution and associated factors of intraocular pressure in the older population: Tehran Geriatric Eye Study. Int. J. Ophthalmol. 2023, 16, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Khawaja, A.P.; Springelkamp, H.; Creuzot-Garcher, C.; Delcourt, C.; Hofman, A.; Höhn, R.; I Iglesias, A.; Wolfs, R.C.; Korobelnik, J.-F.; Silva, R.; et al. Associations with intraocular pressure across Europe: The European Eye Epidemiology (E3) Consortium. Eur. J. Epidemiol. 2016, 31, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.J.; Bin Hwang, H.; Lee, N.Y. The Association between Primary Open-Angle Glaucoma and Blood Pressure: Two Aspects of Hypertension and Hypotension. BioMed Res. Int. 2015, 2015, 827516. [Google Scholar] [CrossRef] [PubMed]
- Gedde, S.J.; Feuer, W.J.; Shi, W.; Lim, K.S.; Barton, K.; Goyal, S.; Ahmed, I.I.; Brandt, J.; Banitt, M.; Budenz, D.; et al. Treatment Outcomes in the Primary Tube Versus Trabeculectomy Study after 1 Year of Follow-up. Ophthalmology 2018, 125, 650–663. [Google Scholar] [CrossRef] [PubMed]
- Yokomichi, H.; Kashiwagi, K.; Kitamura, K.; Yoda, Y.; Tsuji, M.; Mochizuki, M.; Sato, M.; Shinohara, R.; Mizorogi, S.; Suzuki, K.; et al. Evaluation of the associations between changes in intraocular pressure and metabolic syndrome parameters: A retrospective cohort study in Japan. BMJ Open 2016, 6, e010360. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; Jung, S.W.; Nam, G.-E.; Han, K.D.; Bok, A.R.; Baek, S.J.; Cho, K.-H.; Choi, Y.S.; Kim, S.-M.; Ju, S.-Y.; et al. High intraocular pressure is associated with cardiometabolic risk factors in South Korean men: Korean National Health and Nutrition Examination Survey, 2008–2010. Eye 2014, 28, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Wygnanski-Jaffe, T.; Bieran, I.; Tekes-Manova, D.; Morad, Y.; Ashkenazi, I.; Mezer, E. Metabolic syndrome: A risk factor for high intraocular pressure in the Israeli population. Int. J. Ophthalmol. 2015, 8, 403–406. [Google Scholar] [CrossRef]
- Wang, S.; Xu, L.; Jonas, J.B.; Wang, Y.X.; You, Q.S.; Yang, H. Dyslipidemia and eye diseases in the adult chinese population: The Beijing eye study. PLoS ONE 2012, 7, e26871. [Google Scholar] [CrossRef]
- Kang, J.H.; Pasquale, L.R.; Willett, W.C.; A Rosner, B.; Egan, K.M.; Faberowski, N.; E Hankinson, S. Dietary fat consumption and primary open-angle glaucoma. Am. J. Clin. Nutr. 2004, 79, 755–764. [Google Scholar] [CrossRef]
- Wang, S.; Bao, X. Hyperlipidemia, Blood Lipid Level, and the Risk of Glaucoma: A Meta-Analysis. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1028–1043. [Google Scholar] [CrossRef]
- Wang, T.-H.; Tsai, Y.-J.; Wang, Y.-H.; Wu, C.-L.; Lin, I.-C. Relationship between Dry Eye Disease and Dyslipidemia: A Systematic Review. J. Clin. Med. 2023, 12, 6631. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Kwon, Y.-J.; Lee, H.S.; Han, J.H.; Joung, B.; Kim, S.J. Fatty Liver Is an Independent Risk Factor for Elevated Intraocular Pressure. Nutrients 2022, 14, 4455. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-J.; Kim, J.-H.; Jung, D.-H. Association Between Nonalcoholic Fatty Liver Disease and Intraocular Pressure in Korean Adults. Eur. J. Gastroenterol. Hepatol. 2018, 27, 1099–1104. [Google Scholar] [CrossRef] [PubMed]
- Flammer, J.; Haefliger, I.O.; Orgül, S.; Resink, T. Vascular Dysregulation: A Principal Risk Factor for Glaucomatous Damage? J. Glaucoma 1999, 8, 212–219. [Google Scholar] [CrossRef]
- Lab Test Online. Alkaline Phosphatase (ALP). Available online: https://labtestsonline.org/tests/alkaline-phosphatase-alp (accessed on 24 December 2023).
- Lowe, D.; Sanvictores, T.; Zubair, M.; John, S. Alkaline Phosphatase; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Makris, K.; Mousa, C.; Cavalier, E. Alkaline Phosphatases: Biochemistry, Functions, and Measurement. Calcif. Tissue Int. 2022, 112, 233–242. [Google Scholar] [CrossRef]
Variable | Women | Men | Difference | p |
---|---|---|---|---|
Gender n (%) c | 46 (52.8%) | 41 (47.2%) | - | 0.6 |
Age (years) a | 64.6 ± 8.6 | 62.4 ± 11.2 | −2.1 | 0.3 |
Diabetes duration (years) b | 8.5 (0; 30) | 10 (0; 33) | 1.6 | 0.3 |
Weight (kg) a | 80.2 ± 15.3 | 93.5 ± 19.4 | 13.2 | 0.0009 * |
BMI (kg/m2) a | 30.8 ± 5.7 | 32.3 ± 12.6 | 1.4 | 0.4 |
Waist (cm) a | 108 ± 6.2 | 119.6 ± 16.4 | 11.6 | 0.1 |
TC (mg/dL) a | 172.1 ± 41.5 | 155 ± 35.3 | −17 | 0.09 |
TG (mg/dL) b | 143 (44; 607) | 133 (48; 344) | −23.7 | 0.4 |
HDLc (mg/dL) b | 51 (31; 89) | 42.5 (28; 71) | −6.9 | 0.04 * |
LDLc (mg/dL) a | 95.3 ± 34.5 | 87.8 ± 33.2 | −7.5 | 0.4 |
HbA1c (%) b | 6.9 (5.3; 12.1) | 6.8 (5; 10) | −0.04 | 0.9 |
Glycemia (mg/dL) b | 125 (78; 252) | 140 (90; 270) | 10.7 | 0.2 |
Serum creatinine (mg/dL) b | 0.75 (0.42; 1.4) | 1 (0.69; 8.8) | 0.6 | 0.008 * |
UACr (mg/g) b | 11.1 (2.6; 623.4) | 4.9 (2.3; 150) | −67.2 | 0.3 |
eGFR (mL/min/m2) b | 80.3 (35.3; 109) | 80.6 (6.5; 117.1) | −5.4 | 0.3 |
Uric acid (mg/dL) | 5.4 ± 1.4 | 5.7 ± 1.3 | 0.3 | 0.3 |
GGT (u/L) b | 25 (9; 88) | 38.3 (11; 116) | 11.2 | 0.1 |
ALP (u/L) a | 78.7 ± 26.3 | 64.5 ± 23.6 | −14.1 | 0.1 |
TBil (mg/dL) a | 0.6 ± 0.3 | 0.6 ± 0.3 | 0.0 | 0.9 |
AST (u/L) b | 21.5 (10; 67) | 25.5 (13; 363) | 11.1 | 0.07 |
ALT (u/L) b | 23 (9; 85) | 35.5 (11; 176) | 13.2 | 0.2 |
IOP right eye (mmHg) a | 16.4 ± 4.2 | 16.7 ± 4.5 | 0.3 | 0.7 |
IOP left eye (mmHg) a | 16.2 ± 4.5 | 16.6 ± 4 | 0.4 | 0.6 |
mean IOP (mmHg) a | 16.3 ± 4.3 | 16.7 ± 4.2 | 0.3 | 0.6 |
Variable | n (%) |
---|---|
Diabetic therapies in different combinations | |
Metformin | 73 (83.9%) |
SGLT2 inhibitor | 36 (41.3%) |
DPP4 inhibitor | 8 (9.2%) |
GLP-1 RA | 32 (36.7%) |
Sulfonylurea | 11 (12.6%) |
Basal insulin | 15 (17.2%) |
Intensive insulin therapy | 5 (5.7%) |
Statins | 32 (43.8%) |
Diabetes chronic complications and comorbidities | |
HTN | 58/76 (76.3%) |
CHD | 11/74 (14.9%) |
Stroke | 4/70 (5.4%) |
CKD | 13/75 (17.3%) |
Neuropathy predominantly sensitive | 7 (8%) |
Peripheral arterial disease | 4/75 (5.3%) |
Eye disease | |
Diabetic retinopathy | 9 (10.6%) |
| 6 (6.9%) 1 (1.4%) 2 (2.3%) |
Glaucoma | 7/87 (8.3%) |
Maculopathy | 3/87 (3.5%) |
Cataract | |
| 40/87 (45.9%) 38/87 (43.6%) |
Myopia | 4/87 (4.6%) |
Retinal angiosclerosis | 52/87 (59.8%) |
Variable | IOP < 14.5 mmHg | IOP ≥ 14.5 mmHg | Difference | p |
n (%) c | 27 (32.1%) | 60 (68.9%) | - | 0.002 * |
Age (years) a | 65.5 ± 9.4 | 62.1 ± 10 | −3.3 | 0.1 |
Diabetes duration (years) a | 11.2 ± 7.7 | 10.5 ± 8.8 | −0.6 | 0.7 |
Weight (kg) a | 86.4 ± 20.4 | 86.6 ± 17.9 | 0.2 | 0.9 |
BMI (kg/m2) a | 30.7 ± 6.3 | 31.9 ± 10.9 | 1.1 | 0.6 |
Waist (cm) a | 106 | 114 ± 13.3 | 8 | 0.5 |
HbA1c (%) b | 6.8 (5.7; 10.7) | 6.9 (5; 12.1) | 0.1 | 0.7 |
Glycemia (mg/dL) a | 138.4 ± 33.6 | 139.9 ± 40.8 | 1.5 | 0.8 |
IOP right eye (mmHg) a | 12 ± 1.5 | 18.7 ± 3.5 | 6.7 | <0.0001 * |
IOP left eye (mmHg) a | 11.8 ± 1.8 | 18.7 ± 3.2 | 6.8 | <0.0001 * |
mean IOP (mmHg) a | 11.9 ± 1.4 | 18.7 ± 3.3 | 6.8 | <0.0001 * |
TC (mg/dL) a | 157.2 ± 32.2 | 166.8 ± 41.9 | 9.5 | 0.3 |
TG (mg/dL) | 105 (59; 459) | 145 (44; 607) | 37.4 | 0.1 |
LDLc (mg/dL) a | 81.8 ± 26.1 | 94.9 ± 36.5 | 13.1 | 0.1 |
HDLc (mg/dL) a | 46.8 ± 17.7 | 47.5 ± 10.9 | 0.6 | 0.8 |
UACr (mg/g) a | 10.8 ± 7.9 | 76 ± 186.6 | 65.1 | 0.4 |
Serum creatinine (mg/dL) b | 0.97 (0.4; 2.5) | 0.7 (0.5; 8.8) | 0.1 | 0.6 |
eGFR (mL/min/m2) a | 71.8 ± 19.9 | 81.6 ± 25.2 | 9.8 | 0.1 |
Uric acid (mg/dL) a | 6 ± 1.6 | 5.4 ± 1.2 | −0.6 | 0.1 |
ALP (u/L) a | 89.6 ± 28.5 | 66.7 ± 22.7 | −22.9 | 0.03 * |
GGT (u/L) | 18.5 (9; 59) | 38 (19.8; 116) | 19.8 | 0.007 * |
TBil (mg/dL) a | 0.4 ± 0.1 | 0.7 ± 0.3 | 0.2 | 0.02 * |
ALT (u/L) b | 20.2 (9; 176) | 33 (14; 85) | 6.2 | 0.3 |
AST (u/L) b | 20.8 (13; 363) | 26 (10; 67) | −9.3 | 0.4 |
Unstandardized Coefficients | Standardized Beta Coefficient | t | p | ||
---|---|---|---|---|---|
B | Std. Error | ||||
Constant | 9.07 | 7.29 | 0.00 | 1.24 | 0.22 |
Diabetes duration (years) | 0.38 | 0.12 | 0.52 | 3.19 | 0.004 |
Age (years) | −0.02 | 0.09 | −0.03 | −0.17 | 0.86 |
eGFR (mL/min/m2) | 0.07 | 0.03 | 0.38 | 2.06 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braha, A.; Simion, A.; Timar, R.; Timar, B. Factors Associated with Increased Intraocular Pressure in Type 2 Diabetes Patients. J. Clin. Med. 2024, 13, 676. https://doi.org/10.3390/jcm13030676
Braha A, Simion A, Timar R, Timar B. Factors Associated with Increased Intraocular Pressure in Type 2 Diabetes Patients. Journal of Clinical Medicine. 2024; 13(3):676. https://doi.org/10.3390/jcm13030676
Chicago/Turabian StyleBraha, Adina, Amanda Simion, Romulus Timar, and Bogdan Timar. 2024. "Factors Associated with Increased Intraocular Pressure in Type 2 Diabetes Patients" Journal of Clinical Medicine 13, no. 3: 676. https://doi.org/10.3390/jcm13030676
APA StyleBraha, A., Simion, A., Timar, R., & Timar, B. (2024). Factors Associated with Increased Intraocular Pressure in Type 2 Diabetes Patients. Journal of Clinical Medicine, 13(3), 676. https://doi.org/10.3390/jcm13030676